Advances in Functionalized Photosensitive Polymeric Nanocarriers
Abstract
:1. Introduction
2. Photoresponsive Polymeric Nanocarriers
2.1. Photo-Stimulation Mechanisms (Cleavage, Isomerization, Cross/Decross-Linking)
2.2. Photocleavage
2.3. Photoisomerization
2.4. Photocross-Linking-Decross-Linking
2.5. NIR Light
3. Common Ligands Involved in Active Targeting
3.1. Nucleic Acids
3.1.1. DNA
3.1.2. RNA
3.1.3. Aptamers
3.2. Peptides and Proteins
Antibodies
3.3. Small Molecules
4. Effect of the Protein Corona
5. Functionalization of Photosensitive Nanocarriers
5.1. Nonspecific Adsorption
5.2. Entrapment
5.3. Polymer Coating
5.3.1. Covalent Immobilization of Drugs and Ligands
5.3.2. Cross-Linkers
5.4. Functional and Reactive Groups
5.4.1. Carboxylic Acid (R-COOH)
5.4.2. Carbonyl (R-CHO and R-C-O-R’)
5.4.3. Amine (R-NH2)
5.4.4. Sulfhydryl (R-SH)
5.4.5. Photo-Reactive
5.4.6. Azide (R-N3)
5.4.7. Hydroxyl (R-OH)
5.4.8. Silanization
5.4.9. Bioaffinity Interactions
5.4.10. Layer-by-Layer (LbL) Assembly
6. Characterization of Photosensitive Functional Nanocarriers
6.1. Physicochemical Properties
6.2. Cargo Release
6.3. Photoisomerization Properties
6.4. Fluorescent Properties
6.5. Surface Coverage and Functional Ligands
7. Biomedical Applications of Photo-Controlled Drug Delivery Systems
7.1. Biocompatibility and Biodegradability
7.2. Functional Nanocarriers
7.2.1. DNA-ARN Functionalized NPs
7.2.2. Peptides and Proteins
7.2.3. Antibodies
7.2.4. Smaller Molecules
Polymers
Bioactive Molecules
Sugars
8. Photosensitive Nanofibers
9. Current Challenges, Opportunities, and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, W.; Zhao, Y.; Wang, Q.; Liu, T.; Sun, J.; Zhang, R. Remote Light-Responsive Nanocarriers for Controlled Drug Delivery: Advances and Perspectives. Small 2019, 15, 1–34. [Google Scholar] [CrossRef]
- Hou, W.; Liu, R.; Bi, S.; He, Q.; Wang, H.; Gu, J. Photo-Responsive Polymersomes as Drug Delivery. Molecules 2020, 25, 5147. [Google Scholar] [CrossRef]
- Gai, S.; Yang, G.; Yang, P.; He, F.; Lin, J.; Jin, D.; Xing, B. Recent Advances in Functional Nanomaterials for Light–Triggered Cancer Therapy. Nano Today 2018, 19, 146–187. [Google Scholar] [CrossRef]
- Avvakumova, S.; Colombo, M.; Tortora, P.; Prosperi, D. Biotechnological Approaches toward Nanoparticle Biofunctionalization. Trends Biotechnol. 2014, 32, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, R.; Yang, H.; Bao, C.; Fan, J.; Wang, C.; Lin, Q.; Zhu, L. Light-Responsive Polymersomes with a Charge-Switch for Targeted Drug Delivery. J. Mater. Chem. B. 2020, 8, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Santos, H.A. Photosensitive Materials for Constructing On-Demanded Drug-Release Systems. Photoactive Inorg. Nanoparticles Surf. Compos. Nanosyst. Funct. 2019, 193–210. [Google Scholar] [CrossRef]
- Mi, P. Stimuli-Responsive Nanocarriers for Drug Delivery, Tumor Imaging, Therapy and Theranostics. Theranostics 2020, 4557–4588. [Google Scholar] [CrossRef]
- Zielinska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Nagasamy Venkatesh, D.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. J. Control. Release 2001, 70, 1–20. [Google Scholar] [CrossRef]
- Hickey, J.; Santos, J.; Williford, J.; Mao, H. Control of Polymeric Nanoparticle Size to Improve Therapeutic Delivery. J. Control. Release 2015, 219, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Schaffazick, S.R.; Pohlmann, A.R.; Dalla-Costa, T.; Guterres, S.S. Freeze-Drying Polymeric Colloidal Suspensions: Nanocapsules, Nanospheres and Nanodispersion. A Comparative Study. Eur. J. Pharm. Biopharm. 2003, 53, 501–505. [Google Scholar] [CrossRef]
- Crucho, C.I.; Barros, M.T. Polymeric Nanoparticles: A Study on the Preparation Variables and Characterization Methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 771–784. [Google Scholar] [CrossRef]
- Barhoumi, A.; Liu, Q.; Kohane, D.S. Ultraviolet Light-Mediated Drug Delivery: Principles, Applications, and Challenges. J. Control. Release 2015, 219, 31–42. [Google Scholar] [CrossRef]
- Marturano, V.; Cerruti, P.; Giamberini, M.; Tylkowski, B.; Ambrogi, V. Polymers Light-Responsive Polymer Micro-and Nano-Capsules. Polymers 2016, 9, 8. [Google Scholar] [CrossRef]
- Ferreira Soares, D.C.; Domingues, S.C.; Viana, D.B.; Tebaldi, M.L. Polymer-Hybrid Nanoparticles: Current Advances in Biomedical Applications. Biomed. Pharmacother. 2020, 131, 110695. [Google Scholar] [CrossRef]
- Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev. 2013, 42, 1147–1235. [Google Scholar] [CrossRef]
- Subbiah, R.; Veerapandian, M.; Yun, K.S. Nanoparticles: Functionalization and Multifunctional Applications in Biomedical Sciences. Curr. Med. Chem. 2011, 17, 4559–4577. [Google Scholar] [CrossRef]
- Cheng, Y.; Meyers, J.D.; Broome, A.-M.; Kenney, M.E.; Basilion, J.P.; Burda, C. Deep Penetration of a PDT Drug into Tumors by Noncovalent Drug-Gold Nanoparticle Conjugates. J. Am. Chem. Soc. 2011, 133, 2583–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nell, K.; Fontenot, S.; Carter, T.; Warner, M.G.; Warner, C.L.; Addleman, R.S.; Johnson, D.W. Non-Covalent Functionalization of High-Surface Area Nanomaterials: A New Class of Sorbent Materials. Environ. Sci. Nano 2016, 3, 138–145. [Google Scholar] [CrossRef]
- Mahon, E.; Salvati, A.; Bombelli, F.B.; Lynch, I.; Dawson, K.A. Designing the nanoparticle-biomolecule interface for "targeting and therapeutic delivery". J Control Release 2012, 161, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Nobs, L.; Buchegger, F.; Gurny, R.; Allémann, E. Current Methods for Attaching Targeting Ligands to Liposomes and Nanoparticles. J. Pharm. Sci. 2004, 93, 1980–1992. [Google Scholar] [CrossRef]
- Katz, J.S.; Burdick, J.A. Light-Responsive Biomaterials: Development and Applications. Macromol. Biosci. 2010, 10, 339–348. [Google Scholar] [CrossRef]
- Bansal, A.; Zhang, Y. Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Acc. Chem. Res. 2014, 47, 3052–3060. [Google Scholar] [CrossRef]
- Klán, P.; Šolomek, T.; Bochet, C.G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem. Rev. 2013, 119–191. [Google Scholar] [CrossRef]
- Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem. Rev. 2020, 120, 13135–13272. [Google Scholar] [CrossRef]
