The State of the Art of Material Jetting—A Critical Review
Abstract
:1. Introduction
2. Process and Materials
2.1. Materials
2.2. Polymeric Composites via MJ
2.3. The Effect of Parameters
2.3.1. Tray Location
2.3.2. Build Orientation
2.3.3. Surface Roughness Options
2.4. MJ Capability and Performance of MJ Printed Parts
2.5. Comparisons with Other Technologies
3. Applications
3.1. Medical Applications
3.2. Mechanical Applications
3.3. Acoustic Applications
3.4. Electronics Applications
3.5. Multi-Material Applications
3.6. Other Applications
4. Summary
- Industrial applications of MJ technology still need further investigation. Especially in the aviation industry, MJ was used only in small prototype wing applications. Its potential for aircraft modification purposes where mock-ups are needed for proper installation is worth investigating.
- MJ technology produces high-quality parts but for higher quality applications, some post-processing techniques need to be applied. Post-processing of MJ printed parts needs further investigation.
- Design engineers need some guidelines for proper designs to be manufactured. For this reason, designs for MJ manufacturing need further investigation.
- Dimensional variations in any production method are very important for proper installation. The producibility of MJ printed parts has been evaluated in the literature but, especially for parts used in aviation and automotive industries, producibility and dimensional variations still needs more attention.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flores, I.; Kretzschmar, N.; Azman, A.H.; Chekurov, S.; Pedersen, D.B.; Chaudhuri, A. Implications of lattice structures on economics and productivity of metal powder bed fusion. Addit. Manuf. 2020, 31, 100947. [Google Scholar] [CrossRef]
- Avila, J.D.; Bose, S.; Bandyopadhyay, A. Additive manufacturing of titanium and titanium alloys for biomedical applications. In Titanium in Medical and Dental Applications; Froes, F.H., Qian, M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 325–343. [Google Scholar]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Najmon, J.C.; Raeisi, S.; Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Froes, F., Boyer, R., Eds.; Elsevier Publishing: Amsterdam, The Netherlands, 2019; pp. 7–31. [Google Scholar]
- Udroiu, R.; Braga, I.C. PolyJet technology applications for rapid tooling. MATEC Web Conf. 2017, 112, 03011. [Google Scholar] [CrossRef] [Green Version]
- ISO/ASTM 52900: 2015. Additive Manufacturing—General Principles—Terminology. Available online: https://www.iso.org/standard/69669.html (accessed on 25 June 2021).
- Leary, M. Design for Additive Manufacturing; Elsevier Publishing: Amsterdam, The Netherlands, 2020; p. 270. [Google Scholar]
- Pilipović, A.; Baršić, G.; Katić, M.; Havstad, M.R. Repeatability and reproducibility assessment of a PolyJet technology using x-ray computed tomography. Appl. Sci. 2020, 10, 7040. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef]
- Bagheri, A.; Jin, J. Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J. Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf. 2017, 18, 203–212. [Google Scholar] [CrossRef]
- Gardan, J. Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. 2016, 54, 3118–3132. [Google Scholar] [CrossRef]
- O’Neill, P.; Jolivet, L.; Kent, N.J.; Brabazon, D. Physical integrity of 3D printed parts for use as embossing tools. Adv. Mater. Process. Technol. 2017, 3, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Sireesha, M.; Lee, J.; Kiran, A.S.K.; Babu, V.J.; Kee, B.B.T.; Ramakrishna, S. A review on additive manufacturing and its way into the oil and gas industry. RSC Adv. 2018, 8, 22460–22468. [Google Scholar] [CrossRef] [Green Version]
- Dilag, J.; Chen, T.; Li, S.; Bateman, S.A. Design and direct additive manufacturing of three-dimensional surface micro-structures using material jetting technologies. Addit. Manuf. 2019, 27, 167–174. [Google Scholar] [CrossRef]
- Pilipović, A.; Raos, P.; Šercer, M. Experimental analysis of properties of materials for rapid prototyping. Int. J. Adv. Manuf. Technol. 2009, 40, 105–115. [Google Scholar] [CrossRef]
