Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compositions
2.3. Conductivity
2.4. Surface Tension
2.5. Micropolarity
2.6. Viscosity
2.7. Small-Angle Neutron Scattering (SANS)
3. Results and Discussion
3.1. Below the CMC of Macromolecular Amphiphile
3.1.1. Pluronic F127 Systems
3.1.2. Pluronic P123 Systems
3.2. Above the CMC of Macromolecular Amphiphile
3.2.1. Pluronic F127 Systems
3.2.2. Pluronic P123 Systems
3.3. Comparison of Systems Containing Pluronic F127 and Pluronic P123 below the CMC
3.4. Comparison of Systems Containing Pluronic F127 and Pluronic P123 above the CMC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holmberg, K.; Jönsson, B.; Kronberg, B.; Lindman, B. Surfactants and Polymers in Aqueous Solution, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Tsianou, M.; Alexandridis, P. Surfactant-Polymer Interactions. In Surfactant Science Series; CRC Press: Boca Raton, FL, USA, 2005; Volume 124, pp. 657–708. [Google Scholar]
- Piculell, L. Understanding and exploiting the phase behavior of mixtures of oppositely charged polymers and surfactants in water. Langmuir 2013, 29, 10313–10329. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, I.S.; Alexandridis, P. Rheological properties of oppositely charged polyelectrolyte−surfactant mixtures: effect of polymer molecular weight and surfactant architecture. Macromolecules 2001, 34, 5005–5018. [Google Scholar] [CrossRef]
- Lapitsky, Y.; Kaler, E.W. Formation and structural control of surfactant and polyelectrolyte gels. Colloids Surf. A Phys. Eng. Asp. 2006, 282–283, 118–128. [Google Scholar] [CrossRef]
- Tsianou, M.; Alexandridis, P. Control of the rheological properties in solutions of a polyelectrolyte and an oppositely charged surfactant by the addition of cyclodextrins. Langmuir 1999, 15, 8105–8112. [Google Scholar] [CrossRef]
- Guzmán, E.; Llamas, S.; Maestro, A.; Fernández-Peña, L.; Akanno, A.; Miller, R.; Ortega, F.; Rubio, R.G. Polymer–surfactant systems in bulk and at fluid interfaces. Adv. Colloid Interface Sci. 2016, 233, 38–64. [Google Scholar] [CrossRef]
- Braem, A.D.; Prieve, D.C.; Tilton, R.D. Electrostatically tunable coadsorption of sodium dodecyl sulfate and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer to silica. Langmuir 2001, 17, 883–890. [Google Scholar] [CrossRef]
- Bain, C.D.; Claesson, P.M.; Langevin, D.; Meszaros, R.; Nylander, T.; Stubenrauch, C.; Titmuss, S.; von Klitzing, R. Complexes of surfactants with oppositely charged polymers at surfaces and in bulk. Adv. Colloid Interface Sci. 2010, 155, 32–49. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, B.; Winnik, M.A.; Macdonald, P.M. Surfactant interactions with HEUR associating polymers. J. Phys. Chem. 1996, 100, 9834–9841. [Google Scholar] [CrossRef]
- Dai, S.; Tam, K.C.; Jenkins, R.D. Microstructure of dilute telechelic associative polymer in sodium dodecyl sulfate solutions. Macromolecules 2001, 34, 4673–4675. [Google Scholar] [CrossRef]
- Thuresson, K.; Lindman, B. Effect of hydrophobic modification of a nonionic cellulose derivative on the interaction with surfactants. phase behavior and association. J. Phys. Chem. B 1997, 101, 6460–6468. [Google Scholar] [CrossRef]
- Vangeyte, P.; Leyh, B.; Auvray, L.; Grandjean, J.; Misselyn-Bauduin, A.M.; Jérôme, R. Mixed self-assembly of poly(ethylene oxide)-b-poly(ε-caprolactone) copolymers and sodium dodecyl sulfate in aqueous solution. Langmuir 2004, 20, 9019–9028. [Google Scholar] [CrossRef] [PubMed]
- Löf, D.; Tomšič, M.; Glatter, O.; Fritz-Popovski, G.; Schillén, K. Structural characterization of nonionic mixed micelles formed by C12EO6 surfactant and P123 triblock copolymer. J. Phys. Chem. B 2009, 113, 5478–5486. [Google Scholar] [CrossRef] [PubMed]
- Bodratti, A.M.; Alexandridis, P. Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance. Expert Opin. Drug Deliv. 2018, 15, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Alexandridis, P. Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem. Eng. Technol. 2011, 34, 15–28. [Google Scholar] [CrossRef]
