Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modelling Approach
3. Comparison between Model Predictions and Data
3.1. Linear-Viscoelastic Characterization
3.2. Extensional Stress Growth Coefficient
4. Discussions of Polydispersity, Molecular Architecture, and Strain Hardening
4.1. Relationship between Dilution Modulus, Polydispersity, and Long Chain Branching Index
4.2. A New Approach for Evaluating Strain Hardening
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Musil, J.; Zatloukal, M. Historical Review of Secondary Entry Flows in Polymer Melt Extrusion. Polym. Rev. 2019, 59, 338–390. [Google Scholar] [CrossRef]
- Speight, R.G.; Costa, F.; Kennedy, P.K.; Friedl, C.; Liu, S.-J.; Lin, K.-Y.; Tsai, S.-K. Best practice for benchmarking injection moulding simulation. Plast. Rubber Compos. 2008, 37, 124–130. [Google Scholar] [CrossRef]
- Kloziński, A.; Jakubowska, P. The evaluation of extensional viscosity of highly filled polyolefins composites films with calcium carbonate. Polym. Eng. Sci. 2019, 59, E155–E163. [Google Scholar] [CrossRef]
- Liang, J.-Z. Melt spinning flow behaviour of high-density polyethylene blended with low-density polyethylene. Plast. Rubber Compos. 2019, 48, 256–262. [Google Scholar] [CrossRef]
- Münstedt, H.; Kurzbeck, S.; Stange, J. Importance of elongational properties of polymer melts for film blowing and thermoforming. Polym. Eng. Sci. 2006, 46, 1190–1195. [Google Scholar] [CrossRef]
- Barborik, T.; Zatloukal, M. Steady-state modeling of extrusion cast film process, neck-in phenomenon, and related experimental research: A review. Physics Fluids 2020, 32, 061302. [Google Scholar] [CrossRef]
- Burghelea, T.I.; Grieß, H.J.; Münstedt, H. An In Situ investigation of the draw resonance phenomenon in film casting of a polypropylene melt. J. Non-Newtonian Fluid Mech. 2012, 17–174, 87–96. [Google Scholar] [CrossRef]
- Yan, D.; Wang, W.-J.; Zhu, S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymera 1999, 40, 1737–1744. [Google Scholar] [CrossRef]
- Bersted, B.H.; Slee, J.D.; Richter, C.A. Prediction of rheological behavior of branched polyethylene from molecular structure. J. Appl. Polym. Sci. 1981, 26, 1001–1014. [Google Scholar] [CrossRef]
- Pang, S.; Rudin, A. Size-Exclusion Chromatographic Assessment of Long-Chain Branch Frequency in Polyethylenes. In ACS Symposium Series; American Chemical Society (ACS): Washington, DC, USA, 1993; pp. 254–269. [Google Scholar]
- Shroff, R.N.; Mavridis, H. Assessment of NMR and Rheology for the Characterization of LCB in Essentially Linear Polyethylenes. Macromolecules 2001, 34, 7362–7367. [Google Scholar] [CrossRef]
- Janzen, J.; Colby, R. Diagnosing long-chain branching in polyethylenes. J. Mol. Struct. 1999, 485-486, 569–583. [Google Scholar] [CrossRef]
- Crosby, B.J.; Mangnus, M.; De Groot, W.; Daniels, R.; McLeish, T.C.B. Characterization of long chain branching: Dilution rheology of industrial polyethylenes. J. Rheol. 2002, 46, 401–426. [Google Scholar] [CrossRef]
- Chai, C.K.; Ang, S.C. An Evaluation of Dilution Rheology for the Characterization of Long Chain Branching of Polyethylenes. Appl. Rheol. 2006, 16, 90–101. [Google Scholar] [CrossRef]
- Wood-Adams, P.M.; Dealy, J.M.; Degroot, A.W.; Redwine, O.D. Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene. Macromolecules 2000, 33, 7489–7499. [Google Scholar] [CrossRef]
- He, C.; Wood-Adams, P.; Dealy, J.M. Broad frequency range characterization of molten polymers. J. Rheol. 2004, 48, 711–724. [Google Scholar] [CrossRef]
- Vega, J.F.; Santamaría, A.; Muñoz-Escalona, A.; Lafuente, P. Small-Amplitude Oscillatory Shear Flow Measurements as a Tool to Detect Very Low Amounts of Long Chain Branching in Polyethylenes. Macromolecules 1998, 31, 3639–3647. [Google Scholar] [CrossRef]
