Silane Effect of Universal Adhesive on the Composite–Composite Repair Bond Strength after Different Surface Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Conditioning
2.3. Repair Restoration
2.4. Microtensile Bond Strength Test
2.5. Failure Type Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zabrovsky, A.; Mahmoud, R.; Beyth, N.; Ben-Gal, G. Direct posterior restorations: A 13-year survey of teaching trends and use of materials. Oper. Dent. 2018, 43, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite–State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Buchalla, W.; Hiltebrand, U.; Roos, M.; Krejci, I.; Attin, T. Influence of the interaction of light- and self-polymerization on subsurface hardening of a dual-cured core build-up resin composite. Acta Odontol. Scand. 2011, 69, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauböck, T.T.; Marovic, D.; Zeljezic, D.; Steingruber, A.D.; Attin, T.; Tarle, Z. Genotoxic potential of dental bulk-fill resin composites. Dent. Mater. 2017, 33, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Tauböck, T.T.; Jäger, F.; Attin, T. Polymerization shrinkage and shrinkage force kinetics of high- and low-viscosity dimethacrylate- and ormocer-based bulk-fill resin composites. Odontology 2019, 107, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. Durability of the anti-erosive effect of surfaces sealants under erosive abrasive conditions. Acta Odontol. Scand. 2013, 71, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, A.; Credé, A.; Tschammler, C.; Attin, T.; Tauböck, T.T. Enamel wear by antagonistic restorative materials under erosive conditions. Clin. Oral Investig. 2017, 21, 2689–2693. [Google Scholar] [CrossRef]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Beck, F.; Lettner, S.; Graf, A.; Bitriol, B.; Dumitrescu, N.; Bauer, P.; Moritz, A.; Schedle, A. Survival of direct resin restorations in posterior teeth within a 19-year period (1996-2015): A meta-analysis of prospective studies. Dent. Mater. 2015, 31, 958–985. [Google Scholar] [CrossRef]
- Fernández, E.; Martín, J.; Vildósola, P.; Oliveira Junior, O.B.; Gordan, V.; Mjor, I.; Bersezio, C.; Estay, J.; de Andrade, M.F.; Moncada, G. Can repair increase the longevity of composite resins? Results of a 10-year clinical trial. J. Dent. 2015, 43, 279–286. [Google Scholar] [CrossRef]
- Kirsch, J.; Tchorz, J.; Hellwig, E.; Tauböck, T.T.; Attin, T.; Hannig, C. Decision criteria for replacement of fillings: A retrospective study. Clin. Exp. Dent. Res. 2016, 2, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Krejci, I.; Lieber, C.M.; Lutz, F. Time required to remove totally bonded tooth-colored posterior restorations and related tooth substance loss. Dent. Mater. 1995, 11, 34–40. [Google Scholar] [CrossRef]
- Maneenut, C.; Sakoolnamarka, R.; Tyas, M.J. The repair potential of resin composite materials. Dent. Mater. 2011, 27, e20–e27. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Fernandez, E.; Estay, J.; Gordan, V.V.; Mjor, I.A.; Moncada, G. Minimal invasive treatment for defective restorations: Five-year results using sealants. Oper. Dent. 2013, 38, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. How to re-seal previously sealed dentin. Am. J. Dent. 2013, 26, 161–165. [Google Scholar] [PubMed]
- Da Costa, T.R.; Serrano, A.M.; Atman, A.P.; Loguercio, A.D.; Reis, A. Durability of composite repair using different surface treatments. J. Dent. 2012, 40, 513–521. [Google Scholar] [CrossRef]
- Rodrigues, S.A.; Ferracane, J.L.; Della Bona, A. Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dent. Mater. 2009, 25, 442–451. [Google Scholar]
- Valente, L.L.; Silva, M.F.; Fonseca, A.S.; Münchow, E.A.; Isolan, C.P.; Moraes, R.R. Effect of diamond bur grit size on composite repair. J. Adhes. Dent. 2015, 17, 257–263. [Google Scholar]
- Fornazari, I.A.; Wille, I.; Meda, E.M.; Brum, R.T.; Souza, E.M. Effect of surface treatment, silane, and universal adhesive on microshear bond strength of nanofilled composite repairs. Oper. Dent. 2017, 42, 367–374. [Google Scholar] [CrossRef]
- Kaneko, M.; Caldas, R.A.; Feitosa, V.P.; Xediek Consani, R.L.; Schneider, L.F.; Bacchi, A. Influence of surface treatments to repair recent fillings of silorane- and methacrylate-based composites. J. Conserv. Dent. 2015, 18, 242–246. [Google Scholar]
- Souza, M.O.; Leitune, V.C.; Rodrigues, S.B.; Samuel, S.M.; Collares, F.M. One-year aging effects on microtensile bond strengths of composite and repairs with different surface treatments. Braz. Oral Res. 2017, 31, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpa, C.; Ceballos, L.; Fuentes, M.V.; Perdigão, J. Repair bond strength and nanoleakage of artificially aged CAD-CAM composite resin. J. Prosthet. Dent. 2019, 121, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Baena, E.; Vignolo, V.; Fuentes, M.V.; Ceballos, L. Influence of repair procedure on composite-to-composite microtensile bond strength. Am. J. Dent. 2015, 28, 255–260. [Google Scholar] [PubMed]
