Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers
Abstract
:1. Introduction
1.1. Diabetic Foot Ulcers (DFUs)
1.1.1. General Pathobiochemical Hallmarks of Chronic Wounds in the DFU
1.1.2. General Risk Factors Associated with DFU for Preventing LEA
1.1.3. Topical Ulcer Treatment of Preventing the DFU
2. Oxygen Releasable Compounds: Different Approaches for the DFU
3. Oxygen in Diabetic Wound Repairs
4. Examples of Oxygen-Releasing Composites in the Tissue Engineering
4.1. Hydrogen Peroxides: Orangic Oxygen Releasing Compounds
4.2. Solid Peroxides: Inorangic Oxygen Releasing Compounds
4.3. Perfluorocarbons: Passive Oxygen Releasing Compounds
5. Topical Oxygen-Releasing Composites in the Management of the DFU
5.1. Topical Delivery of Oxygen: Significance of Repeated Oxygen Supplements
5.2. Potential Examples of Viable Oxygen-Releasing Composites for the DFU
5.3. Antibacterial Activities of Oxygen-Releasing Composites
5.4. Perspecitve and Future Directions for Oxygen-Releasing Composites
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siitonen, O.I.; Niskanen, L.K.; Laakso, M.; Siitonen, J.T.; Pyörälä, K. Lower-extremity amputations in diabetic and nondiabetic patients. A population-based study in eastern Finland. Diabetes Care 1993, 16, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Price, P. The Diabetic Foot: Quality of Life. Clin. Infect. Dis. 2004, 39, S129–S131. [Google Scholar] [CrossRef]
- Gurney, J.K.; Stanley, J.; Rumball-Smith, J.; York, S.; Sarfati, D. Postoperative Death After Lower-Limb Amputation in a National Prevalent Cohort of Patients With Diabetes. Diabetes Care 2018, 41, 1204–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzarini, P.A.; Jarl, G. Knee-High Devices Are Gold in Closing the Foot Ulcer Gap: A Review of Offloading Treatments to Heal Diabetic Foot Ulcers. Medicina 2021, 57, 941. [Google Scholar] [CrossRef]
- Chereddy, K.K.; Lopes, A.; Koussoroplis, S.; Payen, V.; Moia, C.; Zhu, H.; Sonveaux, P.; Carmeliet, P.; des Rieux, A.; Vandermeulen, G.; et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1975–1984. [Google Scholar] [CrossRef]
- Losi, P.; Briganti, E.; Errico, C.; Lisella, A.; Sanguinetti, E.; Chiellini, F.; Soldani, G. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013, 9, 7814–7821. [Google Scholar] [CrossRef]
- Zgheib, C.; Hilton, S.A.; Dewberry, L.C.; Hodges, M.M.; Ghatak, S.; Xu, J.; Singh, S.; Roy, S.; Sen, C.K.; Seal, S.; et al. Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. J. Am. Coll. Surg. 2019, 228, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Y.; Cornel, E.J.; Li, C.; Du, J. Combined Antioxidant-Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS Nano 2021, 15, 9027–9038. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Tamer, T.M.; Valachová, K.; Omer, A.M.; El-Shafeey, M.; Mohy Eldin, M.S.; Šoltés, L. Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int. J. Biol. Macromol. 2021, 166, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cankova, Z.; Iwanaszko, M.; Lichtor, S.; Mrksich, M.; Ameer, G.A. Potent laminin-inspired antioxidant regenerative dressing accelerates wound healing in diabetes. Proc. Natl. Acad. Sci. USA 2018, 115, 6816–6821. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv. Healthc. Mater. 2020, 9, 1901502. [Google Scholar] [CrossRef]
- Sano, H.; Ichioka, S.; Sekiya, N. Influence of Oxygen on Wound Healing Dynamics: Assessment in a Novel Wound Mouse Model under a Variable Oxygen Environment. PLoS ONE 2012, 7, e50212. [Google Scholar] [CrossRef] [Green Version]
- Knighton, D.R.; Halliday, B.; Hunt, T.K. Oxygen as an Antibiotic: A Comparison of the Effects of Inspired Oxygen Concentration and Antibiotic Administration on In Vivo Bacterial Clearance. Arch. Surg. 1986, 121, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Knighton, D.R.; Halliday, B.; Hunt, T.K. Oxygen as an Antibiotic: The Effect of Inspired Oxygen on Infection. Arch. Surg. 1984, 119, 199–204. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.K.; Mudgal, S.K.; Jelly, P.; Thakur, K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci. Rep. 2021, 11, 2189. [Google Scholar] [CrossRef]
- Heyboer, M., 3rd; Sharma, D.; Santiago, W.; McCulloch, N. Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified. Adv Wound Care (New Rochelle) 2017, 6, 210–224. [Google Scholar] [CrossRef] [Green Version]
- Gordillo, G.M.; Sen, C.K. Revisiting the essential role of oxygen in wound healing. Am. J. Surg. 2003, 186, 259–263. [Google Scholar] [CrossRef]
- Gregg, E.W.; Li, Y.; Wang, J.; Rios Burrows, N.; Ali, M.K.; Rolka, D.; Williams, D.E.; Geiss, L. Changes in Diabetes-Related Complications in the United States, 1990–2010. N. Engl. J. Med. 2014, 370, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Widatalla, A.H.; Mahadi, S.E.I.; Shawer, M.A.; Elsayem, H.A.; Ahmed, M.E. Implementation of diabetic foot ulcer classification system for research purposes to predict lower extremity amputation. Int. J. Diabetes Dev. Ctries 2009, 29, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, F.W., Jr. The diabetic foot. Orthopedics 1987, 10, 163–172. [Google Scholar] [CrossRef]
- Singh, N.; Armstrong, D.G.; Lipsky, B.A. Preventing Foot Ulcers in Patients With Diabetes. JAMA 2005, 293, 217–228. [Google Scholar] [CrossRef]
- Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef]
- Young, M.J.; Boulton, A.J.M.; Macleod, A.F.; Williams, D.R.R.; Sonksen, P.H. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993, 36, 150–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volmer-Thole, M.; Lobmann, R. Neuropathy and Diabetic Foot Syndrome. Int. J. Mol. Sci. 2016, 17, 917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, H. Motor dysfunction in diabetes. Diabetes/Metab. Res. Rev. 