- Kaweesa, D.V.; Meisel, N.A. Quantifying fatigue property changes in material jetted parts due to functionally graded material interface design. Addit. Manuf. 2018, 21, 141–149. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Edens, M.E.; de la Nava, A.H.; Janbaz, S.; Vena, P.; Doubrovski, E.L.; Zadpoor, A.A. Length-scale dependency of biomimetic hard-soft composites. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, S.; Ranganathan, R. Design and development of customised split insole using additive manufacturing technique. Int. J. Rapid Manuf. 2018, 7, 295–309. [Google Scholar] [CrossRef]
- Gu, G.X.; Takaffoli, M.; Hsieh, A.J.; Buehler, M.J. Biomimetic additive manufactured polymer composites for improved impact resistance. Extrem. Mech. Lett. 2016, 9, 317–323. [Google Scholar] [CrossRef]
- Yap, Y.L.; Yeong, W.Y. Shape recovery effect of 3D printed polymeric honeycomb: This paper studies the elastic behaviour of different honeycomb structures produced by PolyJet technology. Virtual Phys. Prototyp. 2015, 10, 91–99. [Google Scholar] [CrossRef]
- Li, W.; Xu, K.; Li, H.; Jia, H.; Liu, X.; Xie, J. Energy absorption and deformation mechanism of lotus-type porous coppers in perpendicular direction. J. Mater. Sci. Technol. 2017, 33, 1353–1361. [Google Scholar] [CrossRef]
- Gu, G.X.; Takaffoli, M.; Buehler, M.J. Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 2017, 29, 1700060. [Google Scholar] [CrossRef]
- Sugavaneswaran, M.; Arumaikkannu, G. Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Mater. Des. 2014, 54, 779–785. [Google Scholar] [CrossRef]
- Sugavaneswaran, M.; Arumaikkannu, G. Analytical and experimental investigation on elastic modulus of reinforced additive manufactured structure. Mater. Des. 2015, 66, 29–36. [Google Scholar] [CrossRef]
- Dalaq, A.S.; Abueidda, D.W.; Al-Rub, R.K.A. Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements. Compos. Part A Appl. Sci. Manuf. 2016, 84, 266–280. [Google Scholar] [CrossRef]
- Tee, Y.L.; Tran, P.; Leary, M.; Pille, P.; Brandt, M. 3D Printing of polymer composites with material jetting: Mechanical and fractographic analysis. Addit. Manuf. 2020, 36, 101558. [Google Scholar] [CrossRef]
- Stansbury, J.W.; Idacavage, M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Cazón, A.; Morer, P.; Matey, L. PolyJet technology for product prototyping: Tensile strength and surface roughness properties. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 1664–1675. [Google Scholar] [CrossRef]
- Kechagias, J.; Iakovakis, V.; Giorgo, E.; Stavropoulos, P.; Koutsomichalis, A.; Vaxevanidis, N.M. Surface roughness optimization of prototypes produced by PolyJet direct 3D printing technology. In Proceedings of the International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, 4–6 June 2014. [Google Scholar]
- Aslani, K.-E.; Vakouftsi, F.; Kechagias, J.D.; Mastorakis, N.E. Surface roughness optimization of poly-jet 3D printing using Grey Taguchi method. In Proceedings of the 2019 International Conference on Control, Artificial Tntelligence, Robotics & Optimization (ICCAIRO), Athens, Greece , 8–10 December 2019; IEEE: New York, NY, USA, 2019; pp. 213–218. [Google Scholar]
- Kent, N.J.; Jolivet, L.; O’Neill, P.; Brabazon, D. An evaluation of components manufactured from a range of materials, fabricated using PolyJet technology. Adv. Mater. Process. Technol. 2017, 3, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Kechagias, J.; Stavropoulos, P.; Koutsomichalis, A.; Ntintakis, I.; Vaxevanidis, N. Dimensional accuracy optimization of prototypes produced by PolyJet direct 3D printing technology. In Proceedings of the International Conference on Industrial Engineering, Santorini Island, Greece, 18–20 July 2014; pp. 61–65. [Google Scholar]
- Aslani, K.-E.; Korlos, A.; Kechagias, J.D.; Salonitis, K. Impact of process parameters on dimensional accuracy of PolyJet 3D printed parts using grey Taguchi method. In Proceedings of the MATEC Web of Conferences; EDP Sciences, 2020; Volume 318, p. 1015. Available online: https://www.matec-conferences.org/articles/matecconf/abs/2020/14/matecconf_icmmen20_01015/matecconf_icmmen20_01015.html (accessed on 9 July 2021).
