Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs
Abstract
:1. Introduction
2. Methodology
2.1. Data Collection
2.2. ANN
2.3. MLP Artificial Neural Network
2.4. Radial Basis Function (RBF) Artificial Neural Network
2.5. ANFIS
3. Model Evaluation
4. Results and Discussion
4.1. Optimum MLP Structure
4.2. Optimum RBF Structure
4.3. Optimum ANFIS Structure
4.4. Performances of Optimized MLP, RBF, and ANFIS Models
5. Overfitting Evaluation
6. Relevancy Factor Evaluation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shayan Nasr, M.; Shayan Nasr, H.; Karimian, M.; Esmaeilnezhad, E. Application of Artificial Intelligence to Predict Enhanced Oil Recovery Using Silica Nanofluids. Nat. Resour. Res. 2021, 30, 529–2542. [Google Scholar] [CrossRef]
- Qiannan, Y.; Yikun, L.; Liang, S.; Shuai, T.; Zhi, S.; Yang, Y. Experimental study on surface-active polymer flooding for enhanced oil recovery: A case study of Daqing placanticline oilfield, NE China. Pet. Explor. Dev. 2019, 46, 1206–1217. [Google Scholar]
- Meybodi, H.E.; Kharrat, R.; Wang, X. Study of microscopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transp. Porous Media 2011, 89, 97–120. [Google Scholar] [CrossRef]
- Meybodi, H.E.; Kharrat, R.; Araghi, M.N. Experimental studying of pore morphology and wettability effects on microscopic and macroscopic displacement efficiency of polymer flooding. J. Petrol. Sci. Eng. 2011, 78, 347–363. [Google Scholar] [CrossRef]
- Maurya, N.K.; Kushwaha, P.; Mandal, A. Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery. J. Taiwan Inst. Chem. Eng. 2017, 70, 319–330. [Google Scholar] [CrossRef]
- Sarsenbekuly, B.; Kang, W.; Fan, H.; Yang, H.; Dai, C.; Zhao, B.; Aidarova, S.B. Study of salt tolerance and temperature resistance of a hydrophobically modified polyacrylamide based novel functional polymer for EOR. Colloids Surf. A Physicochem. Eng. Asp. 2017, 514, 91–97. [Google Scholar] [CrossRef]
- Ershadi, M.; Alaei, M.; Rashidi, A.; Ramazani, A.; Khosravani, S. Carbonate and sandstone reservoirs wettability improvement without using surfactants for Chemical Enhanced Oil Recovery (C-EOR). Fuel 2015, 153, 408–415. [Google Scholar] [CrossRef]
- Saberi, H.; Esmaeilnezhad, E.; Choi, H.J. Application of artificial intelligence to magnetite-based magnetorheological fluids. J. Ind. Eng. Chem. 2021, 100, 399–409. [Google Scholar] [CrossRef]
- Amid, S.; Mesri Gundoshmian, T. Prediction of output energies for broiler production using linear regression, ANN (MLP, RBF), and ANFIS models. Environ. Prog. Sustain. Energy 2017, 36, 577–585. [Google Scholar] [CrossRef]
- Gao, C. Viscosity of partially hydrolyzed polyacrylamide under shearing and heat. J. Pet. Explor. Prod. Technol. 2013, 3, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Maghsoudian, A.; Tamsilian, Y.; Kord, S.; Soulgani, B.S.; Esfandiarian, A.; Shajirat, M. Styrene Intermolecular Associating Incorporated-Polyacrylamide Flooding of Crude Oil in Carbonated Coated Micromodel System at High Temperature, High Salinity Condition: Rheology, Wettability Alteration, Recovery Mechanisms. J. Mol. Liq. 2021, 337, 116206. [Google Scholar] [CrossRef]
