Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Photodegradation and Functional Properties of OPFR Molecules—Density Functional Theory (DFT) Method
2.2. Characterization Method for the Comprehensive Biodegradation/Photodegradation Effect Values of OPFR Molecules—Normalization Method
2.3. Enhancement of Degradation Efficiency for OPFR-Derivative Molecules—Molecular Dynamics Method Assisted with Taguchi Experimental Design
3. Results and Discussion
3.1. Construction and Reliability Test for Biodegradation and Photodegradation Pharmacophore Models of OPFRs
3.2. Molecular Modification of OPFRs with High Biologic/Photodegradation Efficiency
3.3. Prediction of Biodegradation and Photodegradation for OPFR-Derivative Molecules
3.4. Practicality Evaluation of OPFRs Derivatives Molecular
3.5. Mechanistic Analysis for the Biodegradation and Photodegradation of OPFR-Derivative Molecules
3.5.1. Mechanistic Analysis for The Enhancement of Biodegradation for OPFR-Derivative Molecules
3.5.2. Mechanistic Analysis for the Enhancement of Photodegradation for OPFR-Derivative Molecules
3.6. Enhancement of Biodegradation and Photodegradation Efficiencies of New Derivative Molecule TCPP–OH under Simulated Environment
3.6.1. Enhanced Biodegradability of TCPP–OH by Molecular Dynamic Simulation Assisted with Taguchi Experiment Design
3.6.2. Enhanced Photodegradability of TCPP–OH by Solvation Effect Based on PCM
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AOPs | Advanced oxidation processes |
BdPhP | Butyl diphenyl phosphate |
BFR | Brominated flame retardants |
CDPP | Cresyl diphenyl phosphate |
DnBP | Di-n-butyl phosphate |
EHDPP | 2-ethylhexyl diphenyl phosphate |
HOMO | Highest occupied molecular orbital |
IDPP | Isodecyl diphenyl phosphate |
IRC | Intrinsic reaction coordinates |
LUMO | Unoccupied molecular orbital |
MnBP | Mono-n-butyl phosphate |
OPFR | Organophosphorus flame retardants |
PCM | Polarizable continuum model |
PDB | Protein data bank |
QSAR | Quantitative structure–activity relationship |
RMS | Root-mean-squared |
TBOEP | Tris(2-butoxyethyl) phosphate |
TBP | Tributyl phosphate |
TBPP | Tris(p-t-butylphenyl) phosphate |
TCEP | Tris(2-chloroethyl) phosphate |
TCIPP | Tris (1-chloro-2-propyl) phosphate |
TCPP | Tris(chloro-isopropyl) phosphate |
TDCIPP | Tris(1,3-dichloro-2-propyl) phosphate |
TDCPP | Tris (1, 3-dichloro-2-propyl) phosphate |
TD-DFT | Time-dependent density functional theory |
TEHP | Tris(2-ethylhexyl) phosphate |
TEP | Triethyl phosphate |
TiBP | Triisobutyl phosphate |
TiPP | Triisopropyl phosphate |
TMP | Trimethyl phosphate |
TmTP | Tri-m-tolyl phosphate |
TNBP | Tributyl phosphate |
TnPP | Tri(n-propyl) phosphate |
TPeP | Tripentyl phosphate |
TPHP | Triphenyl phosphate |
TPrP | Tripropyl phosphate |
TpTP | Tri-p-tolyl phosphate |
UV | Ultraviolet |
WWTP | Waste water treatment plant |
ZPE | Zero-point energy |
References
