Environmentally Friendly UV-Protective Polyacrylate/TiO2 Nanocoatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Accelerated Aging Test
2.4. Characterization
2.4.1. Particle Size Distribution of Emulsions
2.4.2. Rheology of Emulsions
2.4.3. Morphology
2.4.4. UV-Vis Transmittance
2.4.5. Thermal Properties
2.4.6. IR Analysis
2.4.7. Molecular Weight Distribution
3. Results and Discussion
3.1. Particle Size Distribution and Viscosity of Emulsions
3.2. Morphology Analysis
3.3. UV–Vis Transmittance
3.4. Thermal Stability
3.5. Glass Transition Temperature
3.6. Chemical Changes
3.7. Molecular Weight Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nuopponen, M.; Wikberg, H.; Vuorinen, T.; Maunu, S.; Jamsa, S.; Viitaniemi, P. Heat-treated softwood exposed to weathering. J. Appl. Polym. Sci. 2003, 91, 2128–2134. [Google Scholar] [CrossRef]
- Hollosy, F. Effects of ultraviolet radiation on planet cells. Micron 2002, 33, 179–197. [Google Scholar] [CrossRef]
- Miklečić, J.; Blagojević, S.L.; Petrič, M.; Jirouš-Rajković, V. Influence of TiO2 and ZnO nanoparticles on properties of waterborne polyacrylate coating exposed to outdoor conditions. Prog. Org. Coat. 2015, 89, 67–74. [Google Scholar] [CrossRef]
- Decker, C. UV-Radiation Curing of Adhesives. In Handbook of Adhesives and Surface Preparation, 1st ed.; Ebnesajjd, S., Ed.; William Andrew Publishing: Oxford, UK, 2011; pp. 221–243. [Google Scholar]
- Rabek, J. Polymer Photodegradation, 1st ed.; Springer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Soeriyadi, A.; Trouillet, V.; Bennet, F.; Burns, M.; Whittaker, M.; Boyer, C.; Barker, P.; Davis, T.; Barner-Kowolik, C. A Detailed Surface Analytical Study of Degradation Processes in (Meth) acrylic Polymers. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1801–1811. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Enhancing Weathering Resistance of Wood—A Review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Shi, C.; Ma, J.; Wang, B.; Zhang, Y. Double in-situ synthesis of polyacrylate/nano TiO2 composites latex. Prog. Org. Coat. 2015, 85, 101–108. [Google Scholar] [CrossRef]
- Godnjavec, J.; Znoj, B.; Vince, J.; Steinbucher, M.; Žnidaršić, A.; Venturini, P. Stabilization of rutile TiO2 nanoparticles with glymo in polyacrylic clear coating. Mater. Tehnol. 2012, 46, 19–24. [Google Scholar]
- Allena, N.; Edgea, M.; Ortegaa, A.; Liauwa, C.; Strattonb, J.; McIntyreb, R. Behaviour of nanoparticle (ultrafine) titanium dioxide pigments and stabilisers on the photooxidative stability of water based acrylic and isocyanate based acrylic coatings. Polym. Degrad. Stab. 2002, 78, 467–478. [Google Scholar] [CrossRef]
- Ye, C.; Li, H.; Cai, A.; Zeng, X. Preparation and characterization of organic nano-titanium dioxide/acrylate composites emulsions by in-situ emulsion polymerization. J. Macromol. Sci. Part A Pure Apple. Chem. 2011, 48, 309–314. [Google Scholar] [CrossRef]
- Dahapte, V.; Gaikwad, N.; More, P.V.; Banerjee, S.; Dhapte, V.V.; Kadam, S.; Khanna, P. Transparent ZnO/polycarbonate nanocomposite for food packaging application. Nanocomposites 2015, 1, 106–112. [Google Scholar] [CrossRef]
- Nguyen, T.; Dao, P.H.; Doung, K.L.; Doung, Q.H.; Vu, Q.T.; Nguyen, H.; Phuc Mac, V.; Le, T.L. Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Prog. Org. Coat. 2017, 110, 114–121. [Google Scholar] [CrossRef]
- Nikolic, M.; Lawther, J.M.; Sanadi, A.R. Use of nanofillers in wood coatings: A scientific review. J. Coat. Technol. Res. 2015, 12, 445–461. [Google Scholar] [CrossRef]