- Vega, J.; Aguilar, M.; Peón, J.; Pastor, D.; Martínez-Salazar, J. Effect of long chain branching on linear-viscoelastic melt properties of polyolefins. e-Polymers 2002, 2, 624–658. [Google Scholar] [CrossRef] [Green Version]
- Van Gurp, M.; Palmen, J. Time-temperature superposition for polymeric blends. Rheol. Bull 1998, 67, 5–8. [Google Scholar]
- Trinkle, S.; Walter, P.; Friedrich, C. Van Gurp-Palmen Plot II—Classification of long chain branched polymers by their topology. Rheol. Acta 2002, 41, 103–113. [Google Scholar] [CrossRef]
- García-Franco, C.A.; Lohse, D.J.; Robertson, C.G.; Georjon, O. Relative quantification of long chain branching in essentially linear polyethylenes. Eur. Polym. J. 2008, 44, 376–391. [Google Scholar] [CrossRef]
- Hatzikiriakos, S.G. Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym. Eng. Sci. 2000, 40, 2279–2287. [Google Scholar] [CrossRef]
- Morelly, S.L.; Alvarez, N.J. Characterizing long-chain branching in commercial HDPE samples via linear viscoelasticity and extensional rheology. Rheol. Acta 2020, 59, 797–807. [Google Scholar] [CrossRef]
- Shroff, R.N.; Mavridis, H. Long-Chain-Branching Index for Essentially Linear Polyethylenes. Macromolecules 1999, 32, 8454–8464. [Google Scholar] [CrossRef]
- Narimissa, E.; Rolón-Garrido, V.H.; Wagner, M.H. A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: Elongational flow. Rheol. Acta 2015, 54, 779–791. [Google Scholar] [CrossRef]
- Narimissa, E.; Rolón-Garrido, V.H.; Wagner, M.H. A hierarchical multi-mode MSF model for long-chain branched polymer melts part II: Multiaxial extensional flows. Rheol. Acta 2016, 55, 327–333. [Google Scholar] [CrossRef]
- Narimissa, E.; Wagner, M.H. A Hierarchical Multi-Mode Molecular Stress Function Model for Linear Polymer Melts in Extensional Flows. J. Rheol. 2016, 60, 625–636. [Google Scholar] [CrossRef]
- Narimissa, E.; Wagner, M.H. A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: Shear flows. Rheol. Acta 2016, 55, 633–639. [Google Scholar] [CrossRef]
- Narimissa, E.; Wagner, M.H. Review of the hierarchical multi-mode molecular stress function model for broadly distributed linear and LCB polymer melts. Polym. Eng. Sci. 2019, 59, 573–583. [Google Scholar] [CrossRef]
- Narimissa, E.; Wagner, M.H. From linear viscoelasticity to elongational flow of polydisperse linear and branched polymer melts: The hierarchical multi-mode molecular stress function model. Polymers 2016, 104, 204–214. [Google Scholar] [CrossRef]
- Narimissa, E.; Wagner, M.H. Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts. J. Rheol. 2019, 63, 361–375. [Google Scholar] [CrossRef]
- Winter, H.H.; Mours, M. The cyber infrastructure initiative for rheology. Rheol. Acta 2006, 45, 331–338. [Google Scholar] [CrossRef]
- Stadler, F.; Münstedt, H. Correlations between the Shape of Viscosity Functions and the Molecular Structure of Long-Chain Branched Polyethylenes. Macromol. Mater. Eng. 2009, 294, 25–34. [Google Scholar] [CrossRef]
- Doi, M.; Edwards, S.F. The Theory of Polymer Dynamics; Oxford University Press: Oxford, UK, 1986; p. 408. [Google Scholar]
- Wagner, M.H.; Kheirandish, S.; Hassager, O. Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J. Rheol. 2005, 49, 1317–1327. [Google Scholar] [CrossRef] [Green Version]
- Wingstrand, S.L.; Shen, B.; Kornfield, J.A.; Mortensen, K.; Parisi, D.; Vlassopoulos, D.; Hassager, O. Rheological Link Between Polymer Melts with a High Molecular Weight Tail and Enhanced Formation of Shish-Kebabs. ACS Macro Lett. 2017, 6, 1268–1273. [Google Scholar] [CrossRef]
- Poh, L.; Li, B.; Yu, W.; Narimissa, E.; Wagner, M.H. Modeling of nonlinear extensional and shear rheology of low-viscosity polymer melts. Polym. Eng. Sci. 2021, 61, 1077–1086. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer, 2021.
