Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PLGA
2.3. Nuclear Magnetic Resonance Spcetroscopy (NMR Spectroscopy)
2.4. Size Exclusion Chromatography (SEC)
2.5. Thermogravimetric Analysis (TGA)
2.6. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Initiator Concentration
3.2. Reaction Temperature, Time, and Catalyst Concentration
3.3. Thermal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioplastics, E. Bioplastics Market Data. 2019. Available online: https://docs.european-bioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2019.pdf (accessed on 15 April 2021).
- Sonchaeng, U.; Iniguez-Franco, F.; Auras, R.; Selke, S.; Rubino, M.; Lim, L.-T. Poly (lactic acid) mass transfer properties. Prog. Polym. Sci. 2018, 86, 85–121. [Google Scholar] [CrossRef]
- Tang, X.; Kumar, P.; Alavi, S.; Sandeep, K. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit. Rev. Food Sci. Nutr. 2012, 52, 426–442. [Google Scholar] [CrossRef]
- Narancic, T.; Cerrone, F.; Beagan, N.; O’Connor, K.E. Recent advances in bioplastics: Application and biodegradation. Polymers 2020, 12, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singha, S.; Hedenqvist, M.S. A review on barrier properties of poly (lactic acid)/clay nanocomposites. Polymers 2020, 12, 1095. [Google Scholar] [CrossRef]
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly (lactic Acid): A versatile biobased polymer for the future with multifunctional properties—From monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 2021, 13, 1822. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.R.; Laforsch, C.; Greiner, A.; Agarwal, S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob. Chall. 2017, 1, 1700048. [Google Scholar] [CrossRef] [PubMed]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.X.; Huang, D.; Ji, J.H.; Völker, C.; Wurm, F.R. Seawater-degradable polymers—Fighting the marine plastic pollution. Adv. Sci. 2021, 8, 2001121. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Wemyss, A.M.; Iacovidou, E.; Wan, C. Design and control of compostability in synthetic biopolyesters. ACS Sustain. Chem. Eng. 2021, 9, 9151–9164. [Google Scholar] [CrossRef]
- Yamane, K.; Sato, H.; Ichikawa, Y.; Sunagawa, K.; Shigaki, Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polym. J. 2014, 46, 769–775. [Google Scholar] [CrossRef]
- Kuredux, K. Polyglycolic Acid (PGA) Resin Product Brochure. Available online: https://www.kureha.co.jp/en/business/material/pdf/Kuredux_en.pdf (accessed on 15 April 2021).
- Murcia Valderrama, M.A.; van Putten, R.-J.; Gruter, G.-J.M. PLGA barrier materials from CO2. The influence of lactide co-monomer on glycolic acid polyesters. ACS Appl. Polym. Mater. 2020, 2, 2706–2718. [Google Scholar] [CrossRef]
- Hadasha, W.; Bezuidenhout, D. Poly (lactic acid) as biomaterial for cardiovascular devices and tissue engineering applications. In Industrial Applications of Poly (Lactic Acid); Springer: Berlin, Germany, 2017; pp. 51–77. [Google Scholar]
- Jem, K.J.; Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Haddleton, D.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly (glycolic acid)(PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Schäfer, P.M.; Herres-Pawlis, S. Robust guanidine metal catalysts for the ring-opening polymerization of lactide under industrially relevant conditions. ChemPlusChem 2020, 85, 1044–1052. [Google Scholar] [CrossRef]
- Ren, J. Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications; Springer: Berlin, Germany, 2011. [Google Scholar]
- Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004, 104, 6147–6176. [Google Scholar] [CrossRef]
- Wasserman, D.; Versfelt, C. Use of Stannous Octoate Catalyst in the Manufacture of L (-) Lactide-Glycolide Copolymer Sutures. U.S. Patent US3839297A, 1 October 1974. [Google Scholar]
- Erneta, M.; Lawler, T.E. Monomer Addition Techniques to Control Manufacturing of Bioabsorbable Copolymers. U.S. Patent US7148315B2, 12 December 2006. [Google Scholar]
- Gilding, D.; Reed, A. Biodegradable polymers for use in surgery—Polyglycolic/poly (actic acid) homo-and copolymers: 1. Polymer 1979, 20, 1459–1464. [Google Scholar] [CrossRef]