- Karanikolos, G.N.; Alexandridis, P.; Mallory, R.; Petrou, A.; Mountziaris, T.J. Templated synthesis of znse nanostructures using lyotropic liquid crystals. Nanotechnology 2005, 16, 2372–2380. [Google Scholar] [CrossRef]
- Tadros, T. Viscoelastic properties of sterically stabilised emulsions and their stability. Adv. Colloid Interface Sci. 2015, 222, 692–708. [Google Scholar] [CrossRef]
- Bodratti, A.M.; Sarkar, B.; Alexandridis, P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv. Colloid Interface Sci. 2017, 244, 132–163. [Google Scholar] [CrossRef]
- Lindman, B.; Alexandridis, P. Amphiphilic Block Copolymers: Self-Assembly and Applications, 1st ed.; Elsevier: New York, NY, USA; Amsterdam, The Netherlands, 2000. [Google Scholar]
- Alexandridis, P.; Holzwarth, J.F.; Hatton, T.A. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 1994, 27, 2414–2425. [Google Scholar] [CrossRef]
- Yang, L.; Alexandridis, P.; Steytler, D.C.; Kositza, M.J.; Holzwarth, J.F. Small-angle neutron scattering investigation of the temperature-dependent aggregation behavior of the block copolymer Pluronic L64 in aqueous solution. Langmuir 2000, 16, 8555–8561. [Google Scholar] [CrossRef]
- Mortensen, K. Structural properties of self-assembled polymeric aggregates in aqueous solutions. Polym. Adv. Technol. 2001, 12, 2–22. [Google Scholar] [CrossRef]
- Bedrov, D.; Ayyagari, C.; Smith, G.D. Multiscale modeling of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) triblock copolymer micelles in aqueous solution. J. Chem. Theory Comput. 2006, 2, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.S.; Gerstenberg, M.C. The structure of P85 Pluronic block copolymer micelles determined by small-angle neutron scattering. Colloids Surf. A Physicochem. Eng. Asp. 2003, 213, 175–187. [Google Scholar] [CrossRef]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Alexandridis, P.; Athanassiou, V.; Hatton, T.A. Pluronic-P105 PEO-PPO-PEO block copolymer in aqueous urea solutions: micelle formation, structure, and microenvironment. Langmuir 1995, 11, 2442–2450. [Google Scholar] [CrossRef]
- Alexandridis, P.; Holzwarth, J.F. Differential scanning calorimetry investigation of the effect of salts on aqueous solution properties of an amphiphilic block copolymer (Poloxamer). Langmuir 1997, 13, 6074–6082. [Google Scholar] [CrossRef]
- Alexandridis, P.; Yang, L. SANS investigation of polyether block copolymer micelle structure in mixed solvents of water and formamide, ethanol, or glycerol. Macromolecules 2000, 33, 5574–5587. [Google Scholar] [CrossRef]
- Desai, P.R.; Jain, N.J.; Sharma, R.K.; Bahadur, P. Effect of additives on the micellization of PEO/PPO/PEO block copolymer F127 in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2001, 178, 57–69. [Google Scholar] [CrossRef]
- He, Z.; Ma, Y.; Alexandridis, P. Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids Surf. A Physicochem. Eng. Asp. 2018, 559, 159–168. [Google Scholar] [CrossRef]
- Kaizu, K.; Alexandridis, P. Micellization of polyoxyethylene–polyoxypropylene block copolymers in aqueous polyol solutions. J. Mol. Liq. 2015, 210, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Venugopal, V.; Tsianou, M.; Alexandridis, P. Adsorption of Pluronic block copolymers on silica nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2013, 422, 155–164. [Google Scholar] [CrossRef]
- Bayati, S.; Galantini, L.; Knudsen, K.D.; Schillén, K. Effects of bile salt sodium glycodeoxycholate on the self-assembly of PEO–PPO–PEO Triblock copolymer P123 in aqueous solution. Langmuir 2015, 31, 13519–13527. [Google Scholar] [CrossRef] [PubMed]
- Chandaroy, P.; Sen, A.; Alexandridis, P.; Hui, S.W. Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome-cell adhesion. Biochim. Biophys. Acta 2002, 1559, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xu, R.; Bloor, D.M.; Holzwarth, J.F.; Wyn-Jones, E. The binding of sodium dodecyl sulfate to the ABA block copolymer Pluronic F127 (EO97PO69EO97): An electromotive force, microcalorimetry, and light scattering investigation. Langmuir 2000, 16, 10515–10520. [Google Scholar] [CrossRef]