- Zhao, H.; Sterner, E.S.; Coughlin, B.; Theato, P. O-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. ACS Publ. 2012, 45, 1723–1736. [Google Scholar] [CrossRef]
- Yan, Q.; Han, D.; Zhao, Y. Main-Chain Photoresponsive Polymers with Controlled Location of Light-Cleavable Units: From Synthetic Strategies to Structural Engineering. Polym. Chem. 2013, 4, 5026–5037. [Google Scholar] [CrossRef]
- Goulet-Hanssens, A.; Barrett, C.J. Photo-Control of Biological Systems with Azobenzene Polymers. J. Polym. Sci. Part. A Polym. Chem. 2013, 51, 3058–3070. [Google Scholar] [CrossRef] [Green Version]
- Beharry, A.A.; Woolley, G.A. Azobenzene Photoswitches for Biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. [Google Scholar] [CrossRef] [PubMed]
- Andreopoulos, F.M.; Deible, C.R.; Stauffer, M.T.; Weber, S.G.; Wagner, W.R.; Beckman, E.J.; Russell, A.J. Photoscissable Hydrogel Synthesis via Rapid Photopolymerization of Novel PEG-Based Polymers in the Absence of Photoinitiators. J. Am. Chem. Soc. 1996, 118, 6235–6240. [Google Scholar] [CrossRef]
- Zheng, Y.; Andreopoulos, F.M.; Micic, M.; Huo, Q.; Pham, S.M.; Leblanc, R.M. A Novel Photoscissile Poly(Ethylene Glycol)-Based Hydrogel. Adv. Funct. Mater. 2011, 11, 37–40. [Google Scholar] [CrossRef]
- Zheng, Y.; Micic, M.; Mello, S.V.; Mabrouki, M.; Andreopoulos, F.M.; Konka, V.; Pham, S.M.; Leblanc, R.M. PEG-Based Hydrogel Synthesis via the Photodimerization of Anthracene Groups. ACS Publ. 2002, 35, 5228–5234. [Google Scholar] [CrossRef]
- Liu, G.; Liu, W.; Dong, C.M. UV- and NIR-Responsive Polymeric Nanomedicines for on-Demand Drug Delivery. Polym. Chem. 2013, 4, 3431–3443. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, Q.; Dai, Z. Near-Infrared Light-Activatable Polymeric Nanoformulations for Combined Therapy and Imaging of Cancer. Adv. Drug Deliv. Rev. 2017, 115, 155–170. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Cristobal, P.; Oton-Fernandez, O.; Mendez-Gonzalez, D.; Fernando Díaz, J.; Lopez-Cabarcos, E.; Barasoain, I.; Rubio-Retama, J. Synthesis, Characterization, and Application in HeLa Cells of an NIR Light Responsive Doxorubicin Delivery System Based on NaYF 4:Yb,Tm@SiO 2-PEG Nanoparticles. ACS Publ. 2015, 7, 14992–14999. [Google Scholar] [CrossRef]
- Ercole, F.; Davis, T.P.; Evans, R.A. Photo-Responsive Systems and Biomaterials: Photochromic Polymers, Light-Triggered Self-Assembly, Surface Modification, Fluorescence Modulation and Beyond. Polym. Chem. 2010, 1, 37–54. [Google Scholar] [CrossRef]
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent Developments in Functionalized Polymer Nanoparticles for Efficient Drug Delivery System. Nano Struct. Nano Objects 2019, 20, 100397. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.; Ding, C. Surface Nano-Functionalization of Biomaterials. Mater. Sci. Eng. R. Rep. 2010, 70, 275–302. [Google Scholar] [CrossRef]
- Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface Functionalization of Nanoparticles for Nanomedicine. Chem. Soc. Rev. 2012, 41, 2539–2544. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.; Lagunas, A.; Mills, C.A.; Rodríguez-Seguí, S.; Estévez, M.; Oberhansl, S.; Comelles, J.; Samitier, J. Stem Cell Differentiation by Functionalized Micro- and Nanostructured Surfaces. Nanomedicine 2009, 4, 65–82. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Singh, U.; Morya, V.; Rajwar, A.; Chandrasekaran, A.R.; Datta, B.; Ghoroi, C.; Bhatia, D. DNA-Functionalized Nanoparticles for Targeted Biosensing and Biological Applications. ACS Omega 2020, 5, 30767–30774. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Lu, Y. Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, A.L.; Moura, L.I.F.; Carreira, B.; Conniot, J.; Matos, A.I.; Peres, C.; Sainz, V.; Silva, L.C.; Gaspar, R.S.; Florindo, H.F. Functional Moieties for Intracellular Traffic of Nanomaterials. In Biomedical Applications of Functionalized Nanomaterials: Concepts, Development and Clinical Translation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 399–448. [Google Scholar] [CrossRef]
- Geerts, N.; Eiser, E. DNA-Functionalized Colloids: Physical Properties and Applications. Soft Matter 2010, 6, 4647–4660. [Google Scholar] [CrossRef]
- Guo, P. RNA Nanotechnology: Methods for Synthesis, Conjugation, Assembly and Application of RNA Nanoparticles. Methods 2011, 54, 201–203. [Google Scholar] [CrossRef]
- Itani, R.; Al Faraj, A. Molecular Sciences SiRNA Conjugated Nanoparticles-A Next Generation Strategy to Treat Lung Cancer. Polymers 2019, 20, 6088. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Ohtsuki, T. Photocontrolled Intracellular RNA Delivery Using Nanoparticles or Carrier–Photosensitizer Conjugates. Prog. Mol. Biol. Transl. Sci. 2016, 139, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-Y.; Qin, Z.; Zhu, Y.-H.; He, Z.-Y.; Xu, T. Current RNA-Based Therapeutics in Clinical Trials. Curr. Gene Ther. 2019, 19, 172–196. [Google Scholar] [CrossRef]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef]
- Oh, J.H.; Park, D.H.; Joo, J.H.; Lee, J.S. Recent advances in chemical functionalization of nanoparticles with biomolecules for analytical applications. Anal Bioanal Chem 2015, 407, 8627–8645. [Google Scholar] [CrossRef]
- Wu, S.-C.; Ng, K.K.-S.; Wong, S.-L. Engineering Monomeric Streptavidin and Its Ligands with Infinite Affinity in Binding but Reversibility in Interaction. Proteins 2009, 77, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Dieterich, D.C.; Lee, J.J.; Link, A.J.; Graumann, J.; Tirrell, D.A.; Schuman, E.M. Labeling, Detection and Identification of Newly Synthesized Proteomes with Bioorthogonal Non-Canonical Amino-Acid Tagging. Nat. Protoc. 2007, 2, 532–540. [Google Scholar] [CrossRef]
- Shamay, Y.; Adar, L.; Ashkenasy, G.; David, A. Light Induced Drug Delivery into Cancer Cells. Biomaterials 2011, 32, 1377–1386. [Google Scholar] [CrossRef]
- Hermanson, G.T. Chapter 3—The Reactions of Bioconjugation. In Bioconjugate Techniques, 3rd ed.; Hermanson, G.T., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 229–258. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angew. Chemie Int. Ed. 2014, 53, 12320–12364. [Google Scholar] [CrossRef]
