Moisture Absorption Behavior and Adhesion Properties of GNP/Epoxy Nanocomposite Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimens and Nanoadhesive Preparation
2.3. Water Absorption Studies
2.4. Tensile Shear Test
3. Results
3.1. Moisture Absorption Behaviour
3.2. Strength and Water Uptake Relation
3.3. Mechanical Properties
3.4. Fracture Behaviour
4. Conclusions
- GNP/epoxy nanocomposite adhesive has demonstrated several moisture absorption and water uptake trends; (i) at lower GNP content (i.e., 0.5 wt% and 1.0 wt%), GNP inclusion has resulted in increased/retention of water uptake and water absorption rate regardless of the immersion period with a few exceptions (ii) at higher GNP content (i.e., 1.5–2.0 wt%), two trends in water uptake and water absorption rate is being observed where at lowest immersion period (i.e., 10–20 days) more water uptake and water absorption rate is observed while lesser water uptake is recorded for specimens at higher immersion period (i.e., 20~60 days).
- Regardless of GNP content, tensile test result of bulk specimens demonstrated reduction of strength with water uptake increment which is represented by the value of correlation coefficient, R. Smaller R value in GNP/epoxy nanoadhesive specimens as compared to pristine epoxy imply that the tensile strength of specimens is lesser dependent on water uptake of the specimens where the lowest R value is observed in specimens with 1.0 wt% GNP.
- When compared to pristine adhesive specimens, GNP-reinforced nanocomposite adhesive at dry condition (i.e., 0 day immersion period), demonstrate retention/ improved joining strength regardless of GNP content, where the highest shear strength increment of 59.1% is observed at 1.5 wt% GNP inclusion. Meanwhile, when compared to pristine adhesive at similar immersion period, water immersed specimens with GNP nanoreinforcement have generally shown retention/ deterred bonding performance regardless of GNP content.
- When compared to pristine adhesive counterpart, the inclusion of GNP has resulted in an increase of CF ratio regardless of immersion period. Comparing Figure 7 and Figure 9, the simplest explanation for the decreasing bond strength in the shear tensile tests and the increase in the cohesive fracture pattern seems to be that the addition of GNP weakens the adhesive bulk. Due to a weakening of the bulk by adding GNP, a failure of the bulk occurs at lower forces and correspondingly a higher rate of CF is observed, if the strength of the adhesion remains the same. To clarify this behavior, the strength of bulk samples (i.e., tensile test of the adhesive bulk samples) should be investigated in further tests depending on the addition of GNP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Budhe, S.; Banea, M.D.; De Barros, S.; Da Silva, L.F.M. An updated review of adhesively bonded joints in composite materials. Int. J. Adhes. Adhes. 2017, 72, 30–42. [Google Scholar] [CrossRef]
- Liu, S.; Chevali, V.S.; Xu, Z.; Hui, D.; Wang, H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018, 136, 197–214. [Google Scholar] [CrossRef]
- Marques, E.A.S.; Da Silva, L.F.M.; Banea, M.D.; Carbas, R.J.C. Adhesive joints for low- and high-temperature use: An overview. J. Adhes. 2014, 91, 556–585. [Google Scholar] [CrossRef]
- Khoramishad, H.; Khakzad, M. Toughening epoxy adhesives with multi-walled carbon nanotubes. J. Adhes. 2018, 94, 15–29. [Google Scholar] [CrossRef]
- Barbosa, N.G.C.; Campilho, R.D.S.G.; Silva, F.J.G.; Moreira, R.D.F. Comparison of different adhesively-bonded joint types for mechanical structures. Appl. Adhes. Sci. 2018, 6, 15. [Google Scholar] [CrossRef]
- Zaeri, A.R.; Saeidi Googarchin, H. Experimental investigation on environmental degradation of automotive mixed-adhesive joints. Int. J. Adhes. Adhes. 2019, 89, 19–29. [Google Scholar] [CrossRef]
- Savvilotidou, M.; Vassilopoulos, A.P.; Frigione, M.; Keller, T. Effects of aging in dry environment on physical and mechanical properties of a cold-curing structural epoxy adhesive for bridge construction. Constr. Build. Mater. 2017, 140, 552–561. [Google Scholar] [CrossRef]
- Kasper, Y.; Albiez, M.; Ummenhofer, T.; Mayer, C.; Meier, T.; Choffat, F.; Ciupack, Y.; Pasternak, H. Application of toughened epoxy-adhesives for strengthening of fatigue-damaged steel structures. Constr. Build. Mater. 2021, 275, 121579. [Google Scholar] [CrossRef]