- Obisesan, O.; Ahmed, R.; Amani, M. The Effect of Salt on Stability of Aqueous Foams. Energies 2021, 14, 279. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Williams, P.A. Effect of salts on the gelatinization and rheological properties of sago starch. J. Agric. Food Chem. 1999, 47, 3359–3366. [Google Scholar] [CrossRef]
- Shayan Nasr, M.; Esmaeilnezhad, E.; Choi, H.J. Effect of silicon-based nanoparticles on enhanced oil recovery: Review. J. Taiwan. Inst. Chem. Eng. 2021, 122, 241–259. [Google Scholar] [CrossRef]
- Sánchez-Minero, F.; Sánchez-Reyna, G.; Ancheyta, J.; Marroquin, G. Comparison of correlations based on API gravity for predicting viscosity of crude oils. Fuel 2014, 138, 193–199. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, S.; Wang, Y.; Xie, J.; Xie, G. A new model for predicting the viscosity of heavy oil. Pet. Sci. Technol. 2016, 34, 832–837. [Google Scholar] [CrossRef]
- Hemmati-Sarapardeh, A.; Aminshahidy, B.; Pajouhandeh, A.; Yousefi, S.H.; Hosseini-Kaldozakh, S.A. A soft computing approach for the determination of crude oil viscosity: Light and intermediate crude oil systems. J. Taiwan. Inst. Chem. Eng. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Hadia, N.J.; Ng, Y.H.; Stubbs, L.P.; Torsæter, O. High Salinity and High Temperature Stable Colloidal Silica Nanoparticles with Wettability Alteration Ability for EOR Applications. Nanomaterials 2021, 11, 707. [Google Scholar] [CrossRef]
- Hanamertani, A.S.; Ahmed, S. Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency. Energy 2021, 228, 120531. [Google Scholar] [CrossRef]
- Guetni, I.; Marlière, C.; Rousseau, D. Chemical EOR in Low Permeability Sandstone Reservoirs: Impact of Clay Content on the Transport of Polymer and Surfactant. In Proceedings of the SPE Western Regional Meeting, Virtual Conference, 20–22 April 2021. [Google Scholar]
- Santhosh, B.; Ionescu, E.; Andreolli, F.; Biesuz, M.; Reitz, A.; Albert, B.; Sorarù, G.D. Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics. J. Eur. Ceram. Soc. 2021, 41, 1151–1162. [Google Scholar] [CrossRef]
- Esfandyari, H.; Moghani, A.; Esmaeilzadeh, F.; Davarpanah, A. A Laboratory Approach to Measure Carbonate Rocks Adsorption Density by Surfactant and Polymer. Math. Problems Eng. 2021, 2021, 5539245. [Google Scholar] [CrossRef]
- Almahfood, M.; Bai, B. Characterization and oil recovery enhancement by a polymeric nanogel combined with surfactant for sandstone reservoirs. Pet. Sci. 2021, 18, 123–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, S.S.; Luo, P. Coupling immiscible CO2 technology and polymer injection to maximize EOR performance for heavy oils. J. Can. Pet. Technol. 2010, 49, 25–33. [Google Scholar] [CrossRef]