- Yu, X.; Yin, H.; Peng, H.; Lu, G.; Dang, Z. Oxidation degradation of tris-(2-chloroisopropyl) phosphate by ultraviolet driven sulfate radical: Mechanisms and toxicology assessment of degradation intermediates using flow cytometry analyses. Sci. Total Environ. 2019, 687, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Yang, H.Q.; Yang, P.J.; Zhang, H.Z.; Zhao, J.H. Trace determination of organophosphate esters in white wine, red wine, and beer samples using dispersive liquid-liquid microextraction combined with ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2017, 229, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Deng, T.; Xu, M.; Wang, S.; Yang, F. Residuals of organophosphate esters in foodstuffs and implication for human exposure. Environ. Pollut. 2018, 233, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, L.; Kummel, S.; Yao, J.; Schaefer, T.; Herrmann, H.; Richnow, H.H. Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate. Chemosphere 2018, 212, 133–142. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Giannakas, A.; Bairamis, F.; Papadaki, M.; Konstantinou, I. Degradation of organophosphorus flame retardant tris (1-chloro-2-propyl) phosphate (TCPP) by visible light N,S-codoped TiO2 photocatalysts. Chem. Eng. J. 2017, 318, 231–239. [Google Scholar] [CrossRef]
- Breton, C.V.; Marsit, C.J.; Faustman, E.; Nadeau, K.; Goodrich, J.M.; Dolinoy, D.C.; Herbstman, J.; Holland, N.; LaSalle, J.M.; Schmidt, R.; et al. Occurrence and human exposure to brominated and organophosphate flame retardants via indoor dust in a Brazilian city. Environ. Pollut. 2017, 237, 695–703. [Google Scholar]
- Xu, F.C.; Tay, J.H.; Covaci, A.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Haug, L.S.; Neels, H.; Sellstrom, U.; de Wit, C.A. Assessment of dietary exposure to organohalogen contaminants, legacy and emerging flame retardants in a Norwegian cohort. Environ. Int. 2017, 102, 236–243. [Google Scholar] [CrossRef]
- Du, Z.K.; Wang, G.W.; Gao, S.X.; Wang, Z.Y. Aryl organophosphate flame retardants induced cardiotoxicity during zebra fish embryogenesis: By disturbing expression of the transcriptional regulators. Aquat. Toxicol. 2015, 161, 25–32. [Google Scholar] [CrossRef]
- Thomas, M.B.; Stapleton, H.M.; Dills, R.L.; Violette, H.D.; Christakis, D.A.; Sathyanarayana, S. Demographic and dietary risk factors in relation to urinary metabolites of organophosphate flame retardants in toddlers. Chemosphere 2017, 185, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Su, G.Y.; Zou, M.; Yu, L.Q.; Letcher, R.J.; Yu, H.X.; Giesy, J.P.; Zhou, B.S.; Liu, C.S. Effects of Tris (1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of daphnia magna at environmentally relevant concentrations. Environ. Sci. Technol. 2017, 49, 12975–12983. [Google Scholar] [CrossRef]