- Leiro, V.; Parreira, P.; Freitas, S.C.; Martins, M.C.L.; Pêgo, A.P. Conjugation Chemistry Principles and Surface Functionalization of Nanomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Dcona, M.M.; Sheldon, J.E.; Mitra, D.; Hartman, M.C.T. Light Induced Drug Release from a Folic Acid-Drug Conjugate. Bioorganic Med. Chem. Lett. 2017, 27, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Lämmerhofer, M. Functionalized Gold Nanoparticles for Sample Preparation: A Review. Electrophoresis 2019, 40, 2438–2461. [Google Scholar] [CrossRef]
- Chen, C.; Ke, J.; Edward Zhou, X.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural Basis for Molecular Recognition of Folic Acid by Folate Receptors. Nature 2013, 500, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, F.; Sheng, J.-L.; Sun, M.-X. Advances and Application of DNA-Functionalized Nanoparticles. Curr. Med. Chem. 2018, 26, 7147–7165. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Wang, Z.; Guo, F.; Shi, D.; Zhang, B. One-Pot Facile Synthesis of PEGylated Superparamagnetic Iron Oxide Nanoparticles for MRI Contrast Enhancement. Mater. Sci. Eng. C 2014, 41, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Åkerman, M.E.; Chan, W.C.W.; Laakkonen, P.; Bhatia, S.N.; Ruoslahti, E. Nanocrystal Targeting in Vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 12617–12621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldiney, T.; Richard, C.; Seguin, J.; Wattier, N.; Bessodes, M.; Scherman, D. Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice. ACS Nano 2011, 5, 854–862. [Google Scholar] [CrossRef]
- Bhadra, D.; Bhadra, S.; Jain, P.; Jain, N.K. Pegnology: A Review of PEG-Ylated Systems. Pharmazie 2002, 57, 5–29. [Google Scholar] [PubMed]
- Kommareddy, S.; Tiwari, S.B.; Amiji, M.M. Long-Circulating Polymeric Nanovectors for Tumor-Selective Gene Delivery. Technol. Cancer Res. Treat. 2005, 4, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.; Hanini, A.; Shah, A.; Patel, D.; Patel, S.; Bhatt, P.; Pathak, Y.V. Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–31. [Google Scholar] [CrossRef]
- Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, S.; Spitler, R.; Erfanzadeh, M.; Alkilany, A.M.; Mahmoudi, M. Protein Corona: Opportunities and Challenges. Int. J. Biochem. Cell Biol. 2016, 75, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Ritz, S.; Schö, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Rg Kuharev, J.; Landfester, K.; Rg Schild, H.; Jahn, O.; Tenzer, S.; et al. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. ACS Publ. 2015, 16, 1311–1321. [Google Scholar] [CrossRef]
- Wang, J.; Jensen, U.B.; Jensen, G.V.; Shipovskov, S.; Balakrishnan, V.S.; Otzen, D.; Pedersen, J.S.; Besenbacher, F.; Sutherland, D.S. Soft Interactions at Nanoparticles Alter Protein Function and Conformation in a Size Dependent Manner. Nano Lett. 2011, 11, 4985–4991. [Google Scholar] [CrossRef]
- Karakoti, A.S.; Das, S.; Thevuthasan, S.; Seal, S. PEGylated Inorganic Nanoparticles. Angew. Chemie Int. Ed. 2011, 50, 1980–1994. [Google Scholar] [CrossRef]
- Li, J.; Sun, C.; Tao, W.; Cao, Z.; Qian, H.; Yang, X.; Wang, J. Photoinduced PEG Deshielding from ROS-Sensitive Linkage-Bridged Block Copolymer-Based Nanocarriers for on-Demand Drug Delivery. Biomaterials 2018, 170, 147–155. [Google Scholar] [CrossRef]
- Gangopadhyay, M.; Singh, T.; Behara, K.K.; Karwa, S.; Ghosh, S.K.; Pradeep Singh, N.D. Coumarin-Containing-Star-Shaped 4-Arm-Polyethylene Glycol: Targeted Fluorescent Organic Nanoparticles for Dual Treatment of Photodynamic Therapy and Chemotherapy. Photochem. Photobiol. Sci. 2015, 14, 1329–1336. [Google Scholar] [CrossRef]
- Tonigold, M.; Simon, J.; Estupiñán, D.; Kokkinopoulou, M.; Reinholz, J.; Kintzel, U.; Kaltbeitzel, A.; Renz, P.; Domogalla, M.P.; Steinbrink, K.; et al. Pre-Adsorption of Antibodies Enables Targeting of Nanocarriers despite a Biomolecular Corona. Nat. Nanotechnol. 2018, 13, 862–869. [Google Scholar] [CrossRef]
- Conde, J.; Dias, J.T.; Grazú, V.; Moros, M.; Baptista, P.V.; de la Fuente, J.M. Revisiting 30 Years of Biofunctionalization and Surface Chemistry of Inorganic Nanoparticles for Nanomedicine. Front. Chem. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Mejía De Los Ríos, S.P.; Sánchez Toro, A.; Vásquez, V.; Orozco Holguín, J. Functional Nanocarriers for Delivering Itraconazole against Fungal Intracellular Infections. Front. Pharmacol. 2021, 12, 1520. [Google Scholar] [CrossRef]
- Parracino, M.A.; Martín, B.; Grazú, V. State-of-the-Art Strategies for the Biofunctionalization of Photoactive Inorganic Nanoparticles for Nanomedicine. In Photoactive Inorganic Nanoparticles: Surface Composition and Nanosystem Functionality; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–257. [Google Scholar] [CrossRef]
- Strong, L.E.; West, J.L. Hydrogel-Coated Near Infrared Absorbing Nanoshells as Light-Responsive Drug Delivery Vehicles. ACS Biomater. Sci. Eng. 2015, 1, 685–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Shoichet, M.S. A Photolabile Hydrogel for Guided Three-Dimensional Cell Growth and Migration. Nat. Mater. 2004, 3, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Pourjavadi, A.; Bagherifard, M.; Doroudian, M. Synthesis of Micelles Based on Chitosan Functionalized with Gold Nanorods as a Light Sensitive Drug Delivery Vehicle. Int. J. Biol. Macromol. 2020, 149, 809–818. [Google Scholar] [CrossRef]
- Brinkley, M. A Brief Survey of Methods for Preparing Protein Conjugates with Dyes, Haptens and Crosslinking Reagents. Bioconjug. Chem. 1992, 3, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, A.A. Crosslinkers and Their Utilization for Studies of Intermolecular Interactions. Neurochem. J. 2009, 3, 139–144. [Google Scholar] [CrossRef]
- Yang, L.; Tang, X.; Weisbrod, C.R.; Munske, G.R.; Eng, J.K.; Von Haller, P.D.; Kaiser, N.K.; Bruce, J.E. A Photocleavable and Mass Spectrometry Identifiable Cross-Linker for Protein Interaction Studies. Anal. Chem. 2010, 82, 3556–3566. [Google Scholar] [CrossRef] [Green Version]
- Sperling, R.A.; Parak, W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. Trans. R. Soc. A 2010, 368, 1333–1383. [Google Scholar] [CrossRef]