- Shaker Shiran, B.; Skauge, A. Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding. Energy Fuels 2013, 27, 1223–1235. [Google Scholar] [CrossRef]
- Li, M.; Romero-Zerón, L.; Marica, F.; Balcom, B.J. Polymer flooding enhanced oil recovery evaluated with magnetic resonance imaging and relaxation time measurements. Energy Fuels 2017, 31, 4904–4914. [Google Scholar] [CrossRef]
- Sharafi, M.S.; Jamialahmadi, M.; Hoseinpour, S.-A. Modeling of viscoelastic polymer flooding in Core-scale for prediction of oil recovery using numerical approach. J. Mol. Liq. 2018, 250, 295–306. [Google Scholar] [CrossRef]
- Rezaei, A.; Abdi-Khangah, M.; Mohebbi, A.; Tatar, A.; Mohammadi, A.H. Using surface modified clay nanoparticles to improve rheological behavior of Hydrolized Polyacrylamid (HPAM) solution for enhanced oil recovery with polymer flooding. J. Mol. Liq. 2016, 222, 1148–1156. [Google Scholar] [CrossRef]
- Kakati, A.; Kumar, G.; Sangwai, J.S. Low Salinity Polymer Flooding: Effect on Polymer Rheology, Injectivity, Retention, and Oil Recovery Efficiency. Energy Fuels 2020, 34, 5715–5732. [Google Scholar] [CrossRef]
- Cheraghian, G. Effect of nano titanium dioxide on heavy oil recovery during polymer flooding. Pet Sci. Technol. 2016, 34, 633–641. [Google Scholar] [CrossRef]
- Peinado, J.; Jiao-Wang, L.; Olmedo, Á.; Santiuste, C. Use of Artificial Neural Networks to Optimize Stacking Sequence in UHMWPE Protections. Polymers 2021, 13, 1012. [Google Scholar] [CrossRef] [PubMed]
- Abnisa, F.; Anuar Sharuddin, S.D.; Bin Zanil, M.F.; Wan Daud, W.M.A.; Indra Mahlia, T.M. The yield prediction of synthetic fuel production from pyrolysis of plastic waste by levenberg–Marquardt approach in feedforward neural networks model. Polymers 2019, 11, 1853. [Google Scholar] [CrossRef] [Green Version]
- Al-Yaari, M.; Dubdub, I. Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-Isothermal TGA Data. Polymers 2020, 12, 1813. [Google Scholar] [CrossRef] [PubMed]
- Doblies, A.; Boll, B.; Fiedler, B. Prediction of thermal exposure and mechanical behavior of epoxy resin using artificial neural networks and Fourier transform infrared spectroscopy. Polymers 2019, 11, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meißner, P.; Watschke, H.; Winter, J.; Vietor, T. Artificial neural networks-based material parameter identification for numerical simulations of additively manufactured parts by material extrusion. Polymers 2020, 12, 2949. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.-C.; Huang, M.-S. Quality Prediction for Injection Molding by Using a Multilayer Perceptron Neural Network. Polymers 2020, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Safdari Shadloo, M.; Rahmat, A. Application of artificial neural networks for producing an estimation of high-density polyethylene. Polymers 2020, 12, 2319. [Google Scholar] [CrossRef] [PubMed]
