Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes
Abstract
:1. Introduction
1.1. Polymer Surface Grafting
1.2. Radiation-Induced Grafting (RIG)
1.3. RIG: The Grafting-from Approach
1.4. RIG: The Grafting-to Approach
1.5. Aims of This Study
2. Materials and Methods
2.1. Computational Methods
2.2. Chemicals and Materials
2.3. Electron Beam Irradiation of Pristine PVDF
2.4. Electron Beam Grafting
3. Results and Discussion
3.1. Reactivity of PVDF
3.1.1. Reactions Induced by Products of Water Radiolysis
3.1.2. Direct Ionization of PVDF
3.1.3. Potential Inhibition of RIGI by Water Radiolysis Products
3.2. Reactivity of Glycine and Taurine
3.2.1. Reactivity of Glycine
3.2.2. Reactivity of Taurine
3.3. Grafting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Maitz, M.F. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 2015, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, A.W.; Ng, C.Y.; Lim, Y.P.; Ng, G.H. Ultrafiltration in food processing industry: Review on application, membrane fouling, and fouling control. Food Bioprocess Technol. 2012, 5, 1143–1156. [Google Scholar] [CrossRef]
- Strathmann, H. Introduction to Membrane Science and Technology; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Sutherland, K. Profile of the International Membrane Industry: Market Prospects to 2008, 3rd ed.; Elsevier Advanced Technology: Oxford, UK, 2004. [Google Scholar]
- Pearce, G. Introduction to membranes: Manufacturers’ comparison: Part 1. Filtr. Sep. 2007, 44, 36–38. [Google Scholar]
- Kang, G.-d.; Cao, Y.-m. Application and modification of poly(vinylidene fluoride) (pvdf) membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.R.M.; Li, K. Progress in the production and modification of pvdf membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Pearce, G. Introduction to membranes: Membrane selection. Filtr. Sep. 2007, 44, 35–37. [Google Scholar] [CrossRef]
- Horie, K.; Barón, M.; Fox, R.B.; He, J.; Hess, M.; Kahovec, J.; Kitayama, T.; Kubisa, P.; Maréchal, E.; Mormann, W.; et al. Definitions of terms relating to reactions of polymers and to functional polymeric materials (iupac recommendations 2003). Pure Appl. Chem. 2004, 76, 889–906. [Google Scholar] [CrossRef]
- Szymczyk, A.; van der Bruggen, B.; Ulbricht, M. Surface modification of water purification membranes. In Surface Modification of Polymers; Wiley-VCH: Weinheim, Germany, 2019; pp. 363–398. [Google Scholar]
- Schulze, A.; Marquardt, B.; Kaczmarek, S.; Schubert, R.; Prager, A.; Buchmeiser, M.R. Electron beam-based functionalization of poly(ethersulfone) membranes. Macromol. Rapid Commun. 2010, 31, 467–472. [Google Scholar] [CrossRef]
- Schulze, A.; Marquardt, B.; Went, M.; Prager, A.; Buchmeiser, M.R. Electron beam-based functionalization of polymer membranes. Water Sci. Technol. 2012, 65, 574–580. [Google Scholar] [CrossRef]
- Kato, K.; Uchida, E.; Kang, E.-T.; Uyama, Y.; Ikada, Y. Polymer surface with graft chains. Prog. Polym. Sci. 2003, 28, 209–259. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A. Grafting: A versatile means to modify polymerstechniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Singh, R.P. Surface grafting onto polypropylene—A survey of recent developments. Prog. Polym. Sci. 1992, 17, 251–281. [Google Scholar] [CrossRef]