- Godnjavec, J.; Znoj, B.; Venturini, P.; Žnidaršič, A. The application of rutile nano-crystalline titanium dioxide as UV absorber. Inf. MIDEM 2010, 40, 6–9. [Google Scholar]
- Noman, M.T.; Ashraf, M.A.; Jamshaid, H.; Ali, A. A Novel Green Stabilization of TiO2 Nanoparticles onto Cotton. Fibers Polym. 2018, 19, 2268–2277. [Google Scholar] [CrossRef]
- Noman, M.T.; Militky, J.; Wiener, J.; Saskova, J.; Ashraf, M.A.; Jamshaid, H.; Azeem, M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics 2018, 83, 203–213. [Google Scholar] [CrossRef]
- Ugur, S.; Sarııšık, S.; Aktaş, H. Nano-TiO2 based multilayer film deposition on cotton fabrics for UV-protection. Fibers Polym. 2011, 12, 190–196. [Google Scholar] [CrossRef]
- Veronovski, N.; Verhovšek, D.; Godnjavec, J. The influence of surface-treated nano-TiO2 (rutile) incorporation in water-based coatings on wood protection. Wood Sci. Technol. 2013, 47, 317–328. [Google Scholar] [CrossRef]
- Wang, C.; Sheng, X.; Xie, D.; Zhang, X.; Zhang, H. High-performance TiO2/polyacrylate nanocomposites with enhanced thermal and excellent UV-shielding properties. Prog. Org. Coat. 2016, 101, 597–603. [Google Scholar] [CrossRef]
- Man, Y.; Mu, L.; Wang, Y.; Lin, S.; Rempel, G.; Pan, Q. Synthesis and characterization of rutile titanium dioxide/polyacrylate nanocomposites for applications in ultraviolet light-shielding materials. Polym. Compos. 2014, 36, 8–16. [Google Scholar] [CrossRef]
- Nguyen, T.; Tri, P.N.; Nguyen, T.; Elaidani, R.; Trinh, V.; Decker, C. Accelerated degradation of water borne acrylic nanocomposites used in outdoor protective coatings. Polym. Degrad. Stab. 2016, 128, 65–76. [Google Scholar] [CrossRef]
- Antunes, A.; Popelka, A.; Aljarod, O.; Hassan, M.K.; Kasak, P.; Luyt, A. Accelerated weathering effects on poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/TiO2 nanocomposites. Polymers 2020, 12, 1743. [Google Scholar] [CrossRef]
- Yang, T.; Noguchi, T.; Isshiki, M.; Wu, J. Effect of titanium dioxide on chemical and molecular changes in PVC sidings during QUV accelerated weathering. Polym. Degrad. Stab. 2014, 104, 33–39. [Google Scholar] [CrossRef]
- Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A. Inorganic UV absorbers for the photostabilisation of wood-clearcoating system: Comparison with organic UV absorbers. Appl. Surf. Sci. 2007, 253, 3737–3745. [Google Scholar] [CrossRef]
- Odian, G. Principles of Polymerization; John Wiley & Sons: New York, NY, USA, 2004. [Google Scholar]
- Zhang, J.; Zheng, P.; Sun, X.; Wang, C.; Gao, J. Synthesis and kinetic studies of TiO2/polystyrene composite particles by emulsion polymerization. e-Polymers 2010, 57, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bourgeat-Lami, E.; Duguet, E. Polymer Encapsulation of Inorganic Particles. In Functional Coatings: By Polymer Microencapsulation; Ghosh, S.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 85–152. [Google Scholar]
- Bourgeat-Lami, E. Hybrid Organic/Inorganic Particles. In Hybrid Materials: Synthesis, Characterization, and Applications; Kickelbick, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 87–149. [Google Scholar]
- Luna-Xavier, J.; Bourgeat-Lami, E.; Guyot, A. The role of initiation in the synthesis of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization. Colloid Polym. Sci. 2001, 279, 947–958. [Google Scholar] [CrossRef]
- Schneider, M.; Claverie, J.; McKenna, A. High solids content emulsions. I. A study of the influence of the particles size distributions and polymer concentration on viscosity. J. Appl. Polym. Sci. 2002, 84, 1878–1896. [Google Scholar] [CrossRef]
