Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings
Abstract
:1. Introduction
2. Literature Review and Data Collection
Microbial Growth Inhibition Analysis
3. How Unsuitable Is the Use of Traditional Chemical Additives Now Compared to Cheese Preservation?
Potential Harmful Effects of Sodium Benzoate and Potassium Sorbate on Human Health
4. Green Preservatives by Natural Antimicrobials as Cheese Preservative
4.1. Mechanisms of Action of Antimicrobials from Natural Origins
4.1.1. Plant Extracts
4.1.2. Essential Oils
4.1.3. Polysaccharides, Polypeptides, and Enzymes
4.2. Microbiological, Shelf Life, and Quality Parameters of Cheese Preservative by Natural Ingredients and Combined Treatments
4.2.1. Natural Antimicrobials in Cheese Preparation to Extend the Shelf Life
4.2.2. Essential Oils Amplifying the Preservative Action of Sodium Salts
4.2.3. Natural AntimicrobialsinActive Coatings/Nanopackaging for Preserving Cheese
4.2.4. Combined Methods: Natural Antimicrobials and Packaging Conditions in Non-Thermal Treatments
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations/Acronyms
ADHD | Attention Deficit Hyperactivity Disorder |
BITC | Benzyl isothiocyanates |
CA | Citric acid |
CFU | Colony-forming Units |
CR | Microbial count reduction |
CS | Chitosan |
CS/CMC/ZnO | Chitosan/carboxymethylcellulose/zinc oxide bionanocomposites |
CMC | Carboxymethylcellulose |
COS | Chitooligosaccharide |
CVD | Cardiovascular disease |
EDTA | Ethylenediamine tetraacetic acid |
EEP | Propolis ethanol extract |
EO | Essential oil |
FDA | Food and Drug Administration |
GC-MS | Gas chromatography-mass spectrometry |
GRAS | Generally recognized as safe |
IZ | Inhibitory zone |
LA | Lactic acid |
LAB | Lactic acid bacteria |
LDPE | Low-density polyethylene |
LO | Lemongrass oil |
MAP | Modified-atmosphere packaging |
MBC | Minimum bactericidal concentration |
MFC | Minimum fungicide concentration |
MIC | Minimum inhibitory concentration |
MO | Microorganism |
NaCl | Sodium chloride |
PPE | Pomegranate peel extract |
PS | Potassium sorbate |
PUF | Protein ultrafine fiber |
PVA | Polyvinyl acetate |
RIZ | Inhibitory zone relative to control |
SA | Sodium alginate |
SB | Sodium benzoate |
SDA | Sodium diacetate |
TBC | Total bacterial count |
TMC | Total mesophilic bacteria |
USFDA | The United States Food and Drug Administration |
WHO | World Health Organization |
WPI | Whey protein isolate |
ZnO | Zinc oxide nanoparticles |
References
- Dairy Industries International Global Cheese Markets Hit Record Highs. Available online: https://www.dairyindustries.com/news/35273/global-cheese-markets-hit-record-highs/ (accessed on 12 March 2021).
- Tirloni, E.; Stella, S.; Bernardi, C.; Mazzantini, D.; Celandroni, F.; Ghelardi, E. Identification and Pathogenic Potential of Bacillus cereus Strains Isolated from a Dairy Processing Plant Producing PDO Taleggio Cheese. Microorganisms 2020, 8, 949. [Google Scholar] [CrossRef]
- Rafie, S.; Salmanzadeh, S.; Mehramiri, A.; Nejati, A. Botulism Outbreak in a Family after Ingestion of Locally Produced Cheese. Iran. J. Med. Sci. 2017, 42, 201–204. [Google Scholar]
- Tayel, A.A.; Hussein, H.; Sorour, N.M.; El-Tras, W.F. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts. J. Food Sci. 2015, 80, M2886–M2891. [Google Scholar] [CrossRef]
- Mohammadzadeh-Aghdash, H.; Sohrabi, Y.; Mohammadi, A.; Shanehbandi, D.; Dehghan, P.; Ezzati Nazhad Dolatabadi, J. Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chem. 2018, 257, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.K. Dietary Salt Intake and Hypertension. Electrolytes Blood Press. 2014, 12, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisoli, T.M.; Schmieder, R.E.; Grodzicki, T.; Messerli, F.H. Salt and Hypertension: Is Salt Dietary Reduction Worth the Effort? Am. J. Med. 2012, 125, 433–439. [Google Scholar] [CrossRef] [PubMed]