- Büning, J.; Frost, I.; Okuyama, H.; Lempke, L.; Ulbricht, M. Β-cyclodextrin-based star polymers for membrane surface functionalization: Covalent grafting via “click” chemistry and enhancement of ultrafiltration properties. J. Membr. Sci. 2020, 596, 117610. [Google Scholar] [CrossRef]
- Barsbay, M.; Güven, O. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner. Radiat. Phys. Chem. 2009, 78, 1054–1059. [Google Scholar] [CrossRef]
- Yiğitoğlu, M.; Işıklan, N.; Özmen, R. Graft copolymerization of n-vinyl-2-pyrrolidone onto sodium carboxymethylcellulose with azobisisobutyronitrile as the initiator. J. Appl. Polym. Sci. 2007, 104, 936–943. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, C.; Piatkovsky, M.; Ulbricht, M.; Herzberg, M.; Nguyen, T.H. Improvement of virus removal using ultrafiltration membranes modified with grafted zwitterionic polymer hydrogels. Water Res. 2017, 116, 86–94. [Google Scholar] [CrossRef]
- Rånby, B. Photochemical modification of polymers-photocrosslinking, surface photografting, and lamination. Polym. Eng. Sci. 1998, 38, 1229–1243. [Google Scholar] [CrossRef]
- Kochkodan, V.M.; Sharma, V.K. Graft polymerization and plasma treatment of polymer membranes for fouling reduction: A review. J. Environ. Sci. Health Part A 2012, 47, 1713–1727. [Google Scholar] [CrossRef] [PubMed]
- Chapiro, A. Radiation induced grafting. Radiat. Phys. Chem. 1977, 9, 55–67. [Google Scholar] [CrossRef]
- Ramos-Ballesteros, A.; Pino-Ramos, V.H.; López-Saucedo, F.; Flores-Rojas, G.G.; Bucio, E. Γ-rays and ions irradiation. In Surface Modification of Polymers; Wiley-VCH: Weinheim, Germany, 2019; pp. 185–209. [Google Scholar]
- Samuel, A.H.; Magee, J.L. Theory of radiation chemistry. Ii. Track effects in radiolysis of water. J. Chem. Phys. 1953, 21, 1080–1087. [Google Scholar] [CrossRef]
- Nasef, M.M.; Gürsel, S.A.; Karabelli, D.; Güven, O. Radiation-grafted materials for energy conversion and energy storage applications. Prog. Polym. Sci. 2016, 63, 1–41. [Google Scholar] [CrossRef]
- Stannett, V.T. Radiation grafting—State-of-the-art. Radiat. Phys. Chem. 1990, 35, 82–87. [Google Scholar] [CrossRef]
- Şolpan, D.; Torun, M.; Güven, O. Comparison of pre-irradiation and mutual grafting of 2-chloroacrylonitrile on cellulose by gamma-irradiation. Radiat. Phys. Chem. 2010, 79, 250–254. [Google Scholar] [CrossRef]
- Drobny, J.G. Radiation Technology for Polymers, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Mondelaers, W. Low-energy electron accelerators in industry and applied research. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1998, 139, 43–50. [Google Scholar] [CrossRef]
- Clough, R.L. High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2001, 185, 8–33. [Google Scholar] [CrossRef]
- Chapiro, A. Radiation Chemistry of Polymeric Systems; Interscience: New York, NY, USA, 1962. [Google Scholar]
- Charlesby, A. Atomic Radiation and Polymers; Pergamon: Oxford, UK, 1960. [Google Scholar]
- Mishra, M.; Yagci, Y. Handbook of Vinyl Polymers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Nasef, M.M.; Güven, O. Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Prog. Polym. Sci. 2012, 37, 1597–1656. [Google Scholar] [CrossRef]
- Casimiro, M.H.; Ferreira, L.M.; Leal, J.P.; Pereira, C.C.L.; Monteiro, B. Ionizing radiation for preparation and functionalization of membranes and their biomedical and environmental applications. Membranes 2019, 9, 163–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasef, M.M.; Ting, T.M.; Abbasi, A.; Layeghi-moghaddam, A.; Sara Alinezhad, S.; Hashim, K. Radiation grafted adsorbents for newly emerging environmental applications. Radiat. Phys. Chem. 2016, 118, 55–60. [Google Scholar] [CrossRef]