- Sabah, M.; Talebkeikhah, M.; Agin, F.; Talebkeikhah, F.; Hasheminasab, E. Application of decision tree, artificial neural networks, and adaptive neuro-fuzzy inference system on predicting lost circulation: A case study from Marun oil field. J. Petrol. Sci. Eng. 2019, 177, 236–249. [Google Scholar] [CrossRef]
- Kopal, I.; Harničárová, M.; Valíček, J.; Krmela, J.; Lukáč, O. Radial basis function neural network-based modeling of the dynamic thermo-mechanical response and damping behavior of thermoplastic elastomer systems. Polymers 2019, 11, 1074. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.A.; Zadeh, H.A.; Isazadeh, M.; Terzi, O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ. Earth Sci. 2016, 75, 476. [Google Scholar] [CrossRef]
- Yang, C.; Ma, W.; Zhong, J.; Zhang, Z. Comparative Study of Machine Learning Approaches for Predicting Creep Behavior of Polyurethane Elastomer. Polymers 2021, 13, 1768. [Google Scholar] [CrossRef]
- Izonin, I.; Tkachenko, R.; Dronyuk, I.; Tkachenko, P.; Gregus, M.; Rashkevych, M. Predictive modeling based on small data in clinical medicine: RBF-based additive input-doubling method. Math. Biosci. Eng. 2021, 18, 2599–2613. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Cao, M.; Sun, Y.; Gao, H.; Lou, F.; Liu, S.; Xia, Q. Uncertain data stream algorithm based on clustering RBF neural network. Microprocess. Microsyst. 2021, 81, 103731. [Google Scholar] [CrossRef]
- Oyang, Y.-J.; Hwang, S.-C.; Ou, Y.-Y.; Chen, C.-Y.; Chen, Z.-W. Data classification with radial basis function networks based on a novel kernel density estimation algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2005, 16, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Esmaeilnezhad, E.; Ranjbar, M.; Nezam abadi-pour, H.; Shoaei Fard Khamseh, F. Prediction of the best EOR method by artificial intelligence. Pet. Sci. Technol. 2013, 31, 1647–1654. [Google Scholar] [CrossRef]
- Buragohain, M.; Mahanta, C. A novel approach for ANFIS modelling based on full factorial design. Appl. Soft Comput. 2008, 8, 609–625. [Google Scholar] [CrossRef]
- Afriyie Mensah, R.; Xiao, J.; Das, O.; Jiang, L.; Xu, Q.; Okoe Alhassan, M. Application of Adaptive Neuro-Fuzzy Inference System in Flammability Parameter Prediction. Polymers 2020, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer design using genetic algorithm and machine learning. Comput. Mater. Sci. 2021, 186, 110067. [Google Scholar] [CrossRef]
- Zhu, W.; Rad, H.N.; Hasanipanah, M. A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting. Appl. Soft Comput. 2021, 108, 107434. [Google Scholar] [CrossRef]
- Baek, Y.; Kim, H.Y. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457–480. [Google Scholar] [CrossRef]