- Buhin, Z. Emulzijska In Situ Polimerizacija i Karakterizacija poli [(butil-akrilat)-co-metilmetakrilat)]/Silika Nanosustava. Doctoral Thesis, University of Zagreb, Zagreb, Croatia, 2013. [Google Scholar]
- Domingos, R.; Tufenkji, N.; Wilkinson, K. Aggregation of titanium dioxide nanoparticles: Role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, R.; Jacobson, A.; Kim, B.; Isley, S.; Penn, R.; Baveye, P. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Guzman, K.D.; Finnegan, M.; Banfield, J. Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 2006, 24, 7688–7693. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Chen, F.; Luo, R.; Zhou, S.; Wu, Z.; Li, J. Investigation on the coating modification effect of nano-SiO2 particles on nano-TiO2 particles. Mater. Res. Express 2019, 6, 075070. [Google Scholar] [CrossRef]
- Koczkur, K.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 41, 17883–17905. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wu, L.; Gu, G.; You, B. Preparation and characterization of acrylic/nano-TiO2 composite latex. High Perform. Polym. 2002, 14, 383–396. [Google Scholar] [CrossRef]
- Blanchard, V.; Blanchet, P. Color stability for wood products during use: Effects of inorganic nanoparticles. BioResources 2011, 6, 1219–1229. [Google Scholar]
- Tao, W.; Fei, F.; Wang, Y.-C. Structure and thermal properties of titanium dioxide-polyacrylate nanocomposites. Polym. Bull. 2006, 56, 413–426. [Google Scholar] [CrossRef]
- Poddar, M.K.; Sharma, S.; Pattipaka, S.; Pamu, D.; Moholkar, V. Ultrasound-assisted synthesis of poly (MMA-co-BA)/ZnO nanocomposites with enhanced physical properties. Ultrason. Sonochem. 2017, 39, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Peng, W.; Zare, Y.; Rhee, K.Y. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 2018, 13, 214. [Google Scholar] [CrossRef]
- Sheng, X.; Xie, D.; Wang, C.; Zhang, X.; Zhong, L. Synthesis and characterization of core/shell titanium dioxide nanoparticles/polyacrylate nanocomposites colloidal microspheres. Colloid Polym. Sci. 2016, 294, 463–469. [Google Scholar] [CrossRef]
- Zhu, J.; Uhl, F.M.; Morgan, A.B.; Wilkie, C. Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem. Mater. 2001, 13, 4649–4654. [Google Scholar] [CrossRef]
- Aloui, F.; Ahajji, A.; Irmouli, Y.; George, B.; Charrier, B.; Merlin, A. Photostabilization of the “wood-clearcoatings” systems with UV absorbers: Correlation with their effect on the glass transition temperature. J. Phys. Conf. Ser. 2006, 40, 118–123. [Google Scholar] [CrossRef]
- Cristea, M.; Riedl, B.; Blanchet, P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog. Org. Coat. 2010, 69, 432–441. [Google Scholar] [CrossRef]
- Shanti, R.; Hadi, A.N.; Salim, Y.S.; Chee, S.Y.; Ramesh, S.; Ramesh, K. Degradation of ultra-high molecular weight poly (methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC Adv. 2017, 1, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Liufu, S.; Xiao, H.N.; Li, Y. Thermal analysis and degradation mechanism of polyacrylate/ZnO nanocomposites. Polym. Degrad. Stab. 2005, 87, 103–110. [Google Scholar] [CrossRef]
- Liang, D.; Du, C.; Ma, F.; Shen, Y.; Wu, K.; Zhou, J. Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PASS and LIBS. Polymers 2018, 10, 1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalves Mota, R.A.; da Silva, E.O.; de Menezes, L.R. Effect of the addition of metal oxide nanoparticles on the physical, chemical and thermal properties of PVA based nanocomposites. Mater. Sci. Appl. 2018, 9, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Wochnowski, C.; Eldin, M.A.S.; Metev, S. UV-laser-assisted degradation of poly (methyl methacrylate). Polym. Degrad. Stab. 2005, 89, 252–264. [Google Scholar] [CrossRef]