- Nasef, M.M.; Hegazy, E.S.A. Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog. Polym. Sci. 2004, 29, 499–561. [Google Scholar] [CrossRef]
- Hoffman, A.S. A review of the use of radiation plus chemical and biochemical processing treatments to prepare novel biomaterials. Radiat. Phys. Chem. 1981, 18, 323–342. [Google Scholar] [CrossRef]
- Carenza, M. Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Radiat. Phys. Chem. 1992, 39, 485–493. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Mulligan, C.N. Styrene toxicity: An ecotoxicological assessment. Ecotoxicol. Environ. Saf. 1997, 38, 181–194. [Google Scholar] [CrossRef]
- Reinert, K.H. Aquatic toxicity of acrylates and methacrylates: Quantitative structure-activity relationships based on kow and lc50. Regul. Toxicol. Pharmacol. 1987, 7, 384–389. [Google Scholar] [CrossRef]
- Suh, M.; Proctor, D.; Chappell, G.; Rager, J.; Thompson, C.; Borghoff, S.; Finch, L.; Ellis-Hutchings, R.; Wiench, K. A review of the genotoxic, mutagenic, and carcinogenic potentials of several lower acrylates. Toxicology 2018, 402–403, 50–67. [Google Scholar] [CrossRef]
- Voller, L.M.; Warshaw, E.M. Acrylates: New sources and new allergens. Clin. Exp. Dermatol. 2019, 45, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, A.; Maitz, M.F.; Zimmermann, R.; Marquardt, B.; Fischer, M.; Werner, C.; Went, M.; Thomas, I. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to pvdf membranes. RSC Adv. 2013, 3, 22518–22526. [Google Scholar] [CrossRef]
- Starke, S.; Went, M.; Prager, A.; Schulze, A. A novel electron beam-based method for the immobilization of trypsin on poly(ethersulfone) and poly(vinylidene fluoride) membranes. React. Funct. Polym. 2013, 73, 698–702. [Google Scholar] [CrossRef]
- Schmidt, M.; Breite, D.; Thomas, I.; Went, M.; Prager, A.; Schulze, A. Polymer membranes for active degradation of complex fouling mixtures. J. Membr. Sci. 2018, 563, 481–491. [Google Scholar] [CrossRef]
- Müller, A.; Preuss, A.; Bornhutter, T.; Thomas, I.; Prager, A.; Schulze, A.; Roder, B. Electron beam functionalized photodynamic polyethersulfone membranes—photophysical characterization and antimicrobial activity. Photochem. Photobiol. Sci. 2018, 17, 1346–1354. [Google Scholar] [CrossRef]
- Reinhardt, A.; Thomas, I.; Schmauck, J.; Giernoth, R.; Schulze, A.; Neundorf, I. Electron beam immobilization of novel antimicrobial, short peptide motifs leads to membrane surfaces with promising antibacterial properties. J. Funct. Biomater. 2018, 9, 21–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breite, D.; Went, M.; Prager, A.; Kuhnert, M.; Schulze, A. Reduction of biofouling of a microfiltration membrane using amide functionalities-hydrophilization without changes in morphology. Polymers 2020, 12, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Kawakami, T.; Kanno, J.-i.; Sasaki, T. Atom transfer radical polymerization of graft chains onto polyethylene film initiated at tribromomethyl unit introduced by electron beam irradiation. J. Appl. Polym. Sci. 2011, 119, 2533–2538. [Google Scholar] [CrossRef]
- Guanghui, W.; Hongfei, H.; Xia, W.; Jilan, W. Radiation immobilization of catalase and its application. Radiat. Phys. Chem. 1988, 31, 705–709. [Google Scholar] [CrossRef]