- Avgoustakis, K.; Nixon, J. Biodegradable controlled release tablets 1: Preparative variables affecting the properties of poly (lactide-co-glycolide) copolymers as matrix forming material. Int. J. Pharm. 1991, 70, 77–85. [Google Scholar] [CrossRef]
- Wang, N.; Wu, X.S.; Li, C.; Feng, M.F. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization. J. Biomater. Sci. Polym. Ed. 2000, 11, 301–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrzynski, P.; Kasperczyk, J.; Janeczek, H.; Bero, M. Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds 1. Copolymerization of glycolide with L-lactide initiated by Zr (Acac) 4. Macromolecules 2001, 34, 5090–5098. [Google Scholar] [CrossRef]
- Dobrzynski, P.; Kasperczyk, J.; Janeczek, H.; Bero, M. Synthesis of biodegradable glycolide/L-lactide copolymers using iron compounds as initiators. Polymer 2002, 43, 2595–2601. [Google Scholar] [CrossRef]
- Erbetta, C.D.C.; Alves, R.J.; Magalh, J.; de Souza Freitas, R.F.; de Sousa, R.G. Synthesis and characterization of poly (D, L-lactide-co-glycolide) copolymer. J. Biomater. Nanobiotechnol. 2012, 3, 18940. [Google Scholar]
- Gümüşderelioğlu, M.; Deniz, G. Synthesis, characterization and in vitro degradation of poly (dl-lactide)/poly (dl-lactide-co-glycolide) films. Turk. J. Chem. 1999, 23, 153–162. [Google Scholar]
- Yu, Y.; Storti, G.; Morbidelli, M. Kinetics of ring-opening polymerization of l, l-lactide. Ind. Eng. Chem. Res. 2011, 50, 7927–7940. [Google Scholar] [CrossRef]
- Hyon, S.-H.; Jamshidi, K.; Ikada, Y. Synthesis of polylactides with different molecular weights. Biomaterials 1997, 18, 1503–1508. [Google Scholar] [CrossRef]
- Shinno, K.; Miyamoto, M.; Kimura, Y.; Hirai, Y.; Yoshitome, H. Solid-state postpolymerization of L-lactide promoted by crystallization of product polymer: An effective method for reduction of remaining monomer. Macromolecules 1997, 30, 6438–6444. [Google Scholar] [CrossRef]
- Kowalski, A.; Duda, A.; Penczek, S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. 3. Polymerization of L, L-dilactide. Macromolecules 2000, 33, 7359–7370. [Google Scholar] [CrossRef]
- Alexis, F. Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polym. Int. 2005, 54, 36–46. [Google Scholar] [CrossRef]
- Li, S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J. Biomed. Mater. Res. 1999, 48, 342–353. [Google Scholar] [CrossRef]
- Castro-Aguirre, E.; Iniguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly (lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016, 107, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.-T.; Auras, R.; Rubino, M. Processing technologies for poly (lactic acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Kaihara, S.; Matsumura, S.; Mikos, A.G.; Fisher, J.P. Synthesis of poly (L-lactide) and polyglycolide by ring-opening polymerization. Nat. Protoc. 2007, 2, 2767–2771. [Google Scholar] [CrossRef] [PubMed]
- Mhiri, S.; Mignard, N.; Abid, M.; Prochazka, F.; Majeste, J.-C.; Taha, M. Thermally reversible and biodegradable polyglycolic-acid-based networks. Eur. Polym. J. 2017, 88, 292–310. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Hohl, D.K.; Fleckenstein, P.; Storti, G.; Morbidelli, M. Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulou, Z.; Karakatsianopoulou, E.; Kasmi, N.; Tsanaktsis, V.; Nikolaidis, N.; Kostoglou, M.; Papageorgiou, G.Z.; Lambropoulou, D.A.; Bikiaris, D.N. Effect of catalyst type on molecular weight increase and coloration of poly (ethylene furanoate) biobased polyester during melt polycondensation. Polym. Chem. 2017, 8, 6895–6908. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Weidner, S.M. High molar mass cyclic poly (l-lactide) obtained by means of neat tin (ii) 2-ethylhexanoate. Polym. Chem. 2020, 11, 5249–5260. [Google Scholar] [CrossRef]
- Zhang, X.; Waymouth, R.M. Zwitterionic ring opening polymerization with isothioureas. ACS Macro Lett. 2014, 3, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Hyon, S.H.; Jamshidi, K.; Ikada, Y. Effects of residual monomer on the degradation of DL-lactide polymer. Polym. Int. 1998, 46, 196–202. [Google Scholar] [CrossRef]
- Masutani, K.; Kimura, Y. PLA synthesis. From the monomer to the polymer. In Poly(Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Yamane, K.; Kawakami, Y. Polyhydroxycarboxylic Acid and Its Production Process. U.S. Patent US7067611B2, 27 June 2006. [Google Scholar]