- Aguirre, M.; Goikoetxea, M.; Otero, L.A.; Paulis, M. Accelerated ageing of hybrid acrylic waterborne coatings containing metal oxide nanoparticles: Effect on the microstructure. Surf. Coat. Technol. 2017, 321, 484–490. [Google Scholar] [CrossRef]
- Del Grosso, C.; Poulis, J.; de la Rie, E.R. The photo-stability of acrylic tri-block copolymer blends for the consolidation of cultural heritage. Polym. Degrad. Stab. 2019, 159, 31–42. [Google Scholar] [CrossRef]
- Sbardella, F.; Pronti, L.; Santarelli, M.; Asua Gonzalez, J.; Bracciale, M. Waterborne acrylate-based hybrid coatings with enhanced resistance properties on stone surfaces. Coatings 2018, 8, 283. [Google Scholar] [CrossRef] [Green Version]
- Chiantore, O.; Trossarelli, L.; Lazzari, M. Photooxidative degradation of acrylic and methacrylic polymers. Polymer 2000, 41, 1657–1668. [Google Scholar] [CrossRef]
- Lazzari, M.; Scalarone, D.; Malucelli, G.; Chiantore, O. Durability of acrylic films from commercial aqueous dispersion: Glass transition temperature and tensile behavior as indexes of photooxidative degradation. Prog. Org. Coat. 2011, 70, 116–121. [Google Scholar] [CrossRef]
Label of Nanofiller | |
---|---|
DN | TiO2, 40 wt% aqueous dispersion, rutile form, average particle size 30 nm, particle size range 10–120 nm |
DW | TiO2, 20 wt% aqueous dispersion, fully dispersed in water, rutile form, average particle size 30 nm, particle size range 15–80 nm |
PN | TiO2, nanopowder, rutile form, high purity 99.9%, average particle size 30 nm |
PM PVP | TiO2, nanopowder, rutile form, high purity 99.9%, average particle size 30 nm, modified with 1–2 wt% PVP (polyvinyl pyrrolidone) |
Type of Coating | η (mPa×s) | |
---|---|---|
PA | 12.8 | |
ex situ | in situ | |
PA + DN | 12.7 | 16.0 |
PA + DW | 12.1 | 16.6 |
PA + PN | 12.5 | 16.1 |
PA + PM PVP | 12.3 | 17.2 |
Type of Coating Films | T90 (°C) | T50 (°C) | ||
---|---|---|---|---|
PA | 361.6 | 393.2 | ||
ex situ | in situ | ex situ | in situ | |
PA + DN | 358.7 | 355.3 | 396.4 | 391.7 |
PA + DW | 358.2 | 353.9 | 393.6 | 394.1 |
PA + PN | 354.9 | 351.1 | 390.1 | 389.1 |
PA + PM PVP | 256.2 | 357.5 | 393.2 | 390.6 |
IR Band (cm−1) | Functional Group | Before UV Exposure | After 144 h of UV Exposure | Observations | |
---|---|---|---|---|---|
Intensity | Changes | ||||
3228 | O–H | - | + | weak | increased |
2956 | C–H stretching of the methyl (–CH3) groups | + | + | strong | increased |
2873 | C–H stretching of methylene (–CH2) groups | + | + | weak | decreased |
1726 | C=O stretching in ester group | + | + | very strong | increased |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeljko, M.; Ocelić Bulatović, V.; Špada, V.; Blagojević, S.L. Environmentally Friendly UV-Protective Polyacrylate/TiO2 Nanocoatings. Polymers 2021, 13, 2609. https://doi.org/10.3390/polym13162609
Zeljko M, Ocelić Bulatović V, Špada V, Blagojević SL. Environmentally Friendly UV-Protective Polyacrylate/TiO2 Nanocoatings. Polymers. 2021; 13(16):2609. https://doi.org/10.3390/polym13162609
Chicago/Turabian StyleZeljko, Martina, Vesna Ocelić Bulatović, Vedrana Špada, and Sanja Lučić Blagojević. 2021. "Environmentally Friendly UV-Protective Polyacrylate/TiO2 Nanocoatings" Polymers 13, no. 16: 2609. https://doi.org/10.3390/polym13162609
APA StyleZeljko, M., Ocelić Bulatović, V., Špada, V., & Blagojević, S. L. (2021). Environmentally Friendly UV-Protective Polyacrylate/TiO2 Nanocoatings. Polymers, 13(16), 2609. https://doi.org/10.3390/polym13162609