- Febvay, S.; Marini, D.M.; Belcher, A.M.; Clapham, D.E. Targeted Cytosolic Delivery of Cell-Impermeable Compounds by Nanoparticle-Mediated, Light-Triggered Endosome Disruption. Nano Lett. 2010, 10, 2211–2219. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Liu, X.; Shen, J.; Zhao, G.; Wang, P.G. The impact of click chemistry in medicinal chemistry. Expert Opin Drug Discov. 2012, 7, 489–501. [Google Scholar] [CrossRef]
- Delfi, M.; Ghomi, M.; Zarrabi, A.; Mohammadinejad, R.; Taraghdari, Z.B.; Ashrafizadeh, M.; Zare, E.N.; Agarwal, T.; Padil, V.V.T.; Mokhtari, B.; et al. Functionalization of Polymers and Nanomaterials for Biomedical Applications: Antimicrobial Platforms and Drug Carriers. Prosthesis 2020, 2, 117–139. [Google Scholar] [CrossRef]
- De La Torre, T.Z.G.; Herthnek, D.; Ramachandraiah, H.; Svedlindh, P.; Nilsson, M.; Strømme, M. Evaluation of the Sulfo-Succinimidyl-4-(N-Maleimidomethyl) Cyclohexane-1-Carboxylate Coupling Chemistry for Attachment of Oligonucleotides to Magnetic Nanobeads. J. Nanosci. Nanotechnol. 2011, 11, 8532–8537. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, R.; Mao, W.; Feng, H.; Liu, X.; Wong, D.K.Y. Detection of Cortisol at a Gold NanoparticleProtein G-DTBP-Scaffold Modified Electrochemical Immunosensor. Analyst 2011, 136, 5204–5210. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.J.; Bentley, M.D.; Harris, J.M. Chemistry for Peptide and Protein PEGylation. Adv. Drug Deliv. Rev. 2002, 54, 459–476. [Google Scholar] [CrossRef]
- Veronese, F.M.; Harris, J.M. Introduction and Overview of Peptide and Protein Pegylation. Adv. Drug Deliv. Rev. 2002, 54, 453–456. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, C.; Xu, Y.; Su, Z. Disuccinimidyl Suberate Cross-Linked Hemoglobin as a Novel Red Blood Cell Substitute. Sci. China Ser. C Life Sci. 2005, 48, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhang, L.; Qian, H.; Li, R.; Jiang, X.; Liu, B. Multifunctional Nanocarriers for Cell Imaging, Drug Delivery, and near-IR Photothermal Therapy. Langmuir 2010, 26, 5428–5434. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.J.E. Amine Coupling through EDC/NHS: A Practical Approach. Methods Mol. Biol. 2010, 627, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Lempens, E.H.M.; Helms, B.A.; Merkx, M. Chemoselective Protein and Peptide Immobilization on Biosensor Surfaces. Methods Mol. Biol. 2011, 751, 401–420. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, D.; Blake, J. Use of Thiol Acids in Peptide Segment Coupling in Non-Aqueous Solvents. Int. J. Pept. Protein Res. 1981, 18, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Mena-Giraldo, P.; Pérez-Buitrago, S.; Londoño-Berrío, M.; Ortiz-Trujillo, I.C.; Hoyos-Palacio, L.M.; Orozco, J. Photosensitive Nanocarriers for Specific Delivery of Cargo into Cells. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, M.; Srinivasan, M.; Mousa, S.A. Nanobiomaterials in Drug Delivery. In Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–37. [Google Scholar] [CrossRef]
- Zatsepin, T.S.; Stetsenko, D.A.; Gait, M.J.; Oretskaya, T.S. Use of Carbonyl Group Addition-Elimination Reactions for Synthesis of Nucleic Acid Conjugates. Bioconjug. Chem. 2005, 16, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, K.F.; Stroh, J.G. Site-Directed Conjugation of Nonpeptide Groups to Peptides and Proteins Via Periodate Oxidation of a 2-Amino Alcohol. Application to Modification at N-Terminal Serine. Bioconjug. Chem. 1992, 3, 138–146. [Google Scholar] [CrossRef]
- Thumshirn, G.; Hersel, U.; Goodman, S.L.; Kessler, H. Multimeric Cyclic RGD Peptides as Potential Tools for Tumor Targeting: Solid-Phase Peptide Synthesis and Chemoselective Oxime Ligation. Chem. A Eur. J. 2003, 9, 2717–2725. [Google Scholar] [CrossRef]
- Xiong, X.B.; Mahmud, A.; Uludaǧ, H.; Lavasanifar, A. Conjugation of Arginine-Glycine-Aspartic Acid Peptides to Poly(Ethylene Oxide)-b-Poly(ε-Caprolactone) Micelles for Enhanced Intracellular Drug Delivery to Metastatic Tumor Cells. Biomacromolecules 2007, 8, 874–884. [Google Scholar] [CrossRef]
- Tao, W.; Zeng, X.; Wu, J.; Zhu, X.; Yu, X.; Zhang, X.; Zhang, J.; Liu, G.; Mei, L. Polydopamine-Based Surface Modification of Novel Nanoparticle-Aptamer Bioconjugates for in Vivo Breast Cancer Targeting and Enhanced Therapeutic Effects. Theranostics 2016, 6, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Staros, J.V. N-Hydroxysulfosuccinimide Active Esters: Bis(N-Hydroxysulfosuccinimide) Esters of Two Dicarboxylic Acids Are Hydrophilic, Membrane-Impermeant, Protein Cross-Linkers. Biochemistry 1982, 21, 3950–3955. [Google Scholar] [CrossRef]
- Cuatrecasas, P.; Parikh, I. Adsorbents for Affinity Chromatography. Use of N-Hydroxysuccinimide Esters of Agarose. Biochemistry 1972, 11, 2291–2299. [Google Scholar] [CrossRef]
- Partis, M.D.; Griffiths, D.G.; Roberts, G.C.; Beechey, R.B. Cross-Linking of Protein by ω-Maleimido Alkanoyl N-Hydroxysuccinimido Esters. J. Protein Chem. 1983, 2, 263–277. [Google Scholar] [CrossRef]
- Jijie, R.; Barras, A.; Bouckaert, J.; Dumitrascu, N.; Szunerits, S.; Boukherroub, R. Enhanced Antibacterial Activity of Carbon Dots Functionalized with Ampicillin Combined with Visible Light Triggered Photodynamic Effects. Colloids Surf. B Biointerfaces 2018, 170, 350. [Google Scholar] [CrossRef]
- Smyth, D.G.; Blumenfeld, O.O.; Konigsberg, W. Reactions of N-Ethylmaleimide with Peptides and Amino Acids. Biochem. J. 1964, 91, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brewer, C.F.; Riehm, J.P. Evidence for Possible Nonspecific Reactions between N-Ethylmaleimide and Proteins. Anal. Biochem. 1967, 18, 248–255. [Google Scholar] [CrossRef]
- Maheshwari, N.; Kumar Atneriya, U.; Tekade, M.; Sharma, M.C.; Elhissi, A.; Tekade, R.K. Guiding Factors and Surface Modification Strategies for Biomaterials in Pharmaceutical Product Development; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Means, G.E.; Feeney, R.E. Chemical Modifications of Proteins: History and Applications. Bioconjug. Chem. 1990, 1, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, T.P.; Li, Y.; Kochoumian, L. Preparation of Protein Conjugates via Intermolecular Disulfide Bond Formation. Biochemistry 1978, 17, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ghosh, P.; Rotello, V.M. Functionalized Gold Nanoparticles for Drug Delivery. Nanomedicine 2007, 2, 113–123. [Google Scholar] [CrossRef]