- Yuan, S.L.; Li, H.; Dang, Y.; Liu, C.S. Effects of triphenyl phosphate on growth, reproduction and transcription of genes of dphnia magna. Aquat. Toxicol. 2018, 195, 58–66. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, X.Y.; Tang, S.Y.; Thai, P.; Li, Z.R.; Baduel, C.; Mueller, J.F. Concentrations of organosphosphate esters and their specific metabolites in food in Southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? Environ. Sci. Technol. 2018, 52, 12765–12773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Zou, W.; Mu, L.; Chen, Y.M.; Ren, C.X.; Hu, X.G.; Zhou, Q.X. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. J. Hazard. Mater. 2016, 318, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Yin, H.; Ye, J.; Peng, H.; Lu, G.; Dang, Z. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses. Chem. Eng. J. 2019, 374, 263–273. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, H.; Wei, K.; Peng, H.; Lu, G.; Dang, Z. Biodegradation of tricresyl phosphate isomers by Brevibacillus brevis: Degradation pathway and metabolic mechanism. Chemosphere 2019, 232, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Xu, Y.P.; Wang, Z.J. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef]
- He, R.W.; Li, Y.Z.; Xiang, P.; Li, C.; Cui, X.Y.; Ma, L.Q. Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ. Res. 2018, 162, 166–172. [Google Scholar] [CrossRef]
- Cristale, J.; Ramos, D.D.; Dantas, R.F.; Junior, A.M.; Lacorte, S.; Sans, C.; Esplugas, S. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants? Environ. Res. 2016, 144, 11–18. [Google Scholar] [CrossRef]
- Pang, L.; Yang, P.J.; Zhao, J.H.; Zhang, H.Z. Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters. Water Sci. Technol. 2016, 74, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Wang, X.; Cheng, C.; Yang, S.; Wang, X.; Liu, Q.; Wang, Y.; Wang, Z.; Zhang, L.; Sun, C. Degradation of organophosphorus flame retardant tri(chloro-propyl)phosphate (TCPP) by (001) crystal plane of TiO2 photocatalysts. Environ. Technol. 2019. [Google Scholar] [CrossRef]
- He, H.; Ji, Q.; Gao, Z.; Yang, S.; Sun, C.; Li, S.; Zhang, L. Degradation of tri(2-chloroisopropyl) phosphate by the UV/H2O2 system: Kinetics, mechanisms and toxicity evaluation. Chemosphere 2019, 236, 124388. [Google Scholar] [CrossRef] [PubMed]
- Cristale, J.; Dantas, R.F.; De Luca, A.; Sans, C.; Esplugas, S.; Lacorte, S. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. J. Hazard. Mater. 2017, 323, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Chenna, M.; Messaoudi, K.; Drouiche, N.; Lounici, H. Study and modeling of the organophosphorus compound degradation by photolysis of hydrogen peroxide in aqueous media by using experimental response surface design. J. Ind. Eng. Chem. 2016, 33, 307–315. [Google Scholar] [CrossRef]
- Jiang, L.; Qiu, Y.L.; Li, Y. Effects analysis of substituent characteristics and solvents on the photodegradation of polybrominated diphenyl ethers. Chemosphere 2017, 185, 737–745. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 2015, 19, 404–417. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Y. Modification of PBDEs (BDE-15, BDE-47, BDE-85 and BDE-126) biological toxicity, bio-concentration, persistence and atmospHeric long-range transport potential based on the pHarmacopHore modeling assistant with the full factor experimental design. J. Hazard. Mater. 2016, 307, 202–212. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Li, Y. A theoretical method for the high-sensitivity fluorescence detection of PAEs through double-substitution modification. Environ. Sci. Pollut. Res. 2018, 25, 34684–34692. [Google Scholar] [CrossRef]