- Tabaraki, R.; Khodabakhshi, M. Performance comparison of wavelet neural network and adaptive neuro-fuzzy inference system with small data sets. J. Mol. Graph. Model. 2020, 100, 107698. [Google Scholar] [CrossRef]
- Kauffman, G.W.; Jurs, P.C. Prediction of surface tension, viscosity, and thermal conductivity for common organic solvents using quantitative structure property relationships. J. Chem. Inform. Comput. Sci. 2001, 41, 408–418. [Google Scholar] [CrossRef] [PubMed]
Sample Number | Polymer Type | Polymer Concentration (ppm) | Salt Concentration (ppm) | Rock Type | Initial Oil Saturation | Porosity | Permeability (md) | PV (cm3) | Temperature (°C) | API | Molecular Weight of the Polymer (g/mol) | Salinity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Flopaam 3630S (SNF Floerger) polyacrylamide | 300 | 3600 | Sandstone | 78 | 18.43–19.04 | 84.61–117.43 | 0.37–5.11 | 22 | 29.29 | 2 × 107 | High Saline |
2 | viscoelastic Alcoflood 935 polymer (Ciba Specialty Canada Inc., ON, Canada) | 6000 | 10,000 | Sandstone | 82–88 | 21–22 | 202–219 | 0.04–2.92 | 25 | 31.14–36.95 | 9 × 106 | Low Saline |
3 | FLOPAAM 3430 | 2000 | 15,000 | Sandstone | 55 | 19.4 | 20 | 0.03–0.76 | 27 | 31.14 | 1 × 108 | Low Saline |
4 | HPAM | 2000 | 0 | Carbonate | 89 | 24.2 | 301 | 0.1–1.25 | 27 | 34 | 6 × 106 | Fresh Water |
5 | Polyacrylamide (PAM) | 2000 | 3276–32,754 | Sandstone | 72.55–75.47 | 25.73–28.12 | 212.69–240.84 | 0.07–2.12 | 70 | 39.3 | 1 × 104 | High Saline |
6 | HPAM | 3100–3200 | 21,500 | Sandstone | 76.2 | 18.2 | 282 | 0.09–1.2 | 25 | 17 | 1.2 × 107 | Fresh Water |
Number of Hidden Neurons | Data Type | ||||||
---|---|---|---|---|---|---|---|
2 | Training | 0.9850 | 0.0032 | 0.0566 | 194.5814 | 0.0257 | 0.0505 |
Validation | 0.9818 | 0.0039 | 0.0632 | 49.1834 | 0.0320 | 0.0547 | |
Testing | 0.9801 | 0.0041 | 0.0640 | 32.2844 | 0.0209 | 0.0608 | |
All Data | 0.9837 | 0.0034 | 0.0591 | 148.4453 | 0.0265 | 0.0529 | |
5 | Training | 0.9977 | 0.0013 | 0.0361 | 53.8793 | 0.0307 | 0.0190 |
Validation | 0.9983 | 0.0017 | 0.0415 | 9.6962 | 0.0323 | 0.0260 | |
Testing | 0.9973 | 0.0007 | 0.0278 | 3.5931 | 0.0168 | 0.0222 | |
All Data | 0.9978 | 0.0018 | 0.0426 | 39.7145 | 0.0364 | 0.0222 | |
6 | Training | 0.9990 | 0.0002 | 0.0168 | 15.7565 | 0.0114 | 0.0123 |
Validation | 0.9988 | 0.0001 | 0.0135 | 5.6454 | 0.0026 | 0.0133 | |
Testing | 0.9990 | 0.0002 | 0.0172 | 58.3171 | 0.0027 | 0.0170 | |
All Data | 0.9990 | 0.0002 | 0.0164 | 20.6220 | 0.0100 | 0.0130 | |
9 | Training | 0.9993 | 0.0000 | 0.0085 | 0.0151 | 0.0005 | 0.0085 |
Validation | 0.9990 | 0.0001 | 0.0126 | 20.1423 | 0.0041 | 0.0119 | |
Testing | 0.9992 | 0.0117 | 0.0117 | 5.5036 | 0.0067 | 0.0095 | |
All Data | 0.9993 | 0.0001 | 0.0103 | 3.8347 | 0.0047 | 0.0091 | |
14 | Training | 0.9990 | 0.0002 | 0.0151 | 2.7835 | 0.0108 | 0.010 |
Validation | 0.9990 | 0.0003 | 0.0174 | 1.1617 | 0.0138 | 0.0106 | |