- WHO. Mapping Salt Reduction Initiatives in the WHO European Region; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Román, S.; Sánchez-Siles, L.M.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Regan, Á.; Kent, M.; Raats, M.; McConnon, Á.; Wall, P.; Dubois, L. Applying a Consumer Behavior Lens to Salt Reduction Initiatives. Nutrients 2017, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Quinto, E.J.; Caro, I.; Villalobos-Delgado, L.H.; Mateo, J.; De-Mateo-Silleras, B.; Redondo-Del-Río, M.P. Food Safety through Natural Antimicrobials. Antibiotics 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Dupas, C.; Métoyer, B.; El Hatmi, H.; Adt, I.; Mahgoub, S.A.; Dumas, E. Plants: A natural solution to enhance raw milk cheese preservation? Food Res. Int. 2020, 130, 108883. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Natural Preservatives from Plant in Cheese Making. Animals 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Kapetanakou, A.E.; Skandamis, P.N. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Curr. Opin. Food Sci. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Gheorghita (Puscaselu), R.; Gutt, G.; Amariei, S. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings 2020, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.J.; Maciel, L.C.; Teixeira, J.A.; Vicente, A.A.; Cerqueira, M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018, 107, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen Van Long, N.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef]
- Kontominas, M.G. Use of Alginates as Food Packaging Materials. Foods 2020, 9, 1440. [Google Scholar] [CrossRef]
- Pourmolaie, H.; Khosrowshahi Asl, A.; Ahmadi, M.; Zomorodi, S.; Naghizadeh Raeisi, S. The effect of Guar and Tragacanth gums as edible coatings in Cheddar cheese during ripening. J. Food Saf. 2018, 38, e12529. [Google Scholar] [CrossRef]
- Christaki, S.; Moschakis, T.; Kyriakoudi, A.; Biliaderis, C.G.; Mourtzinos, I. Recent advances in plant essential oils and extracts: Delivery systems and potential uses as preservatives and antioxidants in cheese. Trends Food Sci. Technol. 2021, 116, 264–278. [Google Scholar] [CrossRef]
- Conte, A.; Gammariello, D.; Di Giulio, S.; Attanasio, M.; Del Nobile, M.A. Active coating and modified-atmosphere packaging to extend the shelf life of Fior di Latte cheese. J. Dairy Sci. 2009, 92, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Zaragoza, M.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol. 2020, 97, 196–209. [Google Scholar] [CrossRef]
- Abdalla, O.M.; Davidson, P.M.; Christen, G.L. Survival of selected pathogenic bacteria in white pickled cheese made with lactic acid bacteria or antimicrobials. J. Food Prot. 1993, 56, 972–976. [Google Scholar] [CrossRef]
- de Moraes, J.O.; Hilton, S.T.; Moraru, C.I. The effect of Pulsed Light and starch films with antimicrobials on Listeria innocua and the quality of sliced cheddar cheese during refrigerated storage. Food Control 2020, 112, 107134. [Google Scholar] [CrossRef]
- El-Shenawy, M.A.; Marth, E.H. Inhibition and Inactivation of Listeria monocytogenes by Sorbic Acid. J. Food Prot. 1988, 51, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Mastromatteo, M.; Conte, A.; Faccia, M.; Del Nobile, M.A.; Zambrini, A.V. Combined effect of active coating and modified atmosphere packaging on prolonging the shelf life of low-moisture Mozzarella cheese. J. Dairy Sci. 2014, 97, 36–45. [Google Scholar] [CrossRef]
- Schnuch, A.; Lessmann, H.; Geier, J.; Uter, W. Contact allergy to preservatives. Analysis of IVDK data 1996–2009. Br. J. Dermatol. 2011, 164, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Yetuk, G.; Pandir, D.; Bas, H. Protective Role of Catechin and Quercetin in Sodium Benzoate-Induced Lipid Peroxidation and the Antioxidant System in Human Erythrocytes In Vitro. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Raposa, B.; Pónusz, R.; Gerencsér, G.; Budán, F.; Gyöngyi, Z.; Tibold, A.; Hegyi, D.; Kiss, I.; Koller, Á.; Varjas, T. Food additives: Sodium benzoate, potassium sorbate, azorubine, and tartrazine modify the expression of NFκB, GADD45α, and MAPK8 genes. Physiol. Int. 2016, 103, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Azuma, S.L.; Quartey, N.-A.; Ofosu, I.W. Sodium benzoate in non-alcoholic carbonated (soft) drinks: Exposure and health risks. Sci. Afr. 2020, 10, e00611. [Google Scholar] [CrossRef]