- Li, Q.; Gu, W.; Li, Y. 3D-QSAR/HQSAR-based analysis of bioconcentration and molecular modification of monophenyl aromatic compounds. Turk. J. Chem. 2019, 43, 286–306. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.F.; Bigley, A.N.; Ren, Z.; Xue, H.; Hull, K.G.; Romo, D.; Raushel, F.M. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Biochemistry 2015, 54, 7539–7549. [Google Scholar]
- Gu, W.; Li, Q.; Li, Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. J. Hazard. Mater. 2020, 393, 122339. [Google Scholar] [CrossRef]
- Jurgens, S.S.; Helmus, R.; Waaijers, S.L.; Uittenbogaard, D.; Dunnebier, D.; Vleugel, M.; Kraak, M.H.S.; Voogt, P.; Parsons, J.R. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge. Chemosphere 2014, 111, 238–242. [Google Scholar] [CrossRef]
- Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Removal of personal care products (PCPs) in wastewater and sludge treatment and their occurrence in receiving soils. Water Res. 2019, 1501, 129–139. [Google Scholar]
- Martín-Pozoa, L.; Alarcón-Gómeza, B.; Rodríguez-Gómez, R.; García-Córcoles, M.T.; Çipa, M.; Zafra-Gómez, A. Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. Talanta 2019, 192, 508–533. [Google Scholar] [CrossRef] [PubMed]
- Castorena-Cortés, G.; Roldán-Carrillo, T.; Zapata-PeAsco, I.; Reyes-Avila, J.; Quej-Aké, L.; Marín-Cruz, J.; Olguín-Lora, P. Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresour. Technol. 2009, 100, 5671–5677. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lin, H.; Dong, Y.; Li, B. Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings. Environ. Pollut. 2019, 250, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Katanuma, H.; Abe, K.; Kera, Y. Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Appl. Microbiol. Biotechnol. 2017, 101, 2153–2162. [Google Scholar] [CrossRef]
- Qiu, W.H.; Zheng, M.; Sun, J.; Tian, Y.Q.; Fang, M.J.; Zheng, Y.; Zhang, T.; Zheng, C.M. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. Sci. Total Environ. 2019, 651, 1457–1468. [Google Scholar] [CrossRef]
- Yuan, X.; Lacorte, S.; Cristale, J.; Dantas, R.F.; Sans, C.; Esplugas, S.; Qiang, Z. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments. Sep. Purif. Technol. 2015, 156, 1028–1034. [Google Scholar] [CrossRef]
- Ge, J.L.; Wang, X.H.; Li, C.G.; Wang, S.Y.; Wang, L.H.; Qu, R.J.; Wang, Z.Y. Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. Chem. Eng. J. 2018, 359, 1056–1064. [Google Scholar] [CrossRef]
- Ghodbane, H.; Hamdaoui, O. Decolorization of antraquinonic dye, C.I. Acid Blue 25, in aqueous solution by direct UV irradiation, UV/H2O2 and UV/Fe(II) processes. Chem. Eng. J. 2010, 160, 226–231. [Google Scholar] [CrossRef]