- Pugalendhi, A.; Ranganathan, R.; Gopalakrishnan, B. Effects of process parameters on build time of PolyJet printed parts using Taguchi method. In Proceedings of the International Conference on Advances in Materials Processing & Manufacturing Applications, National Institute of Technology (MNIT), Jaipur, India, 5–6 November 2020. [Google Scholar]
- Gay, P.; Blanco, D.; Pelayo, F.; Noriega, A.; Fernández, P. Analysis of factors influencing the mechanical properties of flat PolyJet manufactured parts. Procedia Eng. 2015, 132, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Barclift, M.W.; Williams, C.B. Examining variability in the mechanical properties of parts manufactured via PolyJet direct 3D printing. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2012. [Google Scholar]
- Beltrán, N.; Carriles, F.; Álvarez, B.J.; Blanco, D.; Rico, J.C. Characterization of factors influencing dimensional and geometric errors in PolyJet manufacturing of cylindrical features. Procedia Eng. 2015, 132, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Kumar, G.S. A study on surface roughness of rapid prototypes facricated using PolyJet 3D printing system. In Proceedings of the International Conference on Computer Aided Engineering (CAE 2013); 2013; pp. 1–6. Available online: https://www.researchgate.net/profile/Saravana-Kumar-Gurunathan/publication/294090024_A_STUDY_ON_SURFACE_ROUGHNESS_OF_RAPID_PROTOTYPES_FABRICATED_USING_POLY-JET_3D_PRINTING_SYSTEM/links/56be233908aeedba05610e31/A-STUDY-ON-SURFACE-ROUGHNESS-OF-RAPID-PROTOTYPES-FABRICATED-USING-POLY-JET-3D-PRINTING-SYSTEM.pdf (accessed on 10 July 2021).
- Kumar, K.; Kumar, G.S. An experimental and theoretical investigation of surface roughness of poly-jet printed parts: This paper explains how local surface orientation affects surface roughness in a poly-jet process. Virtual Phys. Prototyp. 2015, 10, 23–34. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Maropoulos, S. An investigation of sloped surface roughness of direct poly-jet 3D printing. In Proceedings of the Proceedings of the International Conference on Industrial Engineering—INDE; 2015; pp. 150–153. Available online: http://universitypress.org.uk/library/2015/zakynthos/bypaper/CIMC/CIMC-26.pdf (accessed on 9 July 2021).
- Khoshkhoo, A.; Carrano, A.L.; Blersch, D.M. Effect of surface slope and build orientation on surface finish and dimensional accuracy in material jetting processes. Procedia Manuf. 2018, 26, 720–730. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Vaxevanidis, N.; Kechagias, J. Surface roughness investigation of Poly-Jet 3D printing. Mathematics 2020, 8, 1758. [Google Scholar] [CrossRef]
- Haghighi, A.; Yang, Y.; Li, L. Dimensional performance of as-built assemblies in polyjet additive manufacturing process. In Proceedings of the International Manufacturing Science and Engineering Conference, Los Angeles, CA, USA, 4–8 June 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50732, p. V002T01A039. [Google Scholar]
- Kitsakis, K.; Kechagias, J.; Vaxevanidis, N.; Giagkopoulos, D. Tolerance Analysis of 3d-MJM parts according to IT grade. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kozani, Greece, 23–25 September 2016; IOP Publishing: Bristol, UK, 2016; Volume 161, p. 12024. [Google Scholar]
- Kitsakis, K.; Kechagias, J.; Vaxevanidis, N.; Giagkopoulos, D. Tolerance assessment of PolyJet direct 3D printing process employing the IT grade approach. Acad. J. Manuf. Eng. 2016, 14, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Kesy, A.; Kotlinski, J. Mechanical properties of parts produced by using polymer jetting technology. Arch. Civ. Mech. Eng. 2010, 10, 37–50. [Google Scholar] [CrossRef]
- Das, S.C.; Ranganathan, R.; Murugan, N. Effect of build orientation on the strength and cost of PolyJet 3D printed parts. Rapid Prototyp. J. 2018, 24, 832–839. [Google Scholar] [CrossRef]
- Tomar, P.R.S.; Ulu, F.I.; Kelkar, A.; Mohan, R.V. Investigation of process induced variations in PolyJet printing with digital polypropylene via homogeneous 3D tensile test coupon. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019. [Google Scholar]
- Sanders, J.; Wei, X.; Pei, Z. Experimental Investigation of Stratasys J750 PolyJet Printer: Effects of Orientation and Layer Thickness on Thermal Glass Transition Temperature; International Mechanical Engineering Congress and Exposition: Salt Lake City, UT, USA, 2019. [Google Scholar]
- Blanco, D.; Fernandez, P.; Noriega, A. Nonisotropic experimental characterization of the relaxation modulus for PolyJet manufactured parts. J. Mater. Res. 2014, 29, 1876–1882. [Google Scholar] [CrossRef]
- Reichl, K.K.; Inman, D.J. Dynamic mechanical and thermal analyses of Objet connex 3D printed materials. Exp. Tech. 2018, 42, 19–25. [Google Scholar] [CrossRef]
- Yap, Y.L.; Wang, C.C.; Sing, S.L.; Dikshit, V.; Yeong, W.Y.; Wei, J. Material jetting additive manufacturing: An experimental study using designed metrological benchmarks. Precis. Eng. 2017, 50, 275–285. [Google Scholar] [CrossRef]
- Pugalendhi, A.; Ranganathan, R.; Chandrasekaran, M. Effect of process parameters on mechanical properties of VeroBlue material and their optimal selection in PolyJet technology. Int. J. Adv. Manuf. Technol. 2020, 108, 1049–1059. [Google Scholar] [CrossRef]