- Thurn, T.; Couderc, S.; Sidhu, J.; Bloor, D.M.; Penfold, J.; Holzwarth, J.F.; Wyn-Jones, E. Study of mixed micelles and interaction parameters for ABA triblock copolymers of the type EOm-POn-EOm and ionic surfactants: Equilibrium and structure. Langmuir 2002, 18, 9267–9275. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Couderc, S.; Bloor, D.M.; Wyn-Jones, E.; Holzwarth, J.F. Binding of sodium dodecyl sulfate (SDS) to the ABA block copolymer Pluronic F127 (EO97PO69EO97): F127 aggregation induced by SDS. Langmuir 2001, 17, 183–188. [Google Scholar] [CrossRef]
- Almgren, M.; Van Stam, J.; Lindblad, C.; Li, P.; Stilbs, P.; Bahadur, P. Aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in the presence of sodium dodecyl sulfate in aqueous solution. J. Phys. Chem. 1991, 95, 5677–5684. [Google Scholar] [CrossRef]
- Ganguly, R.; Aswal, V.K.; Hassan, P.A.; Gopalakrishnan, I.K.; Kulshreshtha, S.K. Effect of SDS on the self-assembly behavior of the PEO-PPO-PEO triblock copolymer (EO)(20)(PO)(70)(EO)(20). J. Phys. Chem. B 2006, 110, 9843–9849. [Google Scholar] [CrossRef]
- Cardoso da Silva, R.; Olofsson, G.; Schillén, K.; Loh, W. Influence of ionic surfactants on the aggregation of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) block copolymers studied by differential scanning and isothermal titration calorimetry. J. Phys. Chem. B 2002, 106, 1239–1246. [Google Scholar] [CrossRef]
- Kumbhakar, M. Aggregation of ionic surfactants to block copolymer assemblies: A simple fluorescence spectral study. J. Phys. Chem. B 2007, 111, 14250–14255. [Google Scholar] [CrossRef]
- Jansson, J.; Schillén, K.; Nilsson, M.; Söderman, O.; Fritz, G.; Bergmann, A.; Glatter, O. Small-angle X-ray Scattering, light scattering, and NMR study of PEO−PPO−PEO triblock copolymer/cationic surfactant complexes in aqueous solution. J. Phys. Chem. B 2005, 109, 7073–7083. [Google Scholar] [CrossRef]
- Parmar, A.; Chavda, S.; Bahadur, P. Pluronic–cationic surfactant mixed micelles: Solubilization and release of the drug hydrochlorothiazide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 441, 389–397. [Google Scholar] [CrossRef]
- Padasala, S.; Patel, V.; Singh, K.; Ray, D.; Aswal, V.K.; Bahadur, P. Effect of polymers on worm-like micelles of cetyltrimethylammonium tosylate. Colloids Surf. A Physicochem. Eng. Asp. 2016, 502, 147–158. [Google Scholar] [CrossRef]
- Lele, B.J.; Tilton, R.D. Control of the colloidal depletion force in nonionic polymer solutions by complexation with anionic surfactants. J. Colloid Interface Sci. 2019, 553, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Modi, R.; Khamari, L.; Nandy, A.; Mukherjee, S. Spectroscopic probing of the refolding of an unfolded protein through the formation of mixed-micelles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.; Schillén, K.; Olofsson, G.; Cardoso da Silva, R.; Loh, W. The interaction between PEO-PPO-PEO Triblock copolymers and ionic surfactants in aqueous solution studied using light scattering and calorimetry. J. Phys. Chem. B 2004, 108, 82–92. [Google Scholar] [CrossRef]
- Couderc-Azouani, S.; Sidhu, J.; Thurn, T.; Xu, R.; Bloor, D.M.; Penfold, J.; Holzwarth, J.F.; Wyn-Jones, E. Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64: Electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes. Langmuir 2005, 21, 10197–10208. [Google Scholar] [PubMed]
- Gjerde, M.I.; Nerdal, W.; Høiland, H. Interactions between poly(ethylene oxide) and sodium dodecyl sulfate as studied by NMR, conductivity, and viscosity at 283.1–298.1 K. J. Colloid Interface Sci. 1998, 197, 191–197. [Google Scholar] [CrossRef]
- Minatti, E.; Zanette, D. Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity. Colloids Surf. A Physicochem. Eng. Asp. 1996, 113, 237–246. [Google Scholar] [CrossRef]
- Ebnesajjad, S. 3-Surface Tension and Its Measurement. In Handbook of Adhesives and Surface Preparation; Ebnesajjad, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 21–30. [Google Scholar]
- Nivaggioli, T.; Alexandridis, P.; Hatton, T.A.; Yekta, A.; Winnik, M.A. Fluorescence probe studies of Pluronic copolymer solutions as a function of temperature. Langmuir 1995, 11, 730–737. [Google Scholar] [CrossRef]