- Gonchar, A.M.; Auslender, V.L. Immobilization of bacterial proteases on water-solved polymer by means of electron beam. Radiat. Phys. Chem. 1996, 48, 795–797. [Google Scholar] [CrossRef]
- Kawashima, K. Immobilization of enzymes and microorganisms by radiation polymerization. Methods Enzymol. 1987, 135, 146–153. [Google Scholar]
- Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989, 162, 165–169. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted gaussian basis sets of triple zeta valence quality for atoms li to kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate coulomb potentials. Theor. Chem. Acc. 1997, 97, 119–124. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.; Schüürmann, G. Cosmo: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993, 5, 799–805. [Google Scholar] [CrossRef]
- Salomon, O.; Reiher, M.; Hess, B.A. Assertion and validation of the performance of the b3lyp⋆ functional for the first transition metal row and the g2 test set. J. Chem. Phys. 2002, 117, 4729–4737. [Google Scholar] [CrossRef]
- Neese, F. The orca program system. WIREs Comput. Mol. Sci. 2011, 2, 73–78. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comput. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel hartree–fock and hybrid dft calculations. A ‘chain-of-spheres’ algorithm for the hartree–fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Kumar, A.; Walker, J.A.; Bartels, D.M.; Sevilla, M.D. A simple ab initio model for the hydrated electron that matches experiment. J. Phys. Chem. A 2015, 119, 9148–9159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S. Exploration of chemical compound, conformer, and reaction space with meta-dynamics simulations based on tight-binding quantum chemical calculations. J. Chem. Theory Comput. 2019, 15, 2847–2862. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. Gfn2-xtb—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅oh/⋅o-) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Lyons, B.J. Radiation crosslinking of fluoropolymers—A review. Radiat. Phys. Chem. 1995, 45, 159–174. [Google Scholar] [CrossRef]
- Forsythe, J.S.; Hill, D.J.T. The radiation chemistry of fluoropolymers. Prog. Polym. Sci. 2000, 25, 101–136. [Google Scholar] [CrossRef]
- Dargaville, T.R.; George, G.A.; Hill, D.J.T.; Whittaker, A.K. High energy radiation grafting of fluoropolymers. Prog. Polym. Sci. 2003, 28, 1355–1376. [Google Scholar] [CrossRef]
- Adem, E.; Burillo, G.; Muñoz, E.; Rickards, J.; Cota, L.; Avalos-Borja, M. Electron and proton irradiation of poly(vinylidene fluoride): Characterization by electron paramagnetic resonance. Polym. Degrad. Stab. 2003, 81, 75–79. [Google Scholar] [CrossRef]
- Dumas, L.; Albela, B.; Bonneviot, L.; Portinha, D.; Fleury, E. Electron spin resonance quantitative monitoring of five different radicals in γ-irradiated polyvinylidene fluoride. Radiat. Phys. Chem. 2013, 86, 102–109. [Google Scholar] [CrossRef]
- Makuuchi, K.; Asano, M.; Abe, T. Effect of evolved hydrogen fluoride on radiation-induced crosslinking and dehydrofluorination of poly(vinylidene fluoride). J. Polym. Sci. Polym. Chem. Ed. 1976, 14, 617–625. [Google Scholar] [CrossRef]
- Perera, M.C.S.; Hill, D.J.T. Radiation chemical yields: G values. In The Wiley Database of Polymer Properties; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Bobrowski, K. Radiation chemistry of liquid systems. In Applications of Ionizing Radiation in Materials Processing; Sun, Y., Chmielewski, A.G., Eds.; Institute of Nuclear Chemistry and Technology: Warszawa, Poland, 2017; Volume 1. [Google Scholar]