- Doi, M.; Edwards, S.F.; Goldbart, P.; Goldenfeld, N.; Sherrington, D. Reprint Dynamics of Concentrated Polymer Systems Part 2.—Molecular Motion under Flow. Stealing Gold 2004, 3, 301–317. [Google Scholar] [CrossRef]
- Burghelea, T.I.; Starý, Z.; Münstedt, H. On the "viscosity overshoot" during the uniaxial extension of a low density polyethylene. J. Non-Newton. Fluid Mech. 2011, 166, 1198–1209. [Google Scholar] [CrossRef]
- Rasmussen, H.K.; Fasano, A. Flow and breakup in extension of low-density polyethylene. Rheol. Acta 2018, 57, 317–325. [Google Scholar] [CrossRef]
- Wagner, M.H.; Narimissa, E.; Poh, L.; Shahid, T. Modeling elongational viscosity and brittle fracture of polystyrene solutions. Rheol. Acta 2021, 1–12. [Google Scholar] [CrossRef]
PE 191-8 (IRIS). | PE 127-9 (IRIS) | PE 124-10 (IRIS) | PE 236-12 (IRIS) | ||||
---|---|---|---|---|---|---|---|
3.161 × 105 | 6.605 × 10−3 | 3.435 × 104 | 1.724 × 10−2 | 3.593 × 105 | 1.432 × 10−3 | 2.895 × 105 | 4.577 × 10−3 |
6.551 × 104 | 4.203 × 10−2 | 1.382 × 105 | 6.802 × 10−3 | 5.105 × 104 | 1.783 × 10−2 | 6.273 × 104 | 2.720 × 10−2 |
2.153 × 104 | 1.856 × 10−1 | 2.855 × 104 | 8.031 × 10−2 | 2.203 × 104 | 8.784 × 10−2 | 2.630 × 104 | 1.060 × 10−1 |
5.755 × 103 | 8.070 × 10−1 | 9.711 × 103 | 4.811 × 10−1 | 9.028 × 103 | 4.148 × 10−1 | 9.387 × 103 | 4.105 × 10−1 |
1.274 × 103 | 3.638 × 100 | 2.932 × 103 | 2.859 × 100 | 3.559 × 103 | 1.953 × 100 | 2.944 × 103 | 1.616 × 100 |
2.290 × 102 | 1.695 × 101 | 7.638 × 102 | 1.719 × 101 | 1.258 × 103 | 9.099 × 100 | 8.109 × 102 | 6.347 × 100 |
4.692 × 101 | 9.925 × 101 | 2.257 × 102 | 1.288 × 102 | 4.431 × 102 | 4.527 × 101 | 1.946 × 102 | 2.611 × 101 |
- | - | - | - | 1.581 × 102 | 4.298 × 102 | 5.934 × 101 | 1.449 × 102 |
η0@160°C = 26,650 Pas | η0@160°C = 59,090 Pas | η0@160°C = 113,500 Pas | η0@160°C = 33,250 Pas |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poh, L.; Narimissa, E.; Wagner, M.H. Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model. Polymers 2021, 13, 3217. https://doi.org/10.3390/polym13193217
Poh L, Narimissa E, Wagner MH. Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model. Polymers. 2021; 13(19):3217. https://doi.org/10.3390/polym13193217
Chicago/Turabian StylePoh, Leslie, Esmaeil Narimissa, and Manfred H. Wagner. 2021. "Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model" Polymers 13, no. 19: 3217. https://doi.org/10.3390/polym13193217
APA StylePoh, L., Narimissa, E., & Wagner, M. H. (2021). Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model. Polymers, 13(19), 3217. https://doi.org/10.3390/polym13193217