- Martin, J. Methyl methacrylate (MMA) adhesives—A trending procedure in the marine industry. Reinf. Plast. 2020, 64, 204–207. [Google Scholar] [CrossRef]
- Weitzenböck, J.R. Introduction to using adhesives in marine and offshore engineering. In Adhesives in Marine Engineering; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 1–16. ISBN 9781845694524. [Google Scholar]
- Wan, Y.J.; Li, G.; Yao, Y.M.; Zeng, X.L.; Zhu, P.L.; Sun, R. Recent advances in polymer-based electronic packaging materials. Compos. Commun. 2020, 19, 154–167. [Google Scholar] [CrossRef]
- Jojibabu, P.; Ram, G.D.J.; Deshpande, A.P.; Bakshi, S.R. Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging. Polym. Degrad. Stab. 2017, 140, 84–94. [Google Scholar] [CrossRef]
- Mubashar, A.; Ashcroft, I.A.; Critchlow, G.W.; Crocombe, A.D. Moisture absorption-desorption effects in adhesive joints. Int. J. Adhes. Adhes. 2009, 29, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Jojibabu, P.; Zhang, Y.X.; Prusty, B.G. A review of research advances in epoxy-based nanocomposites as adhesive materials. Int. J. Adhes. Adhes. 2020, 96, 102454. [Google Scholar] [CrossRef]
- Viana, G.; Costa, M.; Banea, M.D.; Da Silva, L.F.M. A review on the temperature and moisture degradation of adhesive joints. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2016, 231, 488–501. [Google Scholar] [CrossRef]
- Startsev, V.O.; Lebedev, M.P.; Khrulev, K.A.; Molokov, M.V.; Frolov, A.S.; Nizina, T.A. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers. Polym. Test. 2018, 65, 281–296. [Google Scholar] [CrossRef]
- Khoramishad, H.; Alizadeh, O.; Da Silva, L.F.M. Effect of multi-walled carbon nanotubes and silicon carbide nanoparticles on the deleterious influence of water absorption in adhesively bonded joints. J. Adhes. Sci. Technol. 2018, 32, 1795–1808. [Google Scholar] [CrossRef]
- Gude, M.R.; Prolongo, S.G.; Ureña, A. Hygrothermal ageing of adhesive joints with nanoreinforced adhesives and different surface treatments of carbon fibre/epoxy substrates. Int. J. Adhes. Adhes. 2013, 40, 179–187. [Google Scholar] [CrossRef]
- Starkova, O.; Chandrasekaran, S.; Schnoor, T.; Sevcenko, J.; Schulte, K. Anomalous water diffusion in epoxy/carbon nanoparticle composites. Polym. Degrad. Stab. 2019, 164, 127–135. [Google Scholar] [CrossRef]
- Sugiman, S.; Salman, S.; Maryudi, M. Effects of volume fraction on water uptake and tensile properties of epoxy filled with inorganic fillers having different reactivity to water. Mater. Today Commun. 2020, 24, 101360. [Google Scholar] [CrossRef]
- Capiel, G.; Uicich, J.; Alvarez, V.; Montemartini, P. Improving the water resistance of epoxy–anhydride matrices by the incorporation of bentonite. Polym. Adv. Technol. 2017, 28, 886–896. [Google Scholar] [CrossRef]
- Khalil, N.Z.; Johanne, M.F.; Ishak, M. Influence of Al2O3 nanoreinforcement on the adhesion and thermomechanical properties for epoxy adhesive. Compos. Part B Eng. 2019, 172, 9–15. [Google Scholar] [CrossRef]
- Hussain, Q.; Ruangrassamee, A.; Tangtermsirikul, S.; Joyklad, P. Behavior of concrete confined with epoxy bonded fiber ropes under axial load. Constr. Build. Mater. 2020, 263, 120093. [Google Scholar] [CrossRef]
- Brito, C.B.G.; Sales, R.C.M.; Donadon, M.V. Effects of temperature and moisture on the fracture behaviour of composite adhesive joints. Int. J. Adhes. Adhes. 2020, 100, 102607. [Google Scholar] [CrossRef]
- Mariam, M.; Afendi, M.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Azmi, A.I.; Sultan, M.T.H. Influence of hydrothermal ageing on the mechanical properties of an adhesively bonded joint with different adherends. Compos. Part B Eng. 2019, 165, 572–585. [Google Scholar] [CrossRef]
- Prolongo, S.G.; Jiménez-Suárez, A.; Moriche, R.; Ureña, A. Influence of thickness and lateral size of graphene nanoplatelets on water uptake in epoxy/graphene nanocomposites. Appl. Sci. 2018, 8, 1550. [Google Scholar] [CrossRef] [Green Version]
- Starkova, O.; Buschhorn, S.T.; Mannov, E.; Schulte, K.; Aniskevich, A. Water transport in epoxy/MWCNT composites. Eur. Polym. J. 2013, 49, 2138–2148. [Google Scholar] [CrossRef]
- Pandiyan, S.; Krajniak, J.; Samaey, G.; Roose, D.; Nies, E. A molecular dynamics study of water transport inside an epoxy polymer matrix. Comput. Mater. Sci. 2015, 106, 29–37. [Google Scholar] [CrossRef]
- Yang, C.; Xing, X.; Li, Z.; Zhang, S. A Comprehensive Review on Water Diffusion in Polymers Focusing on the Polymer–Metal Interface Combination. Polymers 2020, 12, 138. [Google Scholar] [CrossRef] [Green Version]