- Pugalendhi, A.; Ranganathan, R.; Ganesan, S. Impact of process parameters on mechanical behaviour in multi-material jetting. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Kampker, A.; Kreisköther, K.; Reinders, C. Material and parameter analysis of the PolyJet process for mold making using design of experiments. Int. J. Mater. Metall. Eng. 2017, 11, 242–249. [Google Scholar] [CrossRef]
- Moore, J.P.; Williams, C.B. Fatigue properties of parts printed by PolyJet material jetting. Rapid Prototyp. J. 2015, 21, 675–685. [Google Scholar] [CrossRef]
- Udroiu, R.; Braga, I.C. System performance and process capability in additive manufacturing: Quality control for polymer jetting. Polymers 2020, 12, 1292. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.R.; Pereira, A.M.; Sampaio, Á.M.; Pontes, A.J. Assessment of the Dimensional and Geometric Precision of Micro-Details Produced by Material Jetting. Materials 2021, 14, 1989. [Google Scholar] [CrossRef]
- Baršic, G.; Pilipovic, A.; Katic, M. Reproducibility of 3D printed structures. In Proceedings of the Proc. of Euspen’s 17th Int. Conf. & Exhibition, Hannover, ICE17144; 2017. [Google Scholar]
- Udroiu, R.; Braga, I.C.; Nedelcu, A. Evaluating the quality surface performance of additive manufacturing systems: Methodology and a material jetting case study. Materials 2019, 12, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangnan, F.; Espejo, C.; Liskiewicz, T.; Gester, M.; Neville, A. Friction and wear of additive manufactured polymers in dry contact. J. Manuf. Process. 2020, 59, 238–247. [Google Scholar] [CrossRef]
- Kim, T.; Lee, S.; Kim, G.B.; Hong, D.; Kwon, J.; Park, J.W.; Kim, N. Accuracy of a simplified 3D-printed implant surgical guide. J. Prosth. Dent. 2020, 124, 195–201. [Google Scholar] [CrossRef]
- Herschdorfer, L.; Negreiros, W.M.; Gallucci, G.O.; Hamilton, A. Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: An in vitro study. J. Prosth. Dent. 2020, 125, 905–910. [Google Scholar] [CrossRef]
- Anunmana, C.; Ueawitthayasuporn, C.; Kiattavorncharoen, S.; Thanasrisuebwong, P. In vitro comparison of surgical implant placement accuracy using guides fabricated by three different additive technologies. Appl. Sci. 2020, 10, 7791. [Google Scholar] [CrossRef]
- Singh, R. Comparison of PolyJet printing and silicon moulding as rapid plastic moulding solutions. Int. J. Automot. Mech. Eng. 2012, 6, 777–784. [Google Scholar] [CrossRef]
- Cottrell, S.; Howell, J. Reproducing musical instrument components from manufacturers’ technical drawings using 3D printing: Boosey & Hawkes as a case study. J. New Music Res. 2019, 48, 449–457. [Google Scholar] [CrossRef]
- Martínez-García, A.; Sandoval-Pérez, I.; Ibáñez-García, A.; Pernías-Peco, K.; Varela-Gandía, F.J.; Galvañ-Gisbert, J. Influence of process parameters of different additive manufacturing techniques on mechanical properties and safety of customised toys. Procedia Manuf. 2019, 41, 106–113. [Google Scholar] [CrossRef]
- Balavandy, S.K.; Li, F.; Macdonald, N.P.; Maya, F.; Townsend, A.T.; Frederick, K.; Guijt, R.M.; Breadmore, M.C. Scalable 3D printing method for the manufacture of single-material fluidic devices with integrated filter for point of collection colourimetric analysis. Anal. Chim. Acta 2020, 1151, 238101. [Google Scholar] [CrossRef]
- Bhat, M.A.; Shaikh, A.A. Effect of specimen parameters on mixed-mode I/II stress intensity factors for additive manufactured slant edge crack plate. Mater. Today Proc. 2021, 44, 4305–4308. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Shin, Y.-S.; Jung, H.-D.; Hwang, C.-J.; Baik, H.-S.; Cha, J.-Y. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Mahbub, P.; Nesterenko, P.N.; Paull, B. A new 3D printed radial flow-cell for chemiluminescence detection: Application in ion chromatographic determination of hydrogen peroxide in urine and coffee extracts. Anal. Chim. Acta 2018, 16, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Camardella, L.T.; Vilella, O.V.; Breuning, H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 1178–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Lin, W.-S.; Polido, W.D.; Eckert, G.J.; Morton, D. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates. J. Prosthet. Dent. 2019, 122, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Udroiu, R.; Nedelcu, A.; Deaky, B. Rapid manufacturing by PolyJet technology of customized turbines for renewable energy generation. Environ. Eng. Manag. J. 2011, 10, 1387–1394. [Google Scholar] [CrossRef]
- Maurya, N.K.; Rastogi, V.; Singh, P. Comparative study and measurement of form errors for the component printed by FDM and PolyJet process. J. Homepage Httpiieta Orgjournalsi2m 2019, 18, 353–359. [Google Scholar] [CrossRef]
- Dizon, J.R.C.; Valino, A.D.; Souza, L.R.; Espera, A.H.; Chen, Q.; Advincula, R.C. 3D printed injection molds using various 3D printing technologies. In Proceedings of the Materials Science Forum; Trans Tech Publ: Baech, Switzerland, 2020; Volume 1005, pp. 150–156. Available online: https://www.scientific.net/MSF.1005.150 (accessed on 12 July 2021).