- Li, C.G.; Liu, J.Q.; Wu, N.N.; Pan, X.X.; Feng, J.F.; Al-Basher, G.; Allam, A.A.; Qu, R.J.; Wang, Z.Y. Photochemical formation of hydroxylated polychlorinated biphenyls (OH-PCBs) from decachlorobiphenyl (PCB-209) on solids/air interface. J. Hazard. Mater. 2019, 378, 120758. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gao, N.; Deng, Y.; Chu, W.; Rong, W.; Zhou, S. Factors affecting ultraviolet irradiation/hydrogen peroxide (UV/H2O2) degradation of mixed N-nitrosamines in water. J. Hazard. Mater. 2012, 231–232, 43–48. [Google Scholar] [CrossRef] [PubMed]
OPFRs | Biodegradation ΔGbind (kJ/mol) | Efficacy Coefficient | Photodegradation Energy (eV) | Efficacy Coefficient | Comprehensive Evaluation Values C |
---|---|---|---|---|---|
TCEP a | −123.731 | 1.168 | 7.2805 | 0.992 | 1.08 |
TCIPP a | −144.537 | 1.000 | 7.2211 | 1.000 | 1.00 |
TCPP a | −41.842 | 3.454 | 7.2874 | 0.991 | 2.22 |
TDCIPP | −144.5 | 1.000 | 7.1323 | 0.988 | 0.99 |
TDCPP a | −203.57 | 1.408 | 7.1821 | 0.995 | 1.20 |
TPHP a | −190.952 | 1.321 | 5.4695 | 0.757 | 1.04 |
EHDPP a | −196.153 | 1.357 | 5.4015 | 0.748 | 1.05 |
TEP a | −219.226 | 1.517 | 5.3858 | 0.746 | 1.13 |
TBOEP | −84.125 | 1.718 | 7.6896 | 0.939 | 1.33 |
TEHP a | −268.708 | 1.859 | 8.2033 | 0.880 | 1.37 |
TPrP a | −22.103 | 6.539 | 8.2739 | 0.873 | 3.71 |
BdPhP a | −180.854 | 1.251 | 5.4003 | 0.748 | 1.00 |
TMP a | −19.82 | 7.292 | 8.1823 | 0.883 | 4.09 |
TiBP a | −148.43 | 1.027 | 8.1651 | 0.884 | 0.96 |
TPeP a | −74.236 | 1.947 | 8.3083 | 0.869 | 1.41 |
TnPP a | −9.191 | 15.726 | 8.1795 | 0.883 | 8.30 |
TmTP | −219.036 | 1.515 | 5.2731 | 0.730 | 1.12 |
TpTP | −259.422 | 1.795 | 5.2399 | 0.726 | 1.26 |
TBPP a | −88.759 | 1.628 | 4.3292 | 0.600 | 1.11 |
TiPP | −112.943 | 1.280 | 8.1537 | 0.886 | 1.08 |
CDPP a | −208.576 | 1.443 | 5.3779 | 0.745 | 1.09 |
IDPP a | −255.722 | 1.769 | 5.3928 | 0.747 | 1.26 |
Model | 3D Space Relation of Hypo-Gen | Hypo No. | Total Cost | RMS | R2 | Features |
---|---|---|---|---|---|---|
Pharmacophore model for comprehensive biodegradation/photodegradation effects | C1 | 70.55 | 0.24 | 0.90 | HBA HBA H | |
C2 | 75.06 | 0.00 | 0.00 | HBA HBA H | ||
C3 | 75.65 | 0.83 | 0.88 | HBA HBA H | ||
C4 | 75.06 | 0.00 | 0.00 | HBA H | ||
C5 | 75.66 | 0.27 | 0.88 | HBA HBA H | ||
C6 | 75.06 | 0.00 | 0.00 | HBA HBA H | ||
C7 | 75.78 | 0.29 | 0.87 | HBA HBA | ||
C8 | 75.06 | 0.00 | 0.00 | HBA HBA | ||
C9 | 75.87 | 0.30 | 0.85 | HBA HBA | ||
Configuration cost: | 16.75 | Fixed cost: | 57.18 | Null cost: | 77.39 |
OPFRs | Fit Value | Estimate | Active | Error | |
---|---|---|---|---|---|
Test set of comprehensive model HypoC1 | TDCIPP | 5.67 | 1.12 | 1.92 | 1.63 |
TiPP | 5.68 | 1.35 | 0.98 | 1.07 | |
TmTP | 5.67 | 1.54 | 0.98 | −1.28 | |
TpTP | 5.64 | 1.65 | 1.34 | −1.26 | |
TBOEP | 5.65 | 1.45 | 1.22 | 1.13 |
Model Name | Active | Training Set | Test Set | Configuration | R2 | Total Cost | RMS |
---|---|---|---|---|---|---|---|
HypoB1 | −log ΔGbind (kJ/mol) | TPeP, TMP, TCPP, TnPP, TPrP, BdPhP, TDCPP, TPHP, TCIPP, TpTP | TBPP TiPP CDPP | 13.24 | 0.77 | 48.17 | 0.03 |