Testing | 0.9990 | 0.0008 | 0.0293 | 6.8770 | 0.0269 | 0.0117 | |
All Data | 0.9990 | 0.0007 | 0.0278 | 0.7434 | 0.0255 | 0.0110 | |
17 | Training | 0.9996 | 0.0000 | 0.0068 | 2.0459 | 0.0020 | 0.0067 |
Validation | 0.9996 | 0.0001 | 0.0126 | 7.2944 | 0.0099 | 0.0078 | |
Testing | 0.9995 | 0.0002 | 0.0151 | 3.1677 | 0.0131 | 0.0075 | |
All Data | 0.9996 | 0.0001 | 0.0127 | 0.8136 | 0.0105 | 0.0071 |
Training Algorithm | Elapsed Time (s) | |||
---|---|---|---|---|
Bayesian regulation backpropagation | 0.001954 | 0.044213 | 0.99822 | 1.620583 |
Conjugate gradient backpropagation with Powell–Beale restarts | 0.00876 | 0.062257 | 0.99494 | 2.083174 |
Levenberg–Marquardt back propagation | 0.002479 | 0.019794 | 0.99829 | 1.455637 |
Gradient descent backpropagation | 0.181400 | 0.425920 | 0.17097 | 0.065064 |
Gradient descent with adaptive learning rate backpropagation | 0.008550 | 0.092469 | 0.94342 | 1.035535 |
Batch training with weight/bias learning rules | 0.006039 | 0.077710 | 0.95544 | 3.626539 |
One-step secant backpropagation | 0.012979 | 0.113930 | 0.99444 | 1.381093 |
Sequential order weight/bias training | 0.011043 | 0.105090 | 0.91877 | 2.744659 |
Data Type | (%) | ||||||
---|---|---|---|---|---|---|---|
Training | 80 | 0.9987 | 0.0008 | 0.0284 | 10.0495 | 0.0253 | 0.0128 |
Validation | 10 | 0.9988 | 0.0001 | 0.0133 | 10.5108 | 0.0070 | 0.0114 |
Testing | 10 | 0.9968 | 0.0009 | 0.0309 | 40.8921 | 0.0252 | 0.0180 |
Training | 70 | 0.9990 | 0.0002 | 0.0168 | 15.7565 | 0.0114 | 0.0123 |
Validation | 15 | 0.9988 | 0.0001 | 0.0135 | 5.6454 | 0.0026 | 0.0133 |
Testing | 15 | 0.9990 | 0.0002 | 0.0172 | 58.3171 | 0.0027 | 0.0170 |
Training | 60 | 0.9991 | 0.0002 | 0.0167 | 1.1088 | 0.0100 | 0.0134 |
Validation | 20 | 0.9984 | 0.0004 | 0.0207 | 6.2579 | 0.0114 | 0.0173 |
Testing | 20 | 0.9982 | 0.0019 | 0.0436 | 382.0992 | 0.0360 | 0.0247 |
Training | 50 | 0.9979 | 0.0013 | 0.0360 | 18.7630 | 0.0300 | 0.0199 |
Validation | 25 | 0.9959 | 0.0006 | 0.0257 | 6.6518 | 0.0144 | 0.0212 |
Testing | 25 | 0.9950 | 0.0049 | 0.0684 | 139.5505 | 0.0540 | 0.0421 |
Training | 40 | 0.9982 | 0.0007 | 0.0278 | 60.9115 | 0.0206 | 0.0186 |
Validation | 30 | 0.9966 | 0.0014 | 0.0387 | 3.4631 | 0.0313 | 0.0227 |
Testing | 30 | 0.9943 | 0.0021 | 0.0465 | 45.5541 | 0.0365 | 0.0288 |
Training | 70 | 0.9983 | 0.0016 | 0.0411 | 51.0327 | 0.0347 | 0.0221 |
Validation | 20 | 0.9977 | 0.0021 | 0.0461 | 1.7933 | 0.0390 | 0.0247 |
Testing | 10 | 0.9982 | 0.0007 | 0.0266 | 206.1784 | 0.0157 | 0.0215 |
Training | 70 | 0.9985 | 0.0012 | 0.0348 | 45.5224 | 0.0290 | 0.0193 |
Validation | 10 | 0.9984 | 0.0007 | 0.0270 | 195.1773 | 0.0226 | 0.0155 |
Testing | 20 | 0.9982 | 0.0022 | 0.0477 | 7.2765 | 0.0419 | 0.0229 |
Number of Hidden Neurons | Spread | Data Type | ||||||
---|---|---|---|---|---|---|---|---|
22 | 1.1 | Training | 0.9913 | 0.0017 | 0.0412 | 123.8424 | 0.0271 | 0.0311 |