- Stevenson, J.; Sonuga-Barke, E.; McCann, D.; Grimshaw, K.; Parker, K.M.; Rose-Zerilli, M.J.; Holloway, J.W.; Warner, J.O. The Role of Histamine Degradation Gene Polymorphisms in Moderating the Effects of Food Additives on Children’s ADHD Symptoms. Am. J. Psychiatry 2010, 167, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Beezhold, B.L.; Johnston, C.S.; Nochta, K.A. Sodium Benzoate–Rich Beverage Consumption is Associated with Increased Reporting of ADHD Symptoms in College Students. J. Atten. Disord. 2014, 18, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.M.; Nishi, Y.; Ohkawa, Y.; Inui, N. Effects of sorbic acid and its salts on chromosome aberrations, sister chromatid exchanges and gene mutations in cultured chinese hamster cells. Food Chem. Toxicol. 1984, 22, 501–507. [Google Scholar] [CrossRef]
- Kitano, K.; Fukukawa, T.; Ohtsuji, Y.; Masuda, T.; Yamaguchi, H. Mutagenicity and DNA-damaging activity caused by decomposed products of potassium sorbate reacting with ascorbic acid in the presence of Fe salt. Food Chem. Toxicol. 2002, 40, 1589–1594. [Google Scholar] [CrossRef]
- Mamur, S.; Yüzbaşıoğlu, D.; Ünal, F.; Yılmaz, S. Does potassium sorbate induce genotoxic or mutagenic effects in lymphocytes? Toxicol. Vitr. 2010, 24, 790–794. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, M.; Jogaiah, S. Saponins Versus Plant Fungal Pathogens. In Bioactive Molecules in Plant Defense; Springer International Publishing: Cham, Switzerland, 2020; pp. 37–45. [Google Scholar]
- Chung, Y.; Su, Y.; Chen, C.; Jia, G.; Wang, H.; Wu, J.C.G.; Lin, J. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin. 2004, 25, 932–936. [Google Scholar] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Mohamed, F.A.E.F.; Salama, H.H.; El-Sayed, S.M.; El-Sayed, H.S.; Zahran, H.A.H. Utilization of natural antimicrobial and antioxidant of moringa oleifera leaves extract in manufacture of cream cheese. J. Biol. Sci. 2018, 18, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil-Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Bartkiene, E.; Laurikietyte, R.; Lele, V.; Zavistanaviciute, P.; Mozuriene, E.; Baltusnikiene, A. Agar-immobilized basil–lactic acid bacteria bioproducts as goat milk taste-masking agents and natural preservatives for the production of unripened goat cheese. J. Dairy Sci. 2018, 101, 10866–10876. [Google Scholar] [CrossRef]
- Diniz-Silva, H.T.; Batista de Sousa, J.; da Silva Guedes, J.; Ramos do Egypto Queiroga, R.d.C.; Madruga, M.S.; Tavares, J.F.; Leite de Souza, E.; Magnani, M. A synergistic mixture of Origanum vulgare L. and Rosmarinus officinalis L. essential oils to preserve overall quality and control Escherichia coli O157:H7 in fresh cheese during storage. LWT 2019, 112, 107781. [Google Scholar] [CrossRef]
- Almeida, D.; Silva, M.; Oliveira, M.C.; Mafezoli, J.; Mattos, M.; Moura, A.; Moraes Filho, M.; Barbosa, F. New Semisynthetic Derivatives of A Benzylisothiocyanate Isolated from Moringa oleifera And Evaluation of Their Cytotoxic Activity. Quim. Nova 2017, 40, 1186–1190. [Google Scholar] [CrossRef]
- Arwani, M.; Wijana, S.; Kumalaningsih, S. Nutrient and saponin content of Moringa oleifera leaves under different blanching methods. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012042. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, J.; Chen, X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods 2018, 47, 469–479. [Google Scholar] [CrossRef]
- Petri, L.; Szijj, P.A.; Kelemen, Á.; Imre, T.; Gömöry, Á.; Lee, M.T.W.; Hegedűs, K.; Ábrányi-Balogh, P.; Chudasama, V.; Keserű, G.M. Cysteine specific bioconjugation with benzyl isothiocyanates. RSC Adv. 2020, 10, 14928–14936. [Google Scholar] [CrossRef]