- Eliasson, S.T.; Tibballs, J.; Dahl, J.E. Effect of different surface treatments and adhesives on repair bond strength of resin composites after one and 12 months of storage using an improved microtensile test method. Oper. Dent. 2014, 39, e206–e216. [Google Scholar] [CrossRef]
- Özcan, M.; Barbosa, S.H.; Melo, R.M.; Galhano, G.A.; Bottino, M.A. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent. Mater. 2007, 23, 1276–1282. [Google Scholar] [CrossRef]
- Wiegand, A.; Stawarczyk, B.; Buchalla, W.; Tauböck, T.T.; Özcan, M.; Attin, T. Repair of silorane composite–Using the same substrate or a methacrylate-based composite? Dent. Mater. 2012, 28, 19–25. [Google Scholar] [CrossRef]
- Lung, C.Y.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Wendler, M.; Belli, R.; Panzer, R.; Skibbe, D.; Petschelt, A.; Lohbauer, U. Repair bond strength of aged resin composite after different surface and bonding treatments. Materials 2016, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.H.; Lee, M.G.; Woo, S.U.; Lee, C.O.; Yi, J.K.; Kim, D.S. Comparative study of the dentin bond strength of a new universal adhesive. Dent. Mater. J. 2016, 35, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.; Wendler, M.; Petschelt, A.; Belli, R.; Lohbauer, U. Bonding performance of universal adhesives in different etching modes. J. Dent. 2014, 42, 800–807. [Google Scholar] [CrossRef]
- Marfenko, S.; Özcan, M.; Attin, T.; Tauböck, T.T. Treatment of surface contamination of lithium disilicate ceramic before adhesive luting. Am. J. Dent. 2020, 33, 33–38. [Google Scholar] [PubMed]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flury, S.; Dulla, F.A.; Peutzfeldt, A. Repair bond strength of resin composite to restorative materials after short- and long-term storage. Dent. Mater. 2019, 35, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Deari, S.; Wegehaupt, F.J.; Tauböck, T.T.; Attin, T. Influence of different pretreatments on the microtensile bond strength to eroded dentin. J. Adhes. Dent. 2017, 19, 147–155. [Google Scholar] [PubMed]
- Consani, R.L.; Marinho, T.; Bacchi, A.; Caldas, R.A.; Feitosa, V.P.; Pfeifer, C.S. Repair strength in simulated restorations of methacrylate- or silorane-based composite resins. Braz. Dent. J. 2016, 27, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, S.; Breschi, L.; Özcan, M.; Pfefferkorn, F.; Ferrari, M.; Van Meerbeek, B. Academy of dental materials guidance on in vitro testing of dental composite bonding effectiveness to dentin/enamel using micro-tensile bond strength (μTBS) approach. Dent. Mater. 2017, 33, 133–143. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2015. Available online: https://www.R-project.org/ (accessed on 10 January 2020).
- Altinci, P.; Mutluay, M.; Tezvergil-Mutluay, A. Repair bond strength of nanohybrid composite resins with a universal adhesive. Acta Biomater. Odontol. Scand. 2018, 4, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Çakir, N.N.; Demirbuga, S.; Balkaya, H.; Karadaş, M. Bonding performance of universal adhesives on composite repairs, with or without silane application. J. Conserv. Dent. 2018, 21, 263–268. [Google Scholar] [CrossRef]
- Bekes, K.; Hirsch, C. Pit and fissure sealants, 1st ed.; Springer: Cham, Switzerland, 2018; p. 133. [Google Scholar]
- Altmann, S.; Pfeiffer, J. The hydrolysis/condensation behaviour of methacryloyloxyalkylfunctional alkoxysilanes: Structure-reactivity relations. Monat. Chem. 2003, 134, 1081–1092. [Google Scholar] [CrossRef]
- Rosa, W.L.; Piva, E.; Silva, A.F. Bond strength of universal adhesives: A systematic review and meta-analysis. J. Dent. 2015, 43, 765–776. [Google Scholar] [CrossRef]
- Chen, C.; Niu, L.N.; Xie, H.; Zhang, Z.Y.; Zhou, L.Q.; Jiao, K.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Bonding of universal adhesives to dentine – Old wine in new bottles. J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, T.R.; Ferreira, S.Q.; Klein-Júnior, C.A.; Loguercio, A.D.; Reis, A. Durability of surface treatments and intermediate agents used for repair of a polished composite. Oper. Dent. 2010, 35, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathke, A.; Tymina, Y.; Haller, B. Effect of different surface treatments on the composite–composite repair bond strength. Clin. Oral Investig. 2009, 13, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Papacchini, F.; Dall’Oca, S.; Chieffi, N.; Goracci, C.; Sadek, F.T.; Suh, B.I.; Tay, F.R.; Ferrari, M. Composite-to-composite microtensile bond strength in the repair of a microfilled hybrid resin: Effect of surface treatment and oxygen inhibition. J. Adhes. Dent. 2007, 9, 25–31. [Google Scholar] [PubMed]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.; McDonough, W.G. Chemistry of silanes: Interfaces in dental polymers and composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef]