Testing | 0.9904 | 0.0019 | 0.0444 | 229.5288 | 0.0301 | 0.0327 | ||
All Data | 0.9910 | 0.0018 | 0.0425 | 155.5358 | 0.0286 | 0.0315 | ||
22 | 2 | Training | 0.9878 | 0.0015 | 0.0393 | 161.0398 | 0.0068 | 0.0387 |
Testing | 0.9858 | 0.0020 | 0.0456 | 329.8626 | 0.0221 | 0.0399 | ||
All Data | 0.9872 | 0.0016 | 0.0403 | 211.6667 | 0.0067 | 0.0398 | ||
22 | 10 | Training | 0.9818 | 0.0025 | 0.0208 | 156.0130 | 0.0212 | 0.0461 |
Testing | 0.9765 | 0.0024 | 0.0495 | 243.5169 | 0.0115 | 0.0482 | ||
All Data | 0.9804 | 0.0025 | 0.0509 | 182.2538 | 0.0202 | 0.0467 | ||
30 | 1.1 | Training | 0.9941 | 0.0006 | 0.0256 | 89.0743 | 0.0032 | 0.0254 |
Testing | 0.9950 | 0.0006 | 0.0257 | 158.5864 | 0.0063 | 0.0249 | ||
All Data | 0.9944 | 0.0007 | 0.0265 | 109.9198 | 0.0081 | 0.0252 | ||
44 | 1.1 | Training | 0.9983 | 0.0003 | 0.0196 | 5.5895 | 0.0127 | 0.0149 |
Testing | 0.9973 | 0.0008 | 0.0283 | 6.0256 | 0.0191 | 0.0209 | ||
All Data | 0.9980 | 0.0007 | 0.0282 | 2.1064 | 0.0212 | 0.0185 | ||
45 | 1.1 | Training | 0.9986 | 0.0002 | 0.0164 | 6.7843 | 0.0089 | 0.0138 |
Testing | 0.9979 | 0.0003 | 0.0195 | 13.4048 | 0.0118 | 0.0155 | ||
All Data | 0.9970 | 0.0004 | 0.0212 | 7.3379 | 0.0111 | 0.0181 | ||
50 | 1.1 | Training | 0.9987 | 0.0008 | 0.0287 | 3.7032 | 0.0222 | 0.0182 |
Testing | 0.99801 | 0.0029 | 0.0539 | 285.5218 | 0.0418 | 0.0340 | ||
All Data | 0.9985 | 0.0029 | 0.0540 | 83.0302 | 0.0444 | 0.0307 |
ANFIS Type | Max Epoch | Data Type | ||||
---|---|---|---|---|---|---|
Grid Partitioning | 5 | Training | 0.9557 | 0.0073 | 0.0855 | 105.3691 |
Testing | 0.9562 | 0.0088 | 0.0941 | 267.7566 | ||
All Data | 0.9559 | 0.0077 | 0.0880 | 154.0662 | ||
Subtractive Clustering | 100 | Training | 0.9749 | 0.0146 | 0.1210 | 195.5981 |
Testing | 0.9678 | 0.0135 | 0.1162 | 5.3421 | ||
All Data | 0.9729 | 0.0150 | 0.1226 | 138.5438 | ||
FCM Clustering | 100 | Training | 0.9519 | 0.0059 | 0.0771 | 157.8325 |
Testing | 0.9494 | 0.0057 | 0.0761 | 293.8182 | ||
All Data | 0.9511 | 0.0060 | 0.0779 | 198.6106 |
Radius | Initial Step Size | Step Size Decrease Rate | Step Size Increase Rate | Data Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0.333 | 4 | 11 | 13 | Training | 0.9376 | 0.0119 | 0.1039 | 37.3869 | 0.0138 | 0.1085 |
Testing | 0.9408 | 0.0091 | 0.0957 | 472.6515 | 0.0395 | 0.0873 | ||||
All Data | 0.9385 | 0.0113 | 0.1063 | 167.9149 | 0.0129 | 0.1055 | ||||
0.333 | 14 | 11 | 13 | Training | 0.9261 | 0.0156 | 0.1249 | 275.7756 | 0.0447 | 0.1167 |
Testing | 0.9249 | 0.0194 | 0.1395 | 62.7544 | 0.0626 | 0.1249 | ||||
All Data | 0.9256 | 0.0185 | 0.1361 | 211.8944 | 0.0592 | 0.1226 | ||||
0.333 | 4 | 23 | 13 | Training | 0.9410 | 0.0102 | 0.1010 | 43.9129 | 0.0057 | 0.1010 |
Testing | 0.9403 | 0.0112 | 0.1062 | 500.3728 | 0.0262 | 0.1031 | ||||
All Data | 0.9409 | 0.0109 | 0.1046 | 180.7970 | 0.0193 | 0.1028 | ||||