- Honório, V.G.; Bezerra, J.; Souza, G.T.; Carvalho, R.J.; Gomes-Neto, N.J.; Figueiredo, R.C.B.Q.; Melo, J.V.; Souza, E.L.; Magnani, M. Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1,8-cineole. Front. Microbiol. 2015, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Greay, S.J.; Hammer, K.A. Recent developments in the bioactivity of mono- and diterpenes: Anticancer and antimicrobial activity. Phytochem. Rev. 2015, 14, 1–6. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.; Osaili, T.; Sawalha, A.; Olaimat, A.N.; Albiss, B.A.; Mehyar, G.; Ayyash, M.; Holley, R. Antimicrobial activity of chitosan coating containing ZnO nanoparticles against E. coli O157:H7 on the surface of white brined cheese. Int. J. Food Microbiol. 2020, 334, 108838. [Google Scholar] [CrossRef]
- Pereira, R.B.D.M.; da Fonte, R.A.B.; Barros, D.d.M.; Machado, E.d.C.L.; de Moura, D.F.; de Oliveira, M.G. Chitosan in cheese Mines frescal: Antibacterial action under pathogenic strain and in sensory attributes. Braz. J. Health Rev. 2018, 1, 342–363. [Google Scholar]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Carvalho, A.P.A.d.; Conte Junior, C.A. Green strategies for active food packagings: A systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends Food Sci. Technol. 2020, 103, 130–143. [Google Scholar] [CrossRef]
- Rai, M.; Pandit, R.; Gaikwad, S.; Kövics, G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J. Food Sci. Technol. 2016, 53, 3381–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, A.; Sandhu, P.; Ror, P.; Dash, E.; Sharma, S.; Arakha, M.; Jha, S.; Akhter, Y.; Saleem, M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends on Its Crowding and Degree of Oligomerization. Sci. Rep. 2016, 6, 37908. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Gerschenson, L.N.; Jagus, R.J. Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and Port Salut cheese. Food Control 2014, 44, 146–151. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Jagus, R.J.; Gerschenson, L.N. Natamycin efficiency for controlling yeast growth in models systems and on cheese surfaces. Food Control 2014, 35, 101–108. [Google Scholar] [CrossRef]
- Kallinteri, L.D.; Kostoula, O.K.; Savvaidis, I.N. Efficacy of nisin and/or natamycin to improve the shelf-life of Galotyri cheese. Food Microbiol. 2013, 36, 176–181. [Google Scholar] [CrossRef]
- Conte, A.; Scrocco, C.; Sinigaglia, M.; Del Nobile, M.A. Innovative Active Packaging Systems to Prolong the Shelf Life of Mozzarella Cheese. J. Dairy Sci. 2007, 90, 2126–2131. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Park, S.-I.; Daeschel, M.A.; Zhao, Y. Antimicrobial Chitosan-Lysozyme (CL) Films and Coatings for Enhancing Microbial Safety of Mozzarella Cheese. J. Food Sci. 2007, 72, M355–M362. [Google Scholar] [CrossRef]
- Ünalan, İ.U.; Arcan, I.; Korel, F.; Yemenicioğlu, A. Application of active zein-based films with controlled release properties to control Listeria monocytogenes growth and lipid oxidation in fresh Kashar cheese. Innov. Food Sci. Emerg. Technol. 2013, 20, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Gu, Y.; Li, C.; Vittayapadung, S.; Cui, H. Antibacterial mechanism of ε-Poly-lysine against Listeria monocytogenes and its application on cheese. Food Control 2018, 91, 76–84. [Google Scholar] [CrossRef]
- Sadeghi, E.; Akhondzadeh Basti, A.; Noori, N.; Khanjari, A.; Partovi, R. Effect Of Cuminum cyminum L. Essential Oil and Lactobacillus Acidophilus (A Probiotic) on Staphylococcus Aureus during the Manufacture, Ripening and Storage of White Brined Cheese. J. Food Process. Preserv. 2013, 37, 449–455. [Google Scholar] [CrossRef]
- Sadeghi, E.; Mohammadi, A.; Jamilpanah, M.; Bashiri, M.; Bohlouli, S. Antimicrobial Effects of Mentha pulegium Essential Oil on Listeria monocytogenes in Iranian White Cheese. J. Food Qual. Hazards Control 2016, 3, 20–24. [Google Scholar]
- Caleja, C.; Barros, L.; Antonio, A.L.; Ciric, A.; Soković, M.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Foeniculum vulgare Mill. As natural conservation enhancer and health promoter by incorporation in cottage cheese. J. Funct. Foods 2015, 12, 428–438. [Google Scholar] [CrossRef]