- Schuh, C.; Lomadze, N.; Rühe, J.; Kopyshev, A.; Santer, S. Photomechanical Degrafting of Azo-Functionalized Poly(Methacrylic Acid) (PMAA) Brushes. J. Phys. Chem. B 2011, 115, 10431–10438. [Google Scholar] [CrossRef]
- Jewett, J.C.; Bertozzi, C.R. Cu-Free Click Cycloaddition Reactions in Chemical Biology. Chem. Soc. Rev. 2010, 39, 1272–1279. [Google Scholar] [CrossRef]
- Pathak, Y. Surface Modification of Nanoparticles for Targeted Drug Delivery. In Surface Modification of Nanoparticles for Targeted Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2019; pp. 409–412. [Google Scholar] [CrossRef]
- Lin, J.J.; Chen, J.S.; Huang, S.J.; Ko, J.H.; Wang, Y.M.; Chen, T.L.; Wang, L.F. Folic Acid-Pluronic F127 Magnetic Nanoparticle Clusters for Combined Targeting, Diagnosis, and Therapy Applications. Biomaterials 2009, 30, 5114–5124. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Busatto, N.; Roth, P.J. Perfluorophenyl Azides: Photo, Staudinger, and Multicomponent Postpolymerization Reactions on Homopolymers and PISA-Made Nanoparticles. Macromolecules 2021, 54, 3101–3111. [Google Scholar] [CrossRef]
- Bethell, G.S.; Ayers, J.S.; Hancock, W.S.; Hearn, M.T. A Novel Method of Activation of Cross-Linked Agaroses with 1,1’-Carbonyldiimidazole Which Gives a Matrix for Affinity Chromatography Devoid of Additional Charged Groups. J. Biol. Chem. 1979, 254, 2572–2574. [Google Scholar] [CrossRef]
- Beauchamp, C.O.; Gonias, S.L.; Menapace, D.P.; Pizzo, S.V. A New Procedure for the Synthesis of Polyethylene Glycol-Protein Adducts; Effects on Function, Receptor Recognition, and Clearance of Superoxide Dismutase, Lactoferrin, and alpha 2-macroglobulin. Anal. Biochem. 1983, 131, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Morales-Serna, J.; Vera, A.; Paleo, E.; García-Ríos, E. Using Benzotriazole Esters as a Strategy in the Esterification of Tertiary Alcohols. Synthesis 2010, 2010, 4261–4267. [Google Scholar] [CrossRef]
- Xu, Y.; Miller, M.J. Total Syntheses of Mycobactin Analogues as Potent Antimycobacterial Agents Using a Minimal Protecting Group Strategy. J. Org. Chem. 1998, 63, 4314–4322. [Google Scholar] [CrossRef]
- Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A Rapid Esterification by Means of Mixed Anhydride and Its Application to Large-Ring Lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993. [Google Scholar] [CrossRef] [Green Version]
- Oshiro-Junior, J.; Sato, M.; Boni, F.; Santos, K.L.M. Phthalocyanine-Loaded Nanostructured Lipid Carriers Functionalized with Folic Acid for Photodynamic Therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110462. [Google Scholar] [CrossRef] [PubMed]
- Einafshar, E.; Asl, A.H.; Nia, A.H.; Mohammadi, M.; Malekzadeh, A.; Ramezani, M. New Cyclodextrin-Based Nanocarriers for Drug Delivery and Phototherapy Using an Irinotecan Metabolite. Carbohydr. Polym. 2018, 194, 103–110. [Google Scholar] [CrossRef]
- Barrera, C.; Herrera, A.P.; Bezares, N.; Fachini, E.; Olayo-Vales, R.; Hinestroza, J.P.; Rinaldi, C. Effect of Poly (Ethylene Oxide)-Silane Graft Molecular Weight on the Colloidal Properties of Iron Oxide Nanoparticles for Biomedical Applications. J. Colloid Interface Sci. 2012, 377, 40–50. [Google Scholar] [CrossRef]
- Aslan, K.; Luhrs, C.C.; Pérez-Luna, V.H. Controlled and Reversible Aggregation of Biotinylated Gold Nanoparticles with Streptavidin. ACS Publ. 2004, 108, 15631–15639. [Google Scholar] [CrossRef]
- Thanh, N.T.K.; Green, L.A.W. Functionalisation of Nanoparticles for Biomedical Applications. Nano Today 2010, 5, 213–230. [Google Scholar] [CrossRef]
- Tannous, B.A.; Grimm, J.; Perry, K.F.; Chen, J.W.; Weissleder, R.; Breakefield, X.O. Metabolic Biotinylation of Cell Surface Receptors for in Vivo Imaging. Nat. Methods 2006, 3, 391–396. [Google Scholar] [CrossRef]
- Li, Q.L.; Sun, Y.; Sun, Y.L.; Wen, J.; Zhou, Y.; Bing, Q.M.; Isaacs, L.D.; Jin, Y.; Gao, H.; Yang, Y.W. Mesoporous Silica Nanoparticles Coated by Layer-by-Layer Self-Assembly Using Cucurbit[7]Uril for in Vitro and in Vivo Anticancer Drug Release. Chem. Mater. 2014, 26, 6418–6431. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.J.; Cui, J.; Björnmalm, M.; Braunger, J.A.; Ejima, H.; Caruso, F. Innovation in Layer-by-Layer Assembly. Chem. Rev. 2016, 116, 14828–14867. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Zhang, K.L.; Chen, S.; Li, S.H.; Wang, L.L.; Wang, L.P.; Liu, R.; Gao, J.; Yang, H.H. Manganese-Iron Layered Double Hydroxide: A Theranostic Nanoplatform with PH-Responsive MRI Contrast Enhancement and Drug Release. J. Mater. Chem. B 2017, 5, 3629–3633. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Multilayer Assembly.Technology-Driven Layer-by-Layer Assembly of Nanofilms. Science 2015, 348, aaa2491. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.A.; da Silva Abreu, A.; Tedesco, A.C.; Junior, M.B.; Simioni, A.R. Functionalized Photosensitive Gelatin Nanoparticles for Drug Delivery Application. J. Biomater. Sci. Polym. Ed. 2019, 30, 508–525. [Google Scholar] [CrossRef]
- Wei, X.; Beltrán-Gastélum, M.; Karshalev, E.; Esteban-Fernández de Ávila, B.; Zhou, J.; Ran, D.; Angsantikul, P.; Fang, R.H.; Wang, J.; Zhang, L. Biomimetic Micromotor Enables Active Delivery of Antigens for Oral Vaccination. Nano Lett. 2019, 19, 1914–1921. [Google Scholar] [CrossRef]
- Jain, A.; Jain, S.K.; Ganesh, N.; Barve, J.; Beg, A.M. Design and Development of Ligand-Appended Polysaccharidic Nanoparticles for the Delivery of Oxaliplatin in Colorectal Cancer. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 179–190. [Google Scholar] [CrossRef]
- Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for Drug Delivery: The Need for Precision in Reporting Particle Size Parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9. [Google Scholar] [CrossRef]
- Pathak, Y.; Thassu, D. Microscopic and Spectroscopi Characterization of Nanoparticles. In Press Drug Delivery Nanoparticles Formulation and Characterization; CRC Press: Boca Raton, FL, USA, 2016; Volume 191, pp. 239–252. [Google Scholar]
- Bandyopadhyay, S.; Peralta-Videa, J.R.; Hernandez-Viezcas, J.A.; Montes, M.O.; Keller, A.A.; Gardea-Torresdey, J.L. Microscopic and Spectroscopic Methods Applied to the Measurements of Nanoparticles in the Environment. Appl. Spectrosc. Rev. 2012, 47, 180–206. [Google Scholar] [CrossRef]