- Nowacki, J.; Sieczkiewicz, N. Problems of determination of MultiJet 3D printing distortions using a 3D scanner. Arch. Mater. Sci. Eng. 2020, 103, 30–41. [Google Scholar] [CrossRef]
- Emir, F.; Ayyıldız, S. Accuracy evaluation of complete-arch models manufactured by three different 3D printing technologies: A three-dimensional analysis. J. Prosthodont. Res. 2020. [Google Scholar] [CrossRef]
- Childs, E.H.; Latchman, A.V.; Lamont, A.C.; Hubbard, J.D.; Sochol, R.D. Additive assembly for PolyJet-based multi-material 3D printed microfluidics. J. Microelectromech. Syst. 2020, 29, 1094–1096. [Google Scholar] [CrossRef]
- Kozior, T.; Kundera, C. Rheological properties of cellular structures manufactured by additive PJM technology. Teh. Vjesn. 2021, 28, 82–87. [Google Scholar] [CrossRef]
- Lee, K.Y.; Cho, J.W.; Chang, N.Y.; Chae, J.M.; Kang, K.H.; Kim, S.C.; Cho, J.H. Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J. Orthod. 2015, 45, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramola, M.; Yadav, V.; Jain, R. On the adoption of additive manufacturing in healthcare: A literature review. J. Manuf. Technol. Manag. 2019, 30, 48–69. [Google Scholar] [CrossRef]
- Ibrahim, D.; De oliveira, M.G.; Nobre, S.M.W.; Silva, D.N. Dimensional error of selective laser sintering, three-dimensional printing and PolyJetTM models in the reproduction of mandibular anatomy. J. Cranio-Maxillofac. Sur. 2009, 37, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M.; Paloheimo, K.; Tuomi, J.; Wolff, J.; Mäkitie, A. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Cranio-Maxillofac. Sur. 2013, 41, 603–609. [Google Scholar] [CrossRef]
- Paz, R.; Monzón, M.D.; Benítez, A.N.; González, B. New lightweight optimisation method applied in parts made by selective laser sintering and PolyJet technologies. Int. J. Comput. Integr. Manuf. 2016, 29, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Hosseinabadi, H.G.; Bagheri, R.; Gray, L.A.; Altstädt, V.; Drechsler, K. Plasticity in polymeric honeycombs made by photo-polymerization and nozzle based 3D-printing. Polym. Test. 2017, 63, 163–167. [Google Scholar] [CrossRef]
- Kim, G.D.; Oh, Y.T. A benchmark study on rapid prototyping processes and machines: Quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2008, 222, 201–215. [Google Scholar] [CrossRef]
- Manoharan, V.; Chou, S.M.; Forrester, S.; Chai, G.B.; Kong, P.W. Application of additive manufacturing techniques in sports footwear: This paper suggests a five-point scoring technique to evaluate the performance of four AM techniques, namely, stereolithography (SLA), PolyJet (PJ), selective laser sintering (SLS) and t. Virtual Phys. Prototyp. 2013, 8, 249–252. [Google Scholar] [CrossRef]
- Li, Y.; Linke, B.S.; Voet, H.; Falk, B.; Schmitt, R.; Lam, M. Cost, sustainability and surface roughness quality–A comprehensive analysis of products made with personal 3D printers. CIRP J. Manuf. Sci. Technol. 2017, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Queral, V.; Rincón, E.; Mirones, V.; Rios, L.; Cabrera, S. Dimensional accuracy of additively manufactured structures for modular coil windings of stellarators. Fusion Eng. Des. 2017, 124, 173–178. [Google Scholar] [CrossRef]
- Tan, W.S.; Suwarno, S.R.; An, J.; Chua, C.K.; Fane, A.G.; Chong, T.H. Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. J. Membr. Sci. 2017, 537, 283–296. [Google Scholar] [CrossRef]
- Hong, D.; Lee, S.; Kim, T.; Baek, J.H.; Lee, Y.; Chung, K.-W.; Sung, T.-Y.; Kim, N. Development of a personalized and realistic educational thyroid cancer phantom based on CT images: An evaluation of accuracy between three different 3D printers. Comput. Biol. Med. 2019, 113, 103393. [Google Scholar] [CrossRef]