- Kancharla, S.; Canales, E.; Alexandridis, P. Perfluorooctanoate in aqueous urea solutions: micelle formation, structure, and microenvironment. Int. J. Mol. Sci. 2019, 20, 5761. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, E.; Tsianou, M. Solution properties of dextran in water and in formamide. J. Appl. Polym. Sci. 2012, 125, 1681–1692. [Google Scholar] [CrossRef]
- Antoniou, E.; Alexandridis, P. Polymer conformation in mixed aqueous-polar organic solvents. Eur. Polym. J. 2010, 46, 324–335. [Google Scholar] [CrossRef]
- Bakshi, M.S.; Sachar, S. Influence of temperature on the mixed micelles of Pluronic F127 and P103 with dimethylene-bis-(dodecyldimethylammonium bromide). J. Colloid Interface Sci. 2006, 296, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, K. Structural studies of aqueous solutions of PEO-PPO-PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study. J. Phys. Condens. Matter 1996, 8, A103–A124. [Google Scholar] [CrossRef]
- Fajalia, A.I.; Tsianou, M. Charging and uncharging a neutral polymer in solution: A small-angle neutron scattering investigation. J. Phys. Chem. B 2014, 118, 10725–10739. [Google Scholar] [CrossRef]
- Kline, S.R. Reduction and analysis of SANS and USANS data using IGOR Pro. J. Appl. Crystallogr. 2006, 39, 895–900. [Google Scholar] [CrossRef]
- Hecht, E.; Hoffmann, H. Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 1994, 10, 86–91. [Google Scholar] [CrossRef]
- Hecht, E.; Mortensen, K.; Gradzielski, M.; Hoffmann, H. Interaction of ABA block copolymers with ionic surfactants. Influence on micellization and gelation. J. Phys. Chem. 1995, 99, 4866–4874. [Google Scholar] [CrossRef]
- Hammouda, B. SANS from Pluronic P85 in d-water. Eur. Polym. J. 2010, 46, 2275–2281. [Google Scholar] [CrossRef]
- Wesley, R.D.; Cosgrove, T.; Thompson, L.; Armes, S.; Baines, F. Structure of polymer/surfactant complexes formed by poly(2-(dimethylamino)ethyl methacrylate) and sodium dodecyl sulfate. Langmuir 2002, 18, 5704–5707. [Google Scholar] [CrossRef]
- Bernazzani, L.; Borsacchi, S.; Catalano, D.; Gianni, P.; Mollica, V.; Vitelli, M.; Asaro, F.; Feruglio, L. On the interaction of sodium dodecyl sulfate with oligomers of poly(ethylene glycol) in aqueous solution. J. Phys. Chem. B 2004, 108, 8960–8969. [Google Scholar] [CrossRef]
- Dai, S.; Tam, K.C. Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants. J. Phys. Chem. B 2001, 105, 10759–10763. [Google Scholar] [CrossRef]
- Wang, G.; Olofsson, G. Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution. J. Phys. Chem. B 1998, 102, 9276. [Google Scholar] [CrossRef]
- Bloor, D.M.; Wanyunus, W.; Wanbadhi, W.; Li, Y.; Holzwarth, J.; Wynjones, E. Equilibrium and kinetic-studies associated with the binding of sodium dodecyl-sulfate to the polymers poly(propylene oxide) and ethyl(hydroxyethyl) cellulose. Langmuir 1995, 11, 3395–3400. [Google Scholar] [CrossRef]
- Foster, B.; Cosgrove, T.; Hammouda, B. Pluronic Triblock copolymer systems and their interactions with Ibuprofen. Langmuir 2009, 25, 6760–6766. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kancharla, S.; Zoyhofski, N.A.; Bufalini, L.; Chatelais, B.F.; Alexandridis, P. Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers 2020, 12, 1831. https://doi.org/10.3390/polym12081831
Kancharla S, Zoyhofski NA, Bufalini L, Chatelais BF, Alexandridis P. Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers. 2020; 12(8):1831. https://doi.org/10.3390/polym12081831
Chicago/Turabian StyleKancharla, Samhitha, Nathan A. Zoyhofski, Lucas Bufalini, Boris F. Chatelais, and Paschalis Alexandridis. 2020. "Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization" Polymers 12, no. 8: 1831. https://doi.org/10.3390/polym12081831
APA StyleKancharla, S., Zoyhofski, N. A., Bufalini, L., Chatelais, B. F., & Alexandridis, P. (2020). Association between Nonionic Amphiphilic Polymer and Ionic Surfactant in Aqueous Solutions: Effect of Polymer Hydrophobicity and Micellization. Polymers, 12(8), 1831. https://doi.org/10.3390/polym12081831