- Halvorson, R.H.; Erickson, R.L.; Davidson, C.L. The effect of filler and silane content on conversion of resin-based composite. Dent. Mater. 2003, 19, 327–333. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Adhesion through silane coupling agents. J. Adhesion 1970, 2, 184–201. [Google Scholar] [CrossRef]
- Staxrud, F.; Dahl, J.E. Role of bonding agents in the repair of composite resin restorations. Eur. J. Oral Sci. 2011, 119, 316–322. [Google Scholar] [CrossRef]
- Tantbirojn, D.; Fernando, C.; Versluis, A. Failure strengths of composite additions and repairs. Oper. Dent. 2015, 40, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, P.; Baur, A.; Dalvai, V.; Wiedemeier, D.B.; Attin, T.; Tauböck, T.T. Effect of composite age on the repair bond strength after different mechanical surface pretreatments. J. Adhes. Dent. 2020, in press. [Google Scholar]
- Loguercio, A.D.; Luque-Martinez, I.; Muñoz, M.A.; Szesz, A.L.; Cuadros-Sánchez, J.; Reis, A. A comprehensive laboratory screening of three-step etch-and-rinse adhesives. Oper. Dent. 2014, 39, 652–662. [Google Scholar] [CrossRef]
- Peumans, M.; De Munck, J.; Van Landuyt, K.L.; Poitevin, A.; Lambrechts, P.; Van Meerbeek, B. A 13-year clinical evaluation of two three-step etch-and-rinse adhesives in non-carious class-V lesions. Clin. Oral Investig. 2012, 16, 129–137. [Google Scholar] [CrossRef]
- Sarr, M.; Kane, A.W.; Vreven, J.; Mine, A.; Van Landuyt, K.L.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B.; De Munck, J. Microtensile bond strength and interfacial characterization of 11 contemporary adhesives bonded to bur-cut dentin. Oper. Dent. 2010, 35, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
- Rizvi, A.; Zafar, M.S.; Al-Wasifi, Y.; Fareed, W.; Khurshid, Z. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite. Eur. J. Dent. 2016, 10, 376–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, H.; Shono, T.; Sonoda, H.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Relationship between surface area for adhesion and tensile bond strength – Evaluation of a micro-tensile bond test. Dent. Mater. 1994, 10, 236–240. [Google Scholar] [CrossRef]
Product | Manufacturer | Composition | LOT Number |
---|---|---|---|
Filtek Supreme XTE | 3M, St. Paul, MN, USA | Bis-GMA 1, Bis-EMA 2, UDMA 3, TEGDMA 4, PEGDMA 5, non-agglomerated/non-aggregated silica (20 nm) and zirconia (4–11 nm) fillers, aggregated zirconia/silica cluster filler (mean cluster particle size: 0.6–10 µm), filler content: 78.5 wt% (63.3 vol%) | N783259/A4D N778961/A1E |
Monobond Plus | Ivoclar Vivadent, Schaan, Liechtenstein | Alcohol, silane methacrylate, 10-MDP 6, phosphoric acid methacrylate, sulphide methacrylate | U18210 |
Scotchbond Universal | 3M, St. Paul, MN, USA | Dimethacrylate resins, HEMA 7, 10-MDP, Vitrebond Copolymer, filler, ethanol, water, initiators, silane | 627522 |
Optibond FL Adhesive | Kerr, Orange, CA, USA | Bis-GMA, GDM 8, HEMA, ODMAB 9, barium aluminoborosilicate, Na2SiF6, fumed silicon dioxide | 5057827 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelotti, G.; Niedzwiecki, M.; Bidjan, D.; Dieckmann, P.; Deari, S.; Attin, T.; Tauböck, T.T. Silane Effect of Universal Adhesive on the Composite–Composite Repair Bond Strength after Different Surface Pretreatments. Polymers 2020, 12, 950. https://doi.org/10.3390/polym12040950
Michelotti G, Niedzwiecki M, Bidjan D, Dieckmann P, Deari S, Attin T, Tauböck TT. Silane Effect of Universal Adhesive on the Composite–Composite Repair Bond Strength after Different Surface Pretreatments. Polymers. 2020; 12(4):950. https://doi.org/10.3390/polym12040950
Chicago/Turabian StyleMichelotti, Gioia, Maria Niedzwiecki, Darius Bidjan, Phoebe Dieckmann, Shengjile Deari, Thomas Attin, and Tobias T. Tauböck. 2020. "Silane Effect of Universal Adhesive on the Composite–Composite Repair Bond Strength after Different Surface Pretreatments" Polymers 12, no. 4: 950. https://doi.org/10.3390/polym12040950
APA StyleMichelotti, G., Niedzwiecki, M., Bidjan, D., Dieckmann, P., Deari, S., Attin, T., & Tauböck, T. T. (2020). Silane Effect of Universal Adhesive on the Composite–Composite Repair Bond Strength after Different Surface Pretreatments. Polymers, 12(4), 950. https://doi.org/10.3390/polym12040950