- Wu, X.; Gao, L.; Liu, J.; Yang, H.; Wang, S.; Bu, Y. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: Anion-centered localization and anion-relayed electron transfer dissociation. Phys. Chem. Chem. Phys. 2015, 17, 26854–26863. [Google Scholar] [CrossRef]
- Neta, P.; Fessenden, R.W. Electron spin resonance study of deamination of amino acids by hydrated electrons. J. Phys. Chem. 1970, 74, 2263–2266. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, R.; Dukhin, S.; Werner, C. Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions. J. Phys. Chem. B 2001, 105, 8544–8549. [Google Scholar] [CrossRef]
Sample | Elemental Composition/at% | Elemental Ratio/% | ||||
---|---|---|---|---|---|---|
C | F | O | N | Si * | N/C | |
PVDF, pristine | 52.69 | 44.90 | 2.14 | 0.00 | 0.28 | 0.00 |
PVDF-g-glycine, 0.1%, 0 kGy | 53.34 | 43.94 | 2.33 | 0.00 | 0.40 | 0.00 |
PVDF-g-glycine, 0.1%, 50 kGy | 49.29 | 49.07 | 1.37 | 0.09 | 0.20 | 0.18 |
PVDF-g-glycine, 0.1%, 150 kGy | 49.00 | 49.45 | 1.19 | 0.24 | 0.13 | 0.49 |
PVDF-g-glycine, 1%, 0 kGy | 51.58 | 46.76 | 1.46 | 0.00 | 0.20 | 0.00 |
PVDF-g-glycine, 1%, 50 kGy | 56.36 | 38.27 | 4.70 | 0.00 | 0.67 | 0.00 |
PVDF-g-glycine, 1%, 150 kGy | 50.45 | 47.69 | 1.56 | 0.10 | 0.19 | 0.20 |
PVDF-g-AEMA, 0.2%, 150 kGy | 55.02 | 42.25 | 2.30 | 0.09 | 0.34 | 0.16 |
PVDF-g-AEMA, 2%, 150 kGy | 52.62 | 44.43 | 2.50 | 0.25 | 0.20 | 0.48 |
Sample | Elemental Composition/at% | Elemental Ratio/% | ||||||
---|---|---|---|---|---|---|---|---|
C | F | O | N | S | Si * | N/C | S/C | |
PVDF, pristine | 52.69 | 44.90 | 2.14 | 0.00 | 0.00 | 0.28 | 0.00 | 0.00 |
PVDF-g-taurine, 0.1%, 0 kGy | 50.97 | 47.31 | 1.46 | 0.00 | 0.00 | 0.26 | 0.00 | 0.00 |
PVDF-g-taurine, 0.1%, 50 kGy | 54.86 | 41.35 | 3.27 | 0.10 | 0.05 | 0.37 | 0.18 | 0.09 |
PVDF-g-taurine, 0.1%, 150 kGy | 50.59 | 46.20 | 2.57 | 0.29 | 0.11 | 0.24 | 0.57 | 0.22 |
PVDF-g-taurine, 1%, 0 kGy | 45.16 | 53.91 | 0.78 | 0.00 | 0.00 | 0.14 | 0.00 | 0.00 |
PVDF-g-taurine, 1%, 50 kGy | 51.41 | 47.32 | 1.07 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 |
PVDF-g-taurine, 1%, 150 kGy | 45.63 | 53.02 | 1.04 | 0.10 | 0.06 | 0.14 | 0.22 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, M.; Zahn, S.; Gehlhaar, F.; Prager, A.; Griebel, J.; Kahnt, A.; Knolle, W.; Konieczny, R.; Gläser, R.; Schulze, A. Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes. Polymers 2021, 13, 1849. https://doi.org/10.3390/polym13111849
Schmidt M, Zahn S, Gehlhaar F, Prager A, Griebel J, Kahnt A, Knolle W, Konieczny R, Gläser R, Schulze A. Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes. Polymers. 2021; 13(11):1849. https://doi.org/10.3390/polym13111849
Chicago/Turabian StyleSchmidt, Martin, Stefan Zahn, Florian Gehlhaar, Andrea Prager, Jan Griebel, Axel Kahnt, Wolfgang Knolle, Robert Konieczny, Roger Gläser, and Agnes Schulze. 2021. "Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes" Polymers 13, no. 11: 1849. https://doi.org/10.3390/polym13111849
APA StyleSchmidt, M., Zahn, S., Gehlhaar, F., Prager, A., Griebel, J., Kahnt, A., Knolle, W., Konieczny, R., Gläser, R., & Schulze, A. (2021). Radiation-Induced Graft Immobilization (RIGI): Covalent Binding of Non-Vinyl Compounds on Polymer Membranes. Polymers, 13(11), 1849. https://doi.org/10.3390/polym13111849