- Bootz, A.; Vogel, V.; Schubert, D.; Kreuter, J. Comparison of Scanning Electron Microscopy, Dynamic Light Scattering and Analytical Ultracentrifugation for the Sizing of Poly(Butyl Cyanoacrylate) Nanoparticles. Eur. J. Pharm. Biopharm. 2004, 57, 369–375. [Google Scholar] [CrossRef]
- Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for Physicochemical Characterization of Nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef] [Green Version]
- Oikawa, T. Energy Dispersive X-Ray Spectroscopy. Jpn. J. Tribol. 2006, 51, 33–38. [Google Scholar] [CrossRef]
- Korin, E.; Froumin, N.; Cohen, S. Surface Analysis of Nanocomplexes by X-Ray Photoelectron Spectroscopy (XPS). ACS Biomater. Sci. Eng. 2017, 3, 882–889. [Google Scholar] [CrossRef]
- Epp, J. X-Ray Diffraction (XRD) Techniques for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 81–124. [Google Scholar] [CrossRef]
- Grobelny, J.; DelRio, F.W.; Pradeep, N.; Kim, D.I.; Hackley, V.A.; Cook, R.F. Size Measurement of Nanoparticles Using Atomic Force Microscopy. Methods Mol. Biol. 2011, 697, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Zhang, W. Measurement of the Surface Hydrophobicity of Engineered Nanoparticles Using an Atomic Force Microscope. Phys. Chem. Chem. Phys. 2018, 20, 24434–24443. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.A. Magnetic Resonance Spectroscopy. In Functional Brain Imaging; Elsevier: Amsterdam, The Netherlands, 1995; pp. 419–467. [Google Scholar] [CrossRef]
- Calvo, P.; Vila-Jato, J.Ä.L.; Alonso, M.J. Comparative in Vitro Evaluation of Several Colloidal Systems, Nanoparticles, Nanocapsules, and Nanoemulsions, as Ocular Drug Carriers. J. Pharm. Sci. 1996, 85, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Patravale, V.; Dandekar, P.; Jain, R. Characterization Techniques for Nanoparticulate Carriers. In Nanoparticulate Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2012; pp. 87–121. [Google Scholar] [CrossRef]
- Kumari, A.; Yadav, S.; Biointerfaces, S.Y. Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef]
- Dvir, T.; Banghart, M.R.; Timko, B.P.; Langer, R.; Kohane, D.S. Photo-Targeted Nanoparticles. Nano Lett. 2010, 10, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Cho, B.R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115, 5014–5055. [Google Scholar] [CrossRef] [PubMed]
- Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S.J.H.; Riveragil, P.; Montenegro, J.M.; Braeckmans, K.; Müllen, K.; et al. Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano 2013, 7, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Techane, S.; Baer, D.R.; Castner, D.G. Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces. Anal. Chem 2011, 83, 13. [Google Scholar] [CrossRef] [Green Version]
- Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C.W. Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem. 2011, 83, 4453–4488. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, S.; Hélder, A. Photosensitive Materials for Constructing On-Demanded Drug-Release Systems. In Photoactive Inorganic Nanoparticles: Surface Composition and Nanosystem Functionality; Prieto, J.P., Bejar, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Chen, S.; Bian, Q.; Wang, P.; Zheng, X.; Lv, L.; Dang, Z.; Wang, G. Photo, PH and Redox Multi-Responsive Nanogels for Drug Delivery and Fluorescence Cell Imaging. Polym. Chem. 2017, 8, 6150–6157. [Google Scholar] [CrossRef]
- Paus, C.; Van Der Voort, R.; Cambi, A.; Shi, Y. Nanomedicine in Cancer Therapy: Promises and Hurdles of Polymeric Nanoparticles Exploration of Medicine. Explor. Med. 2021, 2. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Materials Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [Green Version]
- Asanuma, H.; Liang, X.; Liu, M.; Nishioka, H.; Matsunaga, D.; Komiyama, M. Synthesis of Azobenzene-Tethered DNA for Reversible Photo-Regulation of DNA Functions: Hybridization and Transcription. Nat. Protoc. 2007, 2, 203–212. [Google Scholar] [CrossRef]
- Nishioka, H.; Liang, X.; Asanuma, H. Effect of the Ortho Modification of Azobenzene on the Photoregulatory Efficiency of DNA Hybridization and the Thermal Stability of Its Eis Form. Chem. A Eur. J. 2010, 16, 2054–2062. [Google Scholar] [CrossRef]
- Cheng, C.C.; Gebeyehu, B.T.; Huang, S.Y.; Abebe Alemayehu, Y.; Sun, Y.T.; Lai, Y.C.; Chang, Y.H.; Lai, J.Y.; Lee, D.J. Entrapment of an Adenine Derivative by a Photo-Irradiated Uracil-Functionalized Micelle Confers Controlled Self-Assembly Behavior. J. Colloid Interface Sci. 2019, 552, 166–178. [Google Scholar] [CrossRef]
- Kang, H.; Liu, H.; Zhang, X.; Yan, J.; Zhu, Z.; Peng, L.; Yang, H.; Kim, Y.; Tan, W. Photoresponsive DNA-Cross-Linked Hydrogels for Controllable Release and Cancer Therapy. Langmuir 2011, 27, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Ru Choi, J. Recent Advances in Photo-Crosslinkable Hydrogels for Biomedical Applications. Futur. Sci. 2019, 66, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Wylie, R.G.; Shoichet, M.S. Two-Photon Micropatterning of Amines within an Agarose Hydrogel. J. Mater. Chem. 2008, 18, 2716–2721. [Google Scholar] [CrossRef]
- Han, K.; Lei, Q.; Jia, H.Z.; Wang, S.B.; Yin, W.N.; Chen, W.H.; Cheng, S.X.; Zhang, X.Z. A Tumor Targeted Chimeric Peptide for Synergistic Endosomal Escape and Therapy by Dual-Stage Light Manipulation. Wiley Online Libr. 2015, 25, 1248–1257. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, X.; Yang, Y.; Li, Z.; Yu, F.; Gong, W.; Li, Y.; Zhang, H.; Wang, Z.; Mei, X. Polymer Nanoparticles Modified with Photo- and PH-Dual-Responsive Polypeptides for Enhanced and Targeted Cancer Therapy. Mol. Pharm. 2016, 13, 1508–1519. [Google Scholar] [CrossRef]
- Hong, G.; Zou, Y.; Antaris, A.L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X.; Chen, C.; Liu, B.; He, Y.; et al. Ultrafast Fluorescence Imaging in Vivo with Conjugated Polymer Fluorophores in the Second Near-Infrared Window. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Feng, J.L.; Qiu, L.; Gao, Z.; Li, P.; Pang, L.; Zhang, Z. SDF-1-Loaded PLGA Nanoparticles for the Targeted Photoacoustic Imaging and Photothermal Therapy of Metastatic Lymph Nodes in Tongue Squamous Cell Carcinoma. Int. J. Pharm. 2019, 554, 93–104. [Google Scholar] [CrossRef]