- Soles, C.L.; Chang, F.T.; Gidley, D.W.; Yee, A.F. Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 776–791. [Google Scholar] [CrossRef]
- Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Kirch, W. (Ed.) Springer: Dordrecht, The Netherlands, 2008; pp. 1090–1091. ISBN 978-1-4020-5614-7. [Google Scholar]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Musto, P.; Ragosta, G.; Mascia, L. Vibrational Spectroscopy Evidence for the Dual Nature of Water Sorbed into Epoxy Resins. Chem. Mater. 2000, 12, 1331–1341. [Google Scholar] [CrossRef]
- Obradović, V.; Simić, D.; Sejkot, P.; Machalická, K.V.; Vokáč, M. Moisture absorption characteristics and effects on mechanical properties of Kolon/epoxy composites. Curr. Appl. Phys. 2021, 26, 16–23. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. High performance epoxy nanocomposite adhesive: Effect of nanofillers on adhesive strength, curing and degradation kinetics. Int. J. Adhes. Adhes. 2018, 84, 238–249. [Google Scholar] [CrossRef]
- Jojibabu, P.; Jagannatham, M.; Haridoss, P.; Janaki Ram, G.D.; Deshpande, A.P.; Bakshi, S.R. Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Compos. Part A Appl. Sci. Manuf. 2016, 82, 53–64. [Google Scholar] [CrossRef]
- Ascione, F. The influence of adhesion defects on the collapse of FRP adhesive joints. Compos. Part B Eng. 2016, 87, 291–298. [Google Scholar] [CrossRef]
- Akpinar, S. The strength of the adhesively bonded step-lap joints for different step numbers. Compos. Part B Eng. 2014, 67, 170–178. [Google Scholar] [CrossRef]
- Mijović, J.; Zhang, H. Molecular dynamics simulation study of motions and interactions of water in a polymer network. J. Phys. Chem. B 2004, 108, 2557–2563. [Google Scholar] [CrossRef]
- Ray, B.C.; Rathore, D. Durability and integrity studies of environmentally conditioned interfaces in fibrous polymeric composites: Critical concepts and comments. Adv. Colloid Interface Sci. 2014, 209, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Prusty, R.K.; Rathore, D.K.; Ray, B.C. CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Adv. Colloid Interface Sci. 2017, 240, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Panda, B.P.; Mohanty, S.; Nayak, S.K.; Gupta, M.K. Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)—epoxy adhesive for thermal conductivity applications. J. Mater. Sci. Mater. Electron. 2017, 28, 8908–8920. [Google Scholar] [CrossRef]
- Cataldi, P.; Athanassiou, A.; Bayer, I.S. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, A.A.; Sakib, N.; Iqbal, A.K.M.P.; Nuruzzaman, D.M. Graphene-based nanocomposites and their fabrication, mechanical properties and applications. Materialia 2020, 12, 100815. [Google Scholar] [CrossRef]
- DIN Standard. DVS 3302:2018-09, Bonding in Car Body Construction: Evaluation of Failure Patterns; DIN: Berlin, Germany, 2018. [Google Scholar]
- Introduction and Adhesion Theories. Handb. Adhes. Surf. Prep. 2011, 1, 3–13. [CrossRef]
- Wang, C.H.; Duong, C.N.; Wang, C.H.; Duong, C.N. Failure criteria. Bond. Jt. Repairs Compos. Airframe Struct. 2016, 1, 21–45. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [Google Scholar] [CrossRef]
- Tutunchi, A.; Kamali, R.; Kianvash, A. Effect of Al2O3 nanoparticles on the steel-glass/epoxy composite joint bonded by a two-component structural acrylic adhesive. Soft Mater. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A. The role of alumina nanoparticles in epoxy adhesives. J. Nanoparticle Res. 2011, 13, 2429–2441. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, N.; Khalil, N.Z.; Fricke, H. Moisture Absorption Behavior and Adhesion Properties of GNP/Epoxy Nanocomposite Adhesives. Polymers 2021, 13, 1850. https://doi.org/10.3390/polym13111850
Kong N, Khalil NZ, Fricke H. Moisture Absorption Behavior and Adhesion Properties of GNP/Epoxy Nanocomposite Adhesives. Polymers. 2021; 13(11):1850. https://doi.org/10.3390/polym13111850
Chicago/Turabian StyleKong, Nurziana, Nur Zalikha Khalil, and Holger Fricke. 2021. "Moisture Absorption Behavior and Adhesion Properties of GNP/Epoxy Nanocomposite Adhesives" Polymers 13, no. 11: 1850. https://doi.org/10.3390/polym13111850
APA StyleKong, N., Khalil, N. Z., & Fricke, H. (2021). Moisture Absorption Behavior and Adhesion Properties of GNP/Epoxy Nanocomposite Adhesives. Polymers, 13(11), 1850. https://doi.org/10.3390/polym13111850