- Sato, H.; Kobayashi, F.; Kawakami, Y.; Yamane, K.; Amano, Y.; Sato, T. Process for Producing Aliphatic Polyester Reduced in Residual Cyclic Ester Content. U.S. Patent US8658758B2, 25 February 2014. [Google Scholar]
- Degée, P.; Dubois, P.; Jacobsen, S.; Fritz, H.G.; Jérôme, R. Beneficial effect of triphenylphosphine on the bulk polymerization of L, L-lactide promoted by 2-ethylhexanoic acid tin (II) salt. Polym. Chem. 1999, 37, 2413–2420. [Google Scholar] [CrossRef]
- Sato, H.; KOBAYiI, F.; Ichikawa, Y.; Oishi, Y. Synthesis and characterization of polyglycolic acid via sequential melt-solid ring-opening polymerization of glycolide. Kobunshi Ronbunshu 2012, 69, 60–70. [Google Scholar] [CrossRef]
- Saigusa, K.; Saijo, H.; Yamazaki, M.; Takarada, W.; Kikutani, T. Influence of carboxylic acid content and polymerization catalyst on hydrolytic degradation behavior of poly (glycolic acid) fibers. Polym. Degrad. Stab. 2020, 172, 109054. [Google Scholar] [CrossRef]
- Buchholz, B. Novel Glycolide-Rich Copolymers. Patent Number WO2009016194A1, 5 February 2009. [Google Scholar]
- Stjerndahl, A.; Wistrand, A.F.; Albertsson, A.-C. Industrial utilization of tin-initiated resorbable polymers: Synthesis on a large scale with a low amount of initiator residue. Biomacromolecules 2007, 8, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Stjerndahl, A.; Finne-Wistrand, A.; Albertsson, A.C.; Bäckesjö, C.M.; Lindgren, U. Minimization of residual tin in the controlled Sn (II) octoate-catalyzed polymerization of ε-caprolactone. J. Biomed. Mater. Res. 2008, 87, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
[M]:[I] | L:G a | CLD a/% | CGD a/% | CLD+GD a/% | Mn b/g mol−1 | Ðb |
---|---|---|---|---|---|---|
30:1 | 26:74 | 97.6 | 99.1 | 98.7 | 23,400 | 1.56 |
300:1 | 25:75 | 97.1 | 99.2 | 98.6 | 74,300 | 1.92 |
3000:1 | 22:78 | 84.7 | 98.9 | 95.3 | 111,000 | 2.47 |
30,000:1 | 20:80 | 76.9 | 99.0 | 93.7 | 136,000 | 2.92 |
[M]:[C] = 6500:1 | [M]:[C] = 50,000:1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Temp/°C | Time/h | CLD+GD a/% | Mn b/g mol−1 | Đb | Temp/°C | Time/h | CLD+GD a/% | Mn b/g mol−1 | Đb |
130 | 2 | 92.4 | 81,600 | 2.12 | 150 | 2 | 79.5 | 75,700 | 1.88 |
/ | 4 | 94.5 | 64,300 | 2.07 | / | 4 | 90.5 | 91,300 | 2.27 |
/ | 8 | 96.9 | 86,700 | 2.08 | / | 8 | 93.6 | 117,000 | 1.82 |
/ | / | / | / | / | / | 16 | 97.4 | 55,300 | 1.79 |
150 | 0.25 | 81.0 | 105,000 | 2.72 | 150–170 | 2, 4 | 94.9 | 64,100 | 2.70 |
/ | 0.5 | 88.0 | 109,000 | 2.33 | / | / | / | / | / |
/ | 1 | 93.8 | 134,000 | 2.19 | 170 | 2 | 88.9 | 140,000 | 2.12 |
/ | 2 | 95.9 | 79,300 | 2.08 | / | 4 | 94.3 | 59,300 | 2.06 |
/ | 4 | 97.6 | 79,600 | 2.21 | / | 6 | 95.7 | 89,500 | 2.60 |
/ | 8 | 92.5 | 67,200 | 2.33 | / | 8 | 96.4 | 77,800 | 3.12 |
/ | / | / | / | / | / | / | / | / | / |
180 | 1 | 97.2 | 92,800 | 1.78 | 180 | 1 | 81.3 | 112,000 | 1.99 |
/ | 2 | 98.0 | 96,000 | 1.99 | / | 2 | 92.2 | 72,000 | 2.81 |
/ | / | / | / | / | / | / | / | / | / |
180–205 | 0.5, 1.5 | 98.1 | 45,900 | 2.26 | 180–205 | 0.5, 1.5 | 95.9 | 59,000 | 2.62 |
L:G a | Mn b/g mol−1 | Ðb | Tgc/°C | Td d/°C |
---|---|---|---|---|
26:74 | 23,400 | 1.56 | 31.1 | 238 |
25:75 | 74,300 | 1.92 | 39.3 | 255 |
22:78 | 111,000 | 2.47 | 39.9 | 261 |
20:80 | 136,000 | 2.92 | 41.6 | 267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Little, A.; Wemyss, A.M.; Haddleton, D.M.; Tan, B.; Sun, Z.; Ji, Y.; Wan, C. Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers 2021, 13, 2458. https://doi.org/10.3390/polym13152458
Little A, Wemyss AM, Haddleton DM, Tan B, Sun Z, Ji Y, Wan C. Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers. 2021; 13(15):2458. https://doi.org/10.3390/polym13152458
Chicago/Turabian StyleLittle, Alastair, Alan M. Wemyss, David M. Haddleton, Bowen Tan, Zhaoyang Sun, Yang Ji, and Chaoying Wan. 2021. "Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation" Polymers 13, no. 15: 2458. https://doi.org/10.3390/polym13152458
APA StyleLittle, A., Wemyss, A. M., Haddleton, D. M., Tan, B., Sun, Z., Ji, Y., & Wan, C. (2021). Synthesis of Poly(Lactic Acid-co-Glycolic Acid) Copolymers with High Glycolide Ratio by Ring-Opening Polymerisation. Polymers, 13(15), 2458. https://doi.org/10.3390/polym13152458