- Cai, X.; Prominski, A.; Lin, Y.; Ankenbruck, N.; Rosenberg, J.; Chen, M.; Shi, J.; Chang, E.B.; Penaloza-Macmaster, P.; Tian, B.; et al. A Neutralizing Antibody-Conjugated Photothermal Nanoparticle Captures and Inactivates SARS-CoV-2. biorxiv 2020, 11. [Google Scholar] [CrossRef]
- Lv, Y.; Li, F.; Wang, S.; Lu, G.; Bao, W.; Wang, Y.; Tian, Z.; Wei, W.; Ma, G. Near-Infrared Light–Triggered Platelet Arsenal for Combined Photothermal-Immunotherapy against Cancer. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Zhao, B.; Moore, J.S.; Beebe, D.J. Surface-Directed Liquid Flow inside Microchannels. Science 2001, 291, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Yamaguchi, K.; Nakanishi, J. Dynamic Substrate Based on Photocleavable Poly(Ethylene Glycol): Zeta Potential Determines the Capability of Geometrical Cell Confinement. Langmuir 2013, 29, 7300–7308. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Yamahira, S.; Kikuchi, K.; Sumaru, K.; Kanamori, T.; Nagamune, T. Cell Patterning Photocontrollable Dynamic Micropatterning of Non-Adherent Mammalian Cells Using a Photocleavable Poly(Ethylene Glycol) Lipid. Angew. Chemie 2012, 124, 132–135. [Google Scholar] [CrossRef]
- Park, S.J.; Park, W.; Na, K. Photo-Activatable Ternary Complex Based on a Multifunctional Shielding Material for Targeted ShRNA Delivery in Cancer Treatment. Biomaterials 2013, 34, 8991–8999. [Google Scholar] [CrossRef]
- Ma, D.; Lin, Q.M.; Zhang, L.M.; Liang, Y.Y.; Xue, W. A Star-Shaped Porphyrin-Arginine Functionalized Poly(l-Lysine) Copolymer for Photo-Enhanced Drug and Gene Co-Delivery. Biomaterials 2014, 35, 4357–4367. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, D.; Yi, X.; Zhuo, R. Steric Protected and Illumination-Activated Tumor Targeting Accessory for Endowing Drug-Delivery Systems with Tumor Selectivity. Adv. Funct. Mater. 2014, 24, 1799–1807. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Li, Y.; Guo, Y.; Cao, Y.; Li, P.; Wang, Z.; Gong, Y.; Ran, H. Folate-Receptor-Targeted Laser-Activable Poly (Lactide-Co-Glycolic Acid) Nanoparticles Loaded with Paclitaxel/Indocyanine Green for Photoacoustic/Ultrasound. Int. J. Nanomed. 2018, 13, 5139. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, T.; Zhou, L.; Gu, Q.; Liu, L.; Lv, F.; Wang, S. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew. Chemie Int. Ed. 2018, 57, 13114–13119. [Google Scholar] [CrossRef]
- Hang, C.; Zou, Y.; Zhong, Y.; Zhong, Z.; Meng, F. NIR and UV-Responsive Degradable Hyaluronic Acid Nanogels for CD44-Targeted and Remotely Triggered Intracellular Doxorubicin Delivery. Colloids Surfaces B Biointerfaces 2017, 158, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yang, Y.; Dong, C.; Wei, Y. Two-photon-sensitive and Sugar-targeted Nanocarriers from Degradable and Dendritic Amphiphiles. Small 2011, 7, 401–406. [Google Scholar] [CrossRef]
- Wang, Y.; Han, P.; Xu, H.; Wang, Z.; Zhang, X.; Kabanov, A.V. Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles: A Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir 2010, 26, 709–715. [Google Scholar] [CrossRef]
- Nezhadghaffar-Borhani, E.; Abdollahi, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Photoswitchable Surface Wettability of Ultrahydrophobic Nanofibrous Coatings Composed of Spiropyran-Acrylic Copolymers. J. Colloid Interface Sci. 2021, 593, 67–78. [Google Scholar] [CrossRef]
- Zou, L.; Han, D.; Yuan, Z.; Chang, D.; Ma, X. A Self-Assembled Photoresponsive Gel Consisting of Chiral Nanofibers. Beilstein J. Org. Chem. 2018, 14, 1994–2001. [Google Scholar] [CrossRef]
- Karimipour, K.; Keyvan Rad, J.; Shirvalilou, S.; Khoei, S.; Mahdavian, A.R. Spiropyran-Based Photoswitchable Acrylic Nanofibers: A Stimuli-Responsive Substrate for Light Controlled C6 Glioma Cells Attachment/Detachment. Colloids Surfaces B Biointerfaces 2021, 203, 111731. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Yoshiyama, C.; Kitaoka, T. Helical Assembly of Azobenzene-Conjugated Carbohydrate Hydrogelators with Specific Affinity for Lectins. Langmuir 2012, 28, 4404–4412. [Google Scholar] [CrossRef] [PubMed]
- Henke, P.; Dolanský, J.; Kubát, P.; Mosinger, J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS Appl. Mater. Interfaces 2020, 12, 18792–18802. [Google Scholar] [CrossRef] [PubMed]
Method | Advantages | Disadvantages | Interactions/Example | References |
---|---|---|---|---|
Physical adsorption | The most simple. Less aggressive. Reagent-free. | Less stable. Less reproducible. | Van der Waals. Hydrogen bonding. Hydrophobic interactions. Electrostatic interactions. | [56,77] |
Entrapment | 3D-conformational structure of ligands and drug biomolecules remain almost unaltered, keeping the biological activity. | Poor retention. Diffusional barrier. Limited molecules transport & longer response time. | Gel (polyacrylamide) Silicone, Jelly Chitosan hydrogel | [80] |
Cross-linking | Simple Additional stability by intermolecular linking. | Alter the 3D conformation of biomolecules and active center of enzymes. Induce restriction in molecules diffusion. | Glutaraldehyde, Hexamethylene diisocyanate, | [56,77,83] |
Biocomposite | Improved properties. | Stability of bioreceptors in solvents and matrix | Embedded active principle in a complex matrix | [56] |
Covalent linking | Better stability (pH, ionic strength and temperature). Longer lifetime. | Longer protocols. Lower bioactivity. | Through functional groups (NH2, COOH, OH, SH, Ph-OH). | [86,93] |
Functional Group | Reactive Group | Reaction | Conditions | Ref. |
---|---|---|---|---|
Carboxylic (R-COOH) | Carbodiimide 1. EDC (up) 2. EDC/NHS (down) | | 1. Most efficient in pH 4.5 acidic conditions. Carboxyl- and amine-containing buffers must be avoided. 4-morpholinoethanesulfonic acid (MES) buffer is a suitable reaction buffer. Phosphate buffers at neutral pH (up to 7.2) conditions are compatible with the reaction chemistry but with lower efficiency. Increasing the amount of EDC can compensate for the reduced efficiency. 2. It allows for efficient conjugation to primary amines at physiologic pH. | [56,100] |
3. Cyclic carbodiimide (DCC) | Water-free. | [97,98,100] | ||