- Ehsani, A.; Hashemi, M.; Naghibi, S.S.; Mohammadi, S.; Khalili Sadaghiani, S. Properties of Bunium Persicum Essential Oil and its Application in Iranian White Cheese Against Listeria Monocytogenes and Escherichia coli O157:H7. J. Food Saf. 2016, 36, 563–570. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef]
- da Silva Dannenberg, G.; Funck, G.D.; Mattei, F.J.; da Silva, W.P.; Fiorentini, Â.M. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innov. Food Sci. Emerg. Technol. 2016, 36, 120–127. [Google Scholar] [CrossRef]
- Bukvicki, D.; Giweli, A.; Stojkovic, D.; Vujisic, L.; Tesevic, V.; Nikolic, M.; Sokovic, M.; Marin, P.D. Short communication: Cheese supplemented with Thymus algeriensis oil, a potential natural food preservative. J. Dairy Sci. 2018, 101, 3859–3865. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.T.d.; Cunha, K.F.d.; Fonseca, L.M.; Antunes, M.D.; Halal, S.L.M.E.; Fiorentini, Â.M.; Zavareze, E.d.R.; Dias, A.R.G. Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. Int. J. Biol. Macromol. 2018, 118, 107–115. [Google Scholar] [CrossRef]
- Salih, Z.; Siddeeg, A.; Ammar, A.; Mohammed, S.; Ali, A. Effect of Addition of Garlic and Ginger Powder on Physicochemical, Microbiological and Organoleptic Characteristics of White Cheese. Ann. Obes. Disord. 2019, 4, 1–7. [Google Scholar]
- Correa, F.T.; de Souza, A.C.; de Souza Júnior, E.A.; Isidoro, S.R.; Piccoli, R.H.; Dias, D.R.; de Abreu, L.R. Effect of Brazilian green propolis on microorganism contaminants of surface of Gorgonzola-type cheese. J. Food Sci. Technol. 2019, 56, 1978–1987. [Google Scholar] [CrossRef]
- Fancello, F.; Petretto, G.L.; Marceddu, S.; Venditti, T.; Pintore, G.; Zara, G.; Mannazzu, I.; Budroni, M.; Zara, S. Antimicrobial activity of gaseous Citrus limon var pompia leaf essential oil against Listeria monocytogenes on ricotta salata cheese. Food Microbiol. 2020, 87, 103386. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food Chem. Toxicol. 2009, 47, 2458–2464. [Google Scholar] [CrossRef]
- Jamshidi, A.; Khanzadi, S.; Azizi, M.; Azizzadeh, M.; Hashemi, M. Modeling the growth of Staphylococcus aureus as affected by black zira (Bunium persicum) essential oil, temperature, pH and inoculum levels. Vet. Res. Forum Int. Q. J. 2014, 5, 107–114. [Google Scholar]
- Viana de Souza, J.; Silva Dias, F. Protective, technological, and functional properties of select autochthonous lactic acid bacteria from goat dairy products. Curr. Opin. Food Sci. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Kim, I.H.; Oh, Y.A.; Lee, H.; Song, K.B.; Min, S.C. Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT Food Sci. Technol. 2014, 58, 1–10. [Google Scholar] [CrossRef]
- Moosavy, M.-H.; Esmaeili, S.; Mostafavi, E. Antibacterial Effect of Mentha spicata Essential Oil on Listeria monocytogenes in Traditional Lighvan Cheese. J. Food Saf. 2013, 33, 509–514. [Google Scholar] [CrossRef]
- Han, J.H.; Patel, D.; Kim, J.E.; Min, S.C. Microbial inhibition in mozzarella cheese using rosemary and thyme oils in combination with sodium diacetate. Food Sci. Biotechnol. 2015, 24, 75–84. [Google Scholar] [CrossRef]
- Dannenberg, G.d.S.; Funck, G.D.; Cruxen, C.E.d.S.; Marques, J.d.L.; da Silva, W.P.; Fiorentini, Â.M. Essential oil from pink pepper as an antimicrobial component in cellulose acetate film: Potential for application as active packaging for sliced cheese. LWT Food Sci. Technol. 2017, 81, 314–318. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Santos, A.C.; Leão, M.V.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Pintado, M.E.; Malcata, F.X. Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. Int. Dairy J. 2012, 25, 132–141. [Google Scholar] [CrossRef]
- Lucera, A.; Mastromatteo, M.; Conte, A.; Zambrini, A.V.; Faccia, M.; Del Nobile, M.A. Effect of active coating on microbiological and sensory properties of fresh mozzarella cheese. Food Packag. Shelf Life 2014, 1, 25–29. [Google Scholar] [CrossRef]