HypoP1 | Energy (eV) | TCEP, TCIPP, TCPP, TBOEP, TDCPP, TEHP, TPrP, TMP, TiBP, TPeP, | EHDPP TEP IDPP | 14.29 | 0.82 | 50.23 | 0.20 |
Compound | Cpred | Fit Value | Reduction Intensity (%) | Bpred −log ΔGbind | Increased Intensity (%) | Ppred (eV) | Reduction Intensity (%) | Ratio | |
---|---|---|---|---|---|---|---|---|---|
Before modification | TCPP | 2.22 | - | - | 1.62 | - | 7.29 | - | - |
After modification | TCPP–OH | 1.40 | 5.75 | 37.03% | 2.52 | 55.48% | 3.91 | 46.37% | 1.20 |
TCPP–CH2OH | 1.24 | 5.82 | 44.06% | 2.31 | 42.43% | 3.43 | 52.98% | 0.80 | |
TCPP–NH2 | 1.31 | 5.93 | 41.14% | 2.57 | 58.76% | 4.60 | 36.93% | 1.59 | |
TCPP–COOH | 1.49 | 5.84 | 32.94% | 2.23 | 37.69% | 4.35 | 40.38% | 0.93 | |
TCPP–CONH2 | 1.38 | 5.81 | 37.90% | 2.46 | 51.89% | 4.49 | 38.37% | 1.35 | |
TCPP–CHO | 1.52 | 5.88 | 31.45% | 2.17 | 34.12% | 4.03 | 44.75% | 0.76 | |
TCPP–PO3H2 | 1.39 | 5.85 | 37.38% | 2.17 | 33.88% | 4.02 | 44.88% | 0.75 | |
TCPP–COOCH3 | 1.37 | 5.84 | 38.42% | 2.58 | 58.82% | 4.59 | 37.02% | 1.59 | |
TCPP–SO3H | 1.39 | 5.85 | 37.30% | 2.17 | 33.77% | 4.67 | 35.98% | 0.94 | |
Before modification | TCEP | 1.08 | - | - | 2.09 | - | 7.28 | - | - |
After modification | TCEP–OH | 1.01 | 5.84 | 6.36% | 2.89 | 38.07% | 4.50 | 38.25% | 1.00 |
TCEP–CH2OH | 0.90 | 5.87 | 16.70% | 3.06 | 46.38% | 3.57 | 50.99% | 0.91 | |
TCEP–NH2 | 0.71 | 5.89 | 26.55% | 2.72 | 29.90% | 3.51 | 51.76% | 0.58 | |
TCEP–COOH | 0.86 | 5.92 | 20.35% | 2.97 | 42.15% | 4.09 | 43.85% | 0.96 | |
TCEP–CONH2 | 0.79 | 5.87 | 27.11% | 3.00 | 43.60% | 4.53 | 37.77% | 1.15 | |
TCEP–CHO | 0.61 | 5.93 | 26.40% | 2.82 | 34.61% | 3.46 | 52.41% | 0.66 | |
TCEP–PO3H2 | 1.01 | 5.97 | 6.46% | 3.01 | 43.98% | 4.95 | 31.99% | 1.37 | |
TCEP–COOCH3 | 0.79 | 5.79 | 26.87% | 2.92 | 39.46% | 5.05 | 30.58% | 1.29 | |
TCEP–SO3H | 0.85 | 5.91 | 21.08% | 3.11 | 48.68% | 3.78 | 48.03% | 1.01 |
OPFR Derivatives | Flame Retardancy (kcal/mol) | Energy Gap (e.v.) | Energy (a.u.) | Freq | ||||
---|---|---|---|---|---|---|---|---|
Value | Enhanced Rate | Value | Change Rate (%) | Value | Change Rate (%) | Value | ||
Before modification | TCPP | 225.72 | - | 5.38 | - | −1023.57 | - | 6.07 |
After modification | TCPP–OH | 209.57 | 7.15% | 5.15 | −4.28% | −1536.08 | −50.07% | 2.34 |
TCPP–CH2OH | 256.70 | −13.73% | 5.56 | 3.35% | −1626.53 | −58.91% | 2.16 | |
TCPP–COOH | 294.37 | −30.42% | 5.42 | 0.74% | −1695.34 | −65.63% | 2.44 | |
TCPP–CONH2 | 205.82 | 8.81% | 5.31 | −1.30% | −1563.15 | −52.72% | 2.70 | |
TCPP–CHO | 215.94 | 4.33% | 5.68 | 5.58% | −1532.77 | −49.75% | 2.51 | |
TCPP–PO3H2 | 201.83 | 10.58% | 5.39 | 0.19% | −1506.84 | −47.21% | 3.08 | |
TCPP–SO3H | 266.90 | −18.24% | 5.18 | −3.72% | −1551.22 | −51.55% | 2.49 | |
Before modification | TCEP | 273.03 | - | 6.64 | - | −1375.51 | - | 7.31 |
After modification | TCEP–OH | 310.61 | −13.76% | 8.29 | 24.85% | −1475.55 | −7.27% | 5.89 |
TCEP–CH2OH | 322.95 | −18.28% | 8.9 | 34.04% | −1395.67 | −1.47% | 4.67 | |