0.333 | 4 | 23 | 20 | Training | 0.9749 | 0.0146 | 0.1210 | 195.5981 | 0.1030 | 0.0635 |
Testing | 0.9678 | 0.0135 | 0.1162 | 5.3421 | 0.0969 | 0.0643 | ||||
All Data | 0.9729 | 0.0150 | 0.1226 | 138.5438 | 0.1044 | 0.0643 | ||||
4 | 4 | 23 | 20 | Training | 0.9448 | 0.0173 | 0.1316 | 202.9277 | 0.0750 | 0.1028 |
Testing | 0.9426 | 0.0146 | 0.1211 | 9.4858 | 0.0588 | 0.1061 | ||||
All Data | 0.9441 | 0.0170 | 0.1307 | 144.9179 | 0.0729 | 0.1086 | ||||
0.4 | 4 | 23 | 20 | Training | 0.9753 | 0.0055 | 0.0746 | 228.8593 | 0.0473 | 0.0605 |
Testing | 0.9659 | 0.0074 | 0.0865 | 22.1922 | 0.0552 | 0.0667 | ||||
All Data | 0.9727 | 0.0069 | 0.0835 | 166.8836 | 0.0536 | 0.0641 | ||||
0.3 | 4 | 23 | 20 | Training | 0.9330 | 0.0199 | 0.1411 | 134.4072 | 0.0951 | 0.1043 |
Testing | 0.9241 | 0.0262 | 0.1621 | 185.1166 | 0.0121 | 0.1076 | ||||
All Data | 0.9299 | 0.0264 | 0.1626 | 149.6141 | 0.1196 | 0.1101 |
Parameter | Value or Description |
---|---|
Amount of all/training/validating/testing data | 847/593/127/127 |
Number of input/output variables | 11/1 |
Training method | Levenberg–Marquardt backpropagation |
Number of neurons in the hidden layer | 6 |
Number of hidden layers | 1 |
Number of neurons in the input/output layer | 11/1 |
Transfer function in the hidden/output layer | Tangent sigmoid/Linear |
Number of epochs | 1000 |
Input Variable | MLP | RBF | ANFIS | Original EOR |
---|---|---|---|---|
Polymer Concentration | −0.1035 | −0.1122 | −0.1087 | −0.1058 |
Salt Concentration | 0.7592 | 0.7593 | 0.7590 | 0.7598 |
Rock Type | −0.2933 | −0.2835 | −0.2809 | −2928 |
Initial Oil Saturation | −0.2930 | −0.2945 | −0.2949 | −0.2942 |
Porosity | −0.7848 | −0.7839 | −0.7826 | −0.7851 |
Permeability | 0.8512 | 0.8529 | 0.8594 | 0.8519 |
Pore Volume flooding | −0.2335 | −0.2370 | −0.2417 | −0.2343 |
Temperature | −0.5758 | −0.5731 | −0.5730 | −0.5749 |
API of the Petroleum | −0.9064 | −0.9067 | −0.9048 | −0.9070 |
Molecular Weight of the Polymer | −0.2143 | −0.2172 | −0.2160 | −0.2155 |
Salinity | −0.8682 | −0.8698 | −0.8727 | −0.8688 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saberi, H.; Esmaeilnezhad, E.; Choi, H.J. Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs. Polymers 2021, 13, 2606. https://doi.org/10.3390/polym13162606
Saberi H, Esmaeilnezhad E, Choi HJ. Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs. Polymers. 2021; 13(16):2606. https://doi.org/10.3390/polym13162606
Chicago/Turabian StyleSaberi, Hossein, Ehsan Esmaeilnezhad, and Hyoung Jin Choi. 2021. "Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs" Polymers 13, no. 16: 2606. https://doi.org/10.3390/polym13162606
APA StyleSaberi, H., Esmaeilnezhad, E., & Choi, H. J. (2021). Artificial Neural Network to Forecast Enhanced Oil Recovery Using Hydrolyzed Polyacrylamide in Sandstone and Carbonate Reservoirs. Polymers, 13(16), 2606. https://doi.org/10.3390/polym13162606