Carbonyls (R-CHO, R-CO-R’) | 4. Aldehyde and cetone | Aldehydes and ketones can react with primary and secondary amines to form Schiff bases. A dehydration reaction yields an imine. The formation of Schiff bases is enhanced at alkaline pH values, but they are still not stable enough to use for crosslinking applications. | [101] | |
5. Hydrazide | Aldehydes created by periodate-oxidation of sugars in biological samples react with hydrazides at pH 5–7 to form hydrazone bonds. | [102,103] | ||
6. Alkoxyamine | pH 6.5–7.5 | [56,104] | ||
7. Reductive amination | Reduction with sodium cyanoborohydride is necessary to stabilize the Shiff base initially formed. | [77] | ||
Amine (-NH2) | 8. Succinimide | Most commonly performed in phosphate, carbonate-bicarbonate, HEPES or borate buffers at pH 7.2–8.5 for 30 min to 4 h at r.t. or 4 °C. Primary amine buffers such as Tris (TBS) may compete for the reaction, but, in some cases, they are useful to stop it. | [105,107,109] | |
9. Imidoester | Best done in amine-free, alkaline conditions (pH 10), e.g., borate buffer. Reaction conditions below pH 10 may result in side reactions. | [56,109] | ||
Sulfhydryl (-SH) | 10. Maleimide | At near neutral conditions (pH 6.5–7.5). At higher pH > 8.5 the reaction favors primary amines and speed-up the maleimide hydrolysis rate to a non-reactive maleamic acid. Tyrosines, histidines or methionines do not react with maleimides. Thiols from most reducing agents must be avoided since they compete for coupling sites. Yet, as TCEP does not contain thiols, it does not have been removed from these reactions. | [108,110,112] | |
11. Haloacetyl | Physiologic to alkaline conditions (pH 7.2–9) in the dark. Imidazoles interact with iodoacetyl groups at pH 6.9–7.0, but it takes more than a week. Histidyl side chains and amino groups react in the unprotonated form with iodoacetyl groups above pH 5 and pH 7, respectively | [56,83] | ||
12. Pyrioyldisulfide | A broad pH range, pH 4–5 being the optimum. The disulfide exchange can be at physiologic pH but with a reaction rate slower than in acidic conditions. Releasing 2-pyridyldithiol that can be monitored by spectrophotometry at 343 nm. | [114] | ||
Photo-reactive | 13. Aryl azide | Possible in a variety of amine-free buffer conditions. Avoid exposition to light and reducing agents (they prevent photo-activation). Short-wavelength UV light to activate simple phenyl azides and long UV light for nitrophenyl azides. | [54,117] | |
14. Diazirine | Activated with long-wave UV light (330–370 nm). | [123,124] | ||
Azide (-N3) | 15. Phosphine | Phosphine-activated molecules react with azide-labeled target molecules to form aza-ylide intermediates, but they rapidly rearrange in aqueous conditions to form stable amide bonds. | [117,118,132] | |
Hydroxyl (-OH) | 16. Isocyanate | Nonaqueous. | [56,123,124] |
Parameter | Method | Comment | Ref |
---|---|---|---|
Particle size | Dynamic light scattering (DLS) | Based on the scattering of light caused by the Brownian movement of the particles. | [139] |
Scanning electron microscopy (SEM) | Observe the morphological state by direct visualization. | [140,141,142] | |
Transmission electron microscopy (TEM) | |||
Atomic force microscopy (AFM) | |||
Shape | Microscopy techniques (SEM, TEM, AFM) | Generate images of individual NPs to characterize their shape, size, and location. | [141,143] |
Energy-dispersive X-Ray spectroscopy (EDS) | An electron beam hits the sample, exciting an electron in an inner shell, causing its ejection and forming an electron-hole in the electronic structure of the element. | [140,144] | |
X-ray photoelectron spectroscopy (XPS) | Irradiate a material with a beam of X-rays such as a typical Al Kα or Mg Kα source while simultaneously measuring the kinetic energy and number of electrons that escape from atoms on the surface of the material being analyzed. | [145] | |
X-ray diffraction analysis (XRD) | It is produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the atomic positions within the lattice planes. | [141,146,147] | |
Surface charge | Electrophoretic light scattering (ELS) | It is measured through the mobility of the charged particles under an electric field that indirectly correlates with the surface charge. | [147] |
Surface properties | AFM, contact angle measurement (CAM) | CAM has long been used as a criterion of static hydrophobicity of solid surfaces. It is a simple-to-adopt method for surface hydrophobicity analysis based on the sessile drop Young–Laplace method. AFM has been shown to reveal surface energies and hydrophilic or hydrophobic characteristics of the interacting surfaces. | [148] |
Nuclear magnetic resonance spectroscopy (NMR) | It can be defined as an indispensable tool that applies a magnetic field to an atomic nucleus (e.g., the most common stable isotopes 1H, 13C, 15N) and radiofrequency pulses to characterize the resonant frequency of that atomic nucleus according to its chemical or environmental surroundings. | [149] | |
Thermodynamic properties | Differential scanning calorimetry (DSC) Thermogravimetry (TG) | Give information about the crystallographic structure, chemical composition, and physical properties. | [150] |
Encapsulation efficiency, cargo release | Ultraviolet-visible spectrophotometry (UV-Vis), high-performance liquid chromatography (HPLC) Ultracentrifugation, ultrafiltration, gel filtration | Use classical quantification methodologies according to the characteristics of the drug to be encapsulated. | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, M.; Orozco, J. Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers 2021, 13, 2464. https://doi.org/10.3390/polym13152464
Fernández M, Orozco J. Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers. 2021; 13(15):2464. https://doi.org/10.3390/polym13152464
Chicago/Turabian StyleFernández, Maritza, and Jahir Orozco. 2021. "Advances in Functionalized Photosensitive Polymeric Nanocarriers" Polymers 13, no. 15: 2464. https://doi.org/10.3390/polym13152464
APA StyleFernández, M., & Orozco, J. (2021). Advances in Functionalized Photosensitive Polymeric Nanocarriers. Polymers, 13(15), 2464. https://doi.org/10.3390/polym13152464