- Youssef, A.M.; EL-Sayed, S.M.; EL-Sayed, H.S.; Salama, H.H.; Dufresne, A. Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr. Polym. 2016, 151, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Gani, A.; Gani, A.; Punoo, H.A.; Masoodi, F.A. Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innov. Food Sci. Emerg. Technol. 2018, 48, 25–32. [Google Scholar] [CrossRef]
- Ksouda, G.; Sellimi, S.; Merlier, F.; Falcimaigne-cordin, A.; Thomasset, B.; Nasri, M.; Hajji, M. Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chem. 2019, 288, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Seydim, A.C.; Sarikus-Tutal, G.; Sogut, E. Effect of whey protein edible films containing plant essential oils on microbial inactivation of sliced Kasar cheese. Food Packag. Shelf Life 2020, 26, 100567. [Google Scholar] [CrossRef]
- Conte, A.; Brescia, I.; Del Nobile, M.A. Lysozyme/EDTA disodium salt and modified-atmosphere packaging to prolong the shelf life of burrata cheese. J. Dairy Sci. 2011, 94, 5289–5297. [Google Scholar] [CrossRef]
- Mahajan, D.; Bhat, Z.F.; Kumar, S. Pine needles (Cedrus deodara (Roxb.) Loud.) extract as a novel preservative in cheese. Food Packag. Shelf Life 2016, 7, 20–25. [Google Scholar] [CrossRef]
Chemical Additive | Treatment | Study Model | Dose | Target MO | Growth Inhibition | Ref. |
---|---|---|---|---|---|---|
Potassium sorbate | Additive during manufacturing | White cheese (curd) | 0.1% w/w | L. monocytogenes | Without effect A | [25] |
White cheese (brine) | 0.1% w/w | Without effect A | ||||
White cheese (curd) | 0.1% w/w | S. aureus | Without effect A | |||
White cheese (brine) | 0.1% w/w | Without effect A | ||||
Additive | In vitro | 0.15% | L. monocytogenes | CR: 100% B | [27] | |
PS-SA-coating | Low-moisture Mozzarella cheese | 1% w/v | Total viable counts | CR: 3.23% C | [28] | |
PS-SA-coating and MAP3 packaging | Low-moisture Mozzarella cheese | 1% w/v | Total viable counts | CR: 3.23% C | [28] | |
Sodium benzoate | SB-starch film | Cheddar cheese slices | 0.001% w/w | L. innocua | Without effect D | [26] |
SB-starch film and pulsed light | +6.14 J/cm2 | L. innocua | CR: 28% D |
Specie | Common Name (Form) | In Vitro/In Situ Assay | Target MO | Dose | Growth Inhibition | Storage Time | Ref. |
---|---|---|---|---|---|---|---|
Cuminum cyminum | Cumin (EO) | Iranian white brined cheese | S. aureus | 15 µL/100 mL | CR: 6.56% | 75 days | [65] |
30 µL/100 mL | CR: 51.36% | ||||||
Foeniculum vulgare Mill | Fennel (water extract) | In vitro | B. cereus | MIC: 0.02 mg/mL | - | N/A | [67] |
S. enterica ser. Typhimurium | MIC: 0.035 mg/mL | - | |||||
A. niger | MIC: 0.2 mg/mL | - | |||||
A. versicolor | MIC: 0.75 mg/mL | - | |||||
Mentha pulegium | Pennyroyal (EO) | Iranian White cheese | L. monocytogenes | 0.015% | CR: 24.39% | 60 days | [66] |
0.03% | CR: 48.78% | ||||||
Bunium persicum | Black Cumin (EO) | Iranian White cheese | L. monocytogenes | 1–2% | CR: 7–9% | >45 days | [68] |
E. coli O157:H7 | CR: 6–9% | ||||||
Cymbopogon citratus | Lemongrass oil | Kerrygold cheddar | L. monocytogenes | 1 mL·LO/100 g | CR: 0% | 15 days (4 °C) | [69] |
LO-entrapped liposomes | CR: 58% | ||||||
Schinus terebinthifolius Raddi | Pink pepper (EO-mature fruits) | In vitro | B. cereus | MIC: 0.85 mg/mL | IZ: 39.97 mm | N/A | [70] |
Minas-type fresh cheese | L. monocytogenes | 0.7–2% | CR: 11–18% | 30 days | |||
Ocimum basilicum L. | Basil-LAB bioproducts fermentation | Goat milk curd cheese | Enterobacteriaceae | 5% | 100% (N/D) | 24–120 h | [44] |
Moringa oleífera | Cedar (dry leaves extract) | In vitro | Pathogenic strains | 4.00 mg/mL·milk | IZ: 15–22 mm | N/A | [42] |
Cream cheese | Coliforms, Molds, and Yeasts | 100% (N/D) | 4 weeks | ||||
Thymus algeriensis | Thyme (EO) | In vitro antibacterial | S. aureus | MIC: 0.08 mg/mL | - | N/A | [71] |
S. enterica ser. Typhimurium | MIC: 0.09 mg/mL | - | |||||
E. coli | MIC: 0.09 mg/mL | - | |||||
P. aeruginosa | MIC: 0.05 mg/mL | - | |||||
L. monocytogenes | MIC: 0.04 mg/mL | - | |||||
M. flavus | MIC: 0.03 mg/mL | - | |||||
B. cereus | MIC: 0.04 mg/mL | - | |||||