- Khaledi, A.A.; Farzin, M.; Akhlaghian, M.; Pardis, S.; Mir, S. Evaluation of the marginal fit of metal copings fabricated by using 3 different CAD-CAM techniques: Milling, stereolithography, and 3D wax printer. J. Prosthet. Dent. 2020, 124, 81–86. [Google Scholar] [CrossRef]
- Park, J.; Jeon, J.; Koak, J.; Kim, S.; Heo, S. Dimensional accuracy and surface characteristics of 3D-printed dental casts. J. Prosthet. Dent. 2020. [Google Scholar] [CrossRef] [PubMed]
- Eliasova, H.; Dostalova, T.; Jelinek, M.; Remsa, J.; Bradna, P.; Prochazka, A.; Kloubcova, M. Surface morphology of three-dimensionally printed replicas of upper dental arches. Appl. Sci. 2020, 10, 5708. [Google Scholar] [CrossRef]
- Budzik, G.; Woźniak, J.; Paszkiewicz, A.; Przeszłowski, Ł.; Dziubek, T.; Dębski, M. Methodology for the quality control process of additive manufacturing products made of polymer materials. Materials 2021, 14, 2202. [Google Scholar] [CrossRef] [PubMed]
- Wesemann, C.; Spies, B.C.; Schaefer, D.; Adali, U.; Beuer, F.; Pieralli, S. Accuracy and its impact on fit of injection molded, milled and additively manufactured occlusal splints. J. Mech. Behav. Biomed. Mater. 2021, 114, 104179. [Google Scholar] [CrossRef] [PubMed]
- Kate, J.T.; Smit, G.; Breedveld, P. 3D-printed upper limb prostheses: A review. Disabil. Rehabil. Assist. Technol. 2017, 12, 300–314. [Google Scholar] [CrossRef]
- Hanisch, M.; Kroeger, E.; Dekiff, M.; Timme, M.; Kleinheinz, J.; Dirksen, D. 3D-printed surgical training model based on real patient situations for dental education. Int. J. Environ. Res. Public Health 2020, 17, 2901. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Freel, T.; Avermaete, A.V.; Leevy, W.M. Color enhancement strategies for 3D printing of x-ray computed tomography bone data for advanced anatomy teaching models. Appl. Sci. 2020, 10, 1571. [Google Scholar] [CrossRef] [Green Version]
- Sander, I.M.; Liepert, T.T.; Doney, E.L.; Leevy, W.M.; Liepert, D.R. Patient education for endoscopic sinus surgery: Preliminary experience using 3D-printed clinical imaging data. J. Funct. Biomater. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, G.A.; Bakhtiarydavijani, H.; Whittington, W.R.; Prabhu, R.; Jones, M.D. Material response characterization of three poly jet printed materials used in a high fidelity human infant skull. Mater. Today Proc. 2020, 20, 408–413. [Google Scholar] [CrossRef]
- Kitamori, H.; Sumida, I.; Tsujimoto, T.; Shimamoto, H.; Murakami, S.; Ohki, M. Evaluation of mouthpiece fixation devices for head and neck radiotherapy patients fabricated in PolyJet photopolymer by a 3D printer. Phys. Med. 2019, 58, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Etajuri, E.A.; Suliman, E.; Mahmood, W.A.A.; Ibrahim, N.; Buzayan, M.; Mohd, N.R. Deviation of dental implants placed using a novel 3D-printed surgical guide: An in vitro study. Dent. Med. Probl. 2020, 57, 359–362. [Google Scholar] [CrossRef]
- Turek, P.; Budzik, G.; Sęp, J.; Oleksy, M.; Józwik, J.; Przeszłowski, Ł.; Paszkiewicz, A.; Kochmański, Ł.; Żelechowski, D. An analysis of the casting polymer mold wear manufactured using PolyJet method based on the measurement of the surface topography. Polymers 2020, 12, 3029. [Google Scholar] [CrossRef] [PubMed]
- León-Cabezas, M.A.; Martínez-García, A.; Varela-Gandía, F.J. Innovative advances in additive manufactured moulds for short plastic injection series. Procedia Manuf. 2017, 13, 732–737. [Google Scholar] [CrossRef]
- Mendible, G.A.; Rulander, J.A.; Johnston, S.P. Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyp. J. 2017, 23, 344–352. [Google Scholar] [CrossRef]