TCEP–COOH | 327.24 | −19.85% | 8.14 | 22.59% | −1402.43 | −1.96% | 5.14 | |
TCEP–CONH2 | 291.65 | −6.82% | 7.86 | 18.37% | −1433.19 | −4.19% | 5.28 | |
TCEP–PO3H2 | 238.74 | 12.56% | 8.03 | 20.93% | −1452.28 | −5.58% | 4.72 | |
TCEP–COOCH3 | 255.25 | 6.51% | 8.42 | 26.81% | −1466.84 | −6.64% | 5.49 | |
TCEP–SO3H | 270.96 | 0.76% | 8.34 | 25.60% | −1467.63 | −6.70% | 5.64 |
Experiment No. | pH | Temperature (K) | Methyl Alcohol (mg/L) | Acetic Acid (mg/L) | H2O2 (mg/L) | Voltage (V/m) | Surfactant (mg/L) | ΔGbind (kJ/mol) |
---|---|---|---|---|---|---|---|---|
1 | 6.5 | 298 | 400 | 200 | 300 | 0.5 | 0 | −88.461 |
2 | 6.5 | 298 | 400 | 200 | 350 | 1 | 375 | −77.231 |
3 | 6.5 | 298 | 400 | 200 | 400 | 1.5 | 750 | −76.508 |
4 | 6.5 | 303 | 450 | 300 | 300 | 0.5 | 0 | −75.584 |
5 | 6.5 | 303 | 450 | 300 | 350 | 1 | 375 | −84.364 |
6 | 6.5 | 303 | 450 | 300 | 400 | 1.5 | 750 | −90.252 |
7 | 6.5 | 308 | 500 | 400 | 300 | 0.5 | 0 | −90.39 |
8 | 6.5 | 308 | 500 | 400 | 350 | 1 | 375 | −75.769 |
9 | 6.5 | 308 | 500 | 400 | 400 | 1.5 | 750 | −82.256 |
10 | 7.5 | 298 | 450 | 400 | 300 | 1 | 750 | −80.197 |
11 | 7.5 | 298 | 450 | 400 | 350 | 1.5 | 0 | −69.418 |
12 | 7.5 | 298 | 450 | 400 | 400 | 0.5 | 375 | −70.905 |
13 | 7.5 | 303 | 500 | 200 | 300 | 1 | 750 | −103.79 |
14 | 7.5 | 303 | 500 | 200 | 350 | 1.5 | 0 | −84.974 |
15 | 7.5 | 303 | 500 | 200 | 400 | 0.5 | 375 | −65.508 |
16 | 7.5 | 308 | 400 | 300 | 300 | 1 | 750 | −82.256 |
17 | 7.5 | 308 | 400 | 300 | 350 | 1.5 | 0 | −60.265 |
18 | 7.5 | 308 | 400 | 300 | 400 | 0.5 | 375 | −58.644 |
19 | 8.5 | 298 | 500 | 300 | 300 | 1.5 | 375 | −78.007 |
20 | 8.5 | 298 | 500 | 300 | 350 | 0.5 | 750 | −62.709 |
21 | 8.5 | 298 | 500 | 300 | 400 | 1 | 0 | −87.278 |
22 | 8.5 | 303 | 400 | 400 | 300 | 1.5 | 375 | −74.697 |
23 | 8.5 | 303 | 400 | 400 | 350 | 0.5 | 750 | −67.101 |
24 | 8.5 | 303 | 400 | 400 | 400 | 1 | 0 | −85.287 |
25 | 8.5 | 308 | 450 | 200 | 300 | 1.5 | 375 | −88.545 |
26 | 8.5 | 308 | 450 | 200 | 350 | 0.5 | 750 | −62.199 |
27 | 8.5 | 308 | 450 | 200 | 400 | 1 | 0 | −55.286 |
Factors/Levels | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
1 | −82.31 | −76.75 | −74.49 | −78.06 | −84.66 | −71.28 | −77.44 |
2 | −75.11 | −81.28 | −75.19 | −75.48 | −71.56 | −81.27 | −74.85 |
3 | −73.46 | −72.85 | −81.19 | −77.34 | −74.66 | −78.32 | −78.59 |
Ranking | 3 | 4 | 5 | 7 | 1 | 2 | 6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Li, Q.; Li, Y. Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model. Polymers 2020, 12, 1672. https://doi.org/10.3390/polym12081672
Yang J, Li Q, Li Y. Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model. Polymers. 2020; 12(8):1672. https://doi.org/10.3390/polym12081672
Chicago/Turabian StyleYang, Jiawen, Qing Li, and Yu Li. 2020. "Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model" Polymers 12, no. 8: 1672. https://doi.org/10.3390/polym12081672
APA StyleYang, J., Li, Q., & Li, Y. (2020). Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model. Polymers, 12(8), 1672. https://doi.org/10.3390/polym12081672