In vitro antifungal | Aspergillus spp. | MIC: 0.01 mg/mL | - | N/A | |||
Trichoderma spp. | MIC: 0.01 mg/mL | - | |||||
Penicillium spp. | MIC: 0.01 mg/mL | - | |||||
Sliced soft cheese | Penicillium aurantiogriseum | 25 µL | CI: 66% | 30 days (4 °C) | |||
Zingiber officinale | Ginger (EO) | In vitro antibacterial activity | P. aeruginosa | MBC/MIC = 2 | IZ: 13 mm | N/A | [72] |
S. enterica ser. Typhimurium | MBC/MIC = 2 | IZ: 15 mm | |||||
S. aureus | MBC/MIC = 2 | IZ: 19 mm | |||||
E. coli O157:H7 | MBC/MIC = 2 | IZ: 19 mm | |||||
L. monocytogenes | MBC/MIC = 2 | IZ: 37 mm | |||||
MO fermentation | ε-poly-lysine solution (0.1 mg/m) | Grana Padano cheddar cheese | L. monocytogenes | MIC: 0.05–0.2 mg/L | CR:30–100% | 15 days, (4 and 25 °C) | [64] |
Allium sativum L. | Garlic powder | White cheese | Mold and Yeast | 6% | CR:58.6–79.3% A | 15 days (4 °C) | [73] |
Coliforms, Salmonella | 2–6% | 100% (N/D) A | |||||
Zingiber officinale Roscoe | Ginger powder | Mold and Yeast | 2–6% | CR: 51.7% A | |||
Coliforms, Salmonella | 2–6% | 100% (N/D) A | |||||
Origanum vulgare L. + Rosmarinus officinalis | Oregano EO + Rosemary EO | Fresh cheese | E. coli O157:H7 | 0.03 (oregano) and 1.32 (rosemary) µL/mL | CR: 68% | 21 days | [45] |
Apis mallifera | Green propolis (extract) | Gorgonzola-type cheese | Y. lipolytica | 1.25% | 100% | 24–48 h (37 °C) | [74] |
D. hansenii | 2.50% | 100% | |||||
S. saprophyticus | 1.25% | 100% | 48–72 h (25 °C) | ||||
S. equorum | 1.25% | 100% | |||||
In vitro antifungal | S. cerevisieae | MFC/MIC = 2 | - | N/A | |||
D. hansenii | MFC/MIC = 1 | - | |||||
C. parapsilosis | MFC/MIC = 2.2 | - | |||||
In vitro antibacterial | B. cereus | MBC/MIC = 1.9 | - | ||||
S. saprophyticus | MBC/MIC = 2 | - | |||||
S. equorum | MBC/MIC = 2 | - | |||||
Citrus limon var pompia | Lemon leaf (EO-gaseous phase) | Ricotta Salata | L. monocytogenes | 0.5–1 mL | CR: 21–65% | 30 days (5 °C) | [75] |
Specie | Common Name (Form) | Salt | Cheese Model | Target MO | Doses | Inhibition Effect | Storage Time | References |
---|---|---|---|---|---|---|---|---|
Mentha spicata | Spearmint EO | Sodium chloride | Lighvan cheese | L. monocytogenes | 2% EO + 12% NaCl | RIZ: 48% | 60 days (4 °C) | [80] |
2% EO + 15% NaCl | RIZ: 22% | |||||||
2% EO + 12% NaCl | RIZ: 50% | 60 days (14 °C) | ||||||
2% EO + 15% NaCl | RIZ: 55% | |||||||
Rosemarinus officinalis | Rosemary EO | Sodium diacetate | Low-fat Mozzarella | L. monocytogenes | 1% | CR: 8.3% | 20 days (4 °C) | [81] |
Thymus spicata | Thyme EO | 1% | CR: 15.4% | |||||
R. officinalis and T. spicata | Rosemary and Thyme (EO) | 1% | CR: 26.1% | |||||
+0.2% SDA | CR: 52.5% |
Specie/Origin | Common Name (Form) | Packaging Material | In Vitro/In Situ | Target MO | Dose | Inhibition Effect | Storage Time | Ref. |
---|---|---|---|---|---|---|---|---|
Schinus terebinthifolius | Pink pepper (EO) | Cellulose acetate film | Sliced mozzarella cheese | S. aureus | 5.45 g/cm2 (EO in film | 100%-not detected | 0–12 days | [82] |
L. monocytogenes | 100%-not detected | |||||||
LAB fermentation | Lactic acid (compound) | Edible-Whey protein isolate film | Portuguese cheese | Staphylococcus spp. | CA: 6 g/L and COS: 20 g/L | CR: 100% | 15 days | [83] |
Pseudomonas spp. | CR: 98% | |||||||
Crustacean by-products | COS | Yeast and mold | CR: 28% | |||||
Pseudomonas spp. | CR: 100% | |||||||
Actinobacteria | Natamycin | PVA-Commercial coating | Yeast and mold | 2.5 g/L | CR: ~43% | |||
Actinobacteria | Natamycin (compound) | Tapioca starch film | Port Salut cheese | S. cerevisiae | 9.25 mg/dm2 of film | CR: 62% | 216 h (25 °C) | [59] |
Seaweed | Sodium alginate solution (2% w/v) | Potassium sorbate (3% w/v) | Fresh Mozzarella cheese | Pseudomonas spp. | 3% (w/v) | CR: 12% | 8 days (8 ± 1 °C) | [84] |
Enterobacteriaceae | 2% (w/v) | CR: 12% | ||||||
Crustacean by-products | Chitosan (compound) | CS/CMC/2–8% ZnO film bio packaging | Egyptian white cheese | TBC, Coliforms, Yeasts and molds | 0.92% (w/w; CH/film) | 100% | 30 days (7 °C) | [85] |