- Schittny, R.; Bückmann, T.; Kadic, M.; Wegener, M. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Appl. Phys. Lett. 2013, 103, 231905. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.; Kazancı, Z. Crushing investigation of crash boxes filled with honeycomb and re-entrant (auxetic) lattices. Thin-Walled Struct. 2020, 150, 106676. [Google Scholar] [CrossRef]
- Wang, K.; Chang, Y.-H.; Chen, Y.; Zhang, C.; Wang, B. Designable dual-material auxetic metamaterials using three-dimensional printing. Mater. Des. 2015, 67, 159–164. [Google Scholar] [CrossRef]
- Mark, A.G.; Palagi, S.; Qiu, T.; Fischer, P. Auxetic metamaterial simplifies soft robot design. In Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA), Stockholm, Sweden, 16–21 May 2016; IEEE: New York, NY, USA, 2016; pp. 4951–4956. [Google Scholar]
- Derby, B.; Reis, N. Inkjet printing of highly loaded particulate suspensions. MRS Bull. 2003, 28, 815–818. [Google Scholar] [CrossRef]
- Ko, S.H.; Chung, J.; Hotz, N.; Nam, K.H.; Grigoropoulos, C.P. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J. Micromechanics Microengineering 2010, 20, 125010. [Google Scholar] [CrossRef]
- Lucklum, F.; Vellekoop, M.J. Design and fabrication challenges for millimeter-scale three-dimensional phononic crystals. Crystals 2017, 7, 348. [Google Scholar] [CrossRef] [Green Version]
- Vdovin, R.; Tomilina, T.; Smelov, V.; Laktionova, M. Implementation of the additive PolyJet technology to the development and fabricating the samples of the acoustic metamaterials. Procedia Eng. 2017, 176, 595–599. [Google Scholar] [CrossRef]
- Yu, T.; Lesieutre, G.A. Damping of sandwich panels via three-dimensional manufactured multimode metamaterial core. AIAA J. 2017, 55, 1440–1449. [Google Scholar] [CrossRef]
- Jabari, E.; Liravi, F.; Davoodi, E.; Lin, L.; Toyserkani, E. High speed 3D material-jetting additive manufacturing of viscous Graphene-based ink with high electrical conductivity. Addit. Manuf. 2020, 35, 101330. [Google Scholar] [CrossRef]
- Zhang, F.; Saleh, E.; Vaithilingam, J.; Li, Y.; Tuck, C.J.; Hague, R.J.M.; Wildman, R.D.; He, Y. Reactive material jetting of polyimide insulators for complex circuit board design. Addit. Manuf. 2019, 25, 477–484. [Google Scholar] [CrossRef]
- Liu, Y.; Varahramyan, K.; Cui, T. Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique. Macromol. Rapid Commun. 2005, 26, 1955–1959. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, T.; Varahramyan, K. All-polymer capacitor fabricated with inkjet printing technique. Solid. State. Electron. 2003, 47, 1543–1548. [Google Scholar] [CrossRef]
- Mirzaali, M.J.; Caracciolo, A.; Pahlavani, H.; Janbaz, S.; Vergani, L.; Zadpoor, A.A. Multi-material 3D printed mechanical metamaterials: Rational design of elastic properties through spatial distribution of hard and soft phases. Appl. Phys. Lett. 2018, 113, 241903. [Google Scholar] [CrossRef]
- Goh, G.D.; Agarwala, S.; Goh, G.L.; Dikshit, V.; Yeong, W.Y. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerosp. Sci. Technol. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Vanderploeg, A.; Lee, S.; Mamp, M. The application of 3D printing technology in the fashion industry. Int. J. Fash. Des. Technol. Educ. 2017, 10, 170–179. [Google Scholar] [CrossRef]
- Dämmer, G.; Gablenz, S.; Hildebrandt, A.; Major, Z. Design and shape optimization of PolyJet bellows actuators. In Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft), Livorno, Italy, 24–28 April 2018; IEEE: New York, NY, USA, 2018; pp. 282–287. [Google Scholar]
- Dämmer, G.; Gablenz, S.; Hildebrandt, A.; Major, Z. PolyJet-printed bellows actuators: Design, structural optimization, and experimental investigation. Front. Rob. AI 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Zeraatkar, M.; Filippini, D.; Percoco, G. On the impact of the fabrication method on the performance of 3D printed mixers. Micromachines 2019, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Lancea, C.; Campbell, I.; Chicos, L.-A.; Zaharia, S.-M. Compressive behaviour of lattice structures manufactured by PolyJet technologies. Polymers 2020, 12, 2767. [Google Scholar] [CrossRef] [PubMed]