Cellulose-cotton, wood | CMC (gum) | Pathogenic strains | 0.92% (w/w; CMC/film) | IZ: 8–15 mm | ||||
Punica granatum | Pomegranate (peel extract) | Zein films | Himalayan cheese (Kalari) | TBC | 25–75 mg/g | 54–73% | 15 days | [86] |
Yeast and Mold | 25–75 mg/g | 71–100% | ||||||
In vitro antibacterial activity | E. coli | 25 mg/g | RIZ: 123% | N/A | ||||
P. perfringens | 75 mg/g | RIZ: 118% | ||||||
M. luteus | 75 mg/g | RIZ: 114% | ||||||
E. faecalis | 50 mg/g | RIZ: 115% | ||||||
S. aureus | 50 mg/g | RIZ: 107% | ||||||
P. vulgaris | 50 mg/g | RIZ: 114% | ||||||
S. enterica ser. Typhi | 50 mg/g | RIZ: 101% | ||||||
Zingiber officinale | Ginger (EO) | - | In vitro antibacterial activity | E. coli 0157:H7 | MIC: 2.3 µL/mL | IZ:13 mm | N/A | [72] |
L. monocytogenes | MBC: 2.3 µL/mL | IZ: 37 mm | N/A | |||||
Ginger EO Encapsulation in PUF | Antibacterial by micro-atmosphere | L. monocytogenes | 12% (v/v) | CR: 20.9–43.5% | N/A | |||
Minas-type fresh cheese | L. monocytogenes | 12% (v/v) | ~10% | 12 days (4 °C) | ||||
Pimpinella saxifraga | Burnet saxifrage EO (3%) | Sodium alginate as coating additive(0.2%) | Béja Sicilian cheese | S. enterica ser. Typhimurium | MBC/MIC = 1.9 | RIZ: 19% | 60 days | [87] |
B. cereus | MBC/MIC = 2 | RIZ: 36% | ||||||
M. luteus | MBC/MIC = 2 | RIZ: 39% | ||||||
E. coli | MBC/MIC = 4 | RIZ: 50% | ||||||
P. aeruginosa | MBC/MIC = 4 | RIZ: 39% | ||||||
L. monocytogenes | MBC/MIC = 8 | RIZ: 52% | ||||||
Origanum vulgare L. | Oregano (EO) | Whey protein isolate film | Sliced Kasar cheese | Penicillium spp. | 136.6 mg/g (2% w/v) | CR: 15% | 15 days | [88] |
E. coli O157:H7 | CR: 40% | |||||||
Allium sativum L. | Garlic (EO) | Penicillium spp. | CR: 10% | |||||
E. coli O157: H7 | CR: 22% | |||||||
Actinobacteria | Natamycin (compound) | Whey protein isolate film | Sliced Kasar cheese | Penicillium spp. | 2% (w/v) | CR: 20% | 15 days | [88] |
LAB | Nisin (compound) | Whey protein isolate film | Sliced Kasar cheese | L. monocytogenes | 2% (w/v) | CR: 25% | [88] |
Specie/Origin | Antimicrobial | Combined Treatment | In Vitro/In Situ Assay | Target MO | Dose | Inhibition Effect | Storage Time | Ref. |
---|---|---|---|---|---|---|---|---|
Animal secretions | Lysozyme | Active coating and air packaging | Burrata cheese | Pseudomonas spp. | 250 mg/Kg | Without effect | 7 days | [89] |
Chemical additive | EDTA disodium salt | 50 mM | ||||||
Animal secretions | Lysozyme | Active coating and MAP packaging | Pseudomonas spp. | 150–500 mg/Kg | CR: 22–39% | |||
Chemical additive | EDTA disodium salt | 50 mM | ||||||
Cedrus deodora (Roxb.) Loud | Pine needles (extract) | Manufacturing additive and Aerobically packaging | Low-fat Kalari | Total plate | 2.5–5% | CR: 14–17% | 30 days (1 ± 4 °C) | [90] |
Psychrophilic | 2.5–5% | CR: 3–7% | ||||||
Yeast and Mould | 2.5–5% | CR: 17–39% | ||||||
Citrus fruits, sugar cane | Citric acid (compound) | Active packaging and pulsed light | Sliced cheddar cheese | L. innocua | 0.001% (w/w) | CR: 28% | At the first 5 days | [26] |
+6.14 J/cm2 pulsed light | CR: 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, R.C.; Carvalho, A.P.A.d.; Vieira, C.P.; Moreira, R.V.; Conte-Junior, C.A. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers 2021, 13, 2675. https://doi.org/10.3390/polym13162675
Lima RC, Carvalho APAd, Vieira CP, Moreira RV, Conte-Junior CA. Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers. 2021; 13(16):2675. https://doi.org/10.3390/polym13162675
Chicago/Turabian StyleLima, Rayssa Cruz, Anna Paula Azevedo de Carvalho, Carla P. Vieira, Rodrigo Vilela Moreira, and Carlos Adam Conte-Junior. 2021. "Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings" Polymers 13, no. 16: 2675. https://doi.org/10.3390/polym13162675
APA StyleLima, R. C., Carvalho, A. P. A. d., Vieira, C. P., Moreira, R. V., & Conte-Junior, C. A. (2021). Green and Healthier Alternatives to Chemical Additives as Cheese Preservative: Natural Antimicrobials in Active Nanopackaging/Coatings. Polymers, 13(16), 2675. https://doi.org/10.3390/polym13162675