- Sathishkumar, N.; Vivekanandan, N.; Balamurugan, L.; Arunkumar, N.; Ahamed, I. Mechanical properties of triply periodic minimal surface based lattices made by PolyJet printing. Mater. Today Proc. 2020, 22, 2934–2940. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M.; Fu, K.; Yu, M.; Zheng, G. Optimal design, analysis and additive manufacturing for two-level stochastic honeycomb structure. Int. J. Comput. Integr. Manuf. 2019, 32, 682–694. [Google Scholar] [CrossRef]
- Aguilera, A.F.E.; Nagarajan, B.; Fleck, B.A.; Qureshi, A.J. Ferromagnetic particle structuring in material jetting-Manufacturing control system and software development. Procedia Manuf. 2019, 34, 545–551. [Google Scholar] [CrossRef]
Main Material | Support Material | Machine | Layer Thickness | Reference |
---|---|---|---|---|
VeroBlack | FullCure 705 | Objet Connex 350 | - | [8] |
VeroWhite MED610 RGD 525 | FullCure 705 | Objet 260 Connex1 | - | [13] |
VeroMagenta | - | Objet 500 Connex3 | 0.03 mm | [63] |
VeroClear | - | - | 15 μm | [64] |
MED610 | - | Objet Eden 260VS | 16.5 μm | [65] |
FullCure 720, VeroWhite, VeroBlue | - | Objet Eden 260 | - | [66] |
VeroWhite | - | Objet 500 | 16 μm | [67] |
VeroWhite, FullCure 720, ABS-like | - | Objet J750 | 14–27 μm | [68] |
VeroClear | SUP707 | Objet Eden 260VS | - | [69] |
VeroBlue | FullCure 705 | Objet Eden 350 | 16 μm | [58] |
VeroWhite | FullCure 705 | Objet 30 | 28 μm | [38] |
FLX935, VeroMagenta | SUP706B | Objet J750 | - | [27] |
VeroClear, VeroWhitePlus | FullCure 705 | Objet 260 Connex2 | - | [55] |
VeroWhitePlus | FullCure 705 | Objet 30 | 16 μm | [70] |
- | - | Objet Eden 260VS | 16 μm | [71] |
VeroClear | SUP707 | Objet Eden 260VS | - | [72] |
FullCure 720 | - | Objet Eden 260VS | 16 μm | [73] |
MED610 | - | Objet Eden 260VS | - | [74] |
RGD240 | FullCure 705 | Objet 30 | 28 μm | [36] |
TangoBlackPlus VeroWhitePlus | - | Objet Connex 350 | 30 μm | [57] |
FullCure 720 | FullCure 705 | Objet Eden 350 | 16 μm | [75] |
RGD840 | FullCure 705 | Objet 30 | 28 μm | [76] |
RGD515 | - | Objet 350 | 16 μm | [77] |
FullCure 720 | - | Objet Eden 250 | 16 μm and 30 μm | [31,33] |
RGD720 | SUP706 | Objet 30 | - | [78] |
Digital ABS Ivory, VeroGray, RGD720 and Rigur | - | Connex2 Objet 500 | - | [56] |
VeroClear | - | Objet 30 Prime | 16–28 μm | [79] |
VeroBlackPlus | SUP706B | Objet J750 | 27 μm | [50] |
VeroWhite, RDG525, MED610 | - | Objet 260 Connex1 | - | [32] |
Agilus30 and VeroWhite | SUP706 | Objet 500 Connex3 | - | [80] |
VeroWhitePlus | FullCure 705 | Objet 260 Connex | - | [48] |
VeroClear | - | Objet 30 Prime | 28 μm | [44] |
FullCure 720 | - | Objet Eden 250 | 16, 30 μm | [30] |
FullCure 720 | - | Objet Eden 250 | 16, 30 μm | [34] |
RGD240 | FullCure 705 | Object 30 | 28 μm | [51] |
FullCure 720, VeroWhite | FullCure 705 | Objet Connex 350 | 32 μm | [81] |
VeroWhitePlus | - | Object 30 | 16 μm | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting—A Critical Review. Polymers 2021, 13, 2829. https://doi.org/10.3390/polym13162829
Gülcan O, Günaydın K, Tamer A. The State of the Art of Material Jetting—A Critical Review. Polymers. 2021; 13(16):2829. https://doi.org/10.3390/polym13162829
Chicago/Turabian StyleGülcan, Orhan, Kadir Günaydın, and Aykut Tamer. 2021. "The State of the Art of Material Jetting—A Critical Review" Polymers 13, no. 16: 2829. https://doi.org/10.3390/polym13162829
APA StyleGülcan, O., Günaydın, K., & Tamer, A. (2021). The State of the Art of Material Jetting—A Critical Review. Polymers, 13(16), 2829. https://doi.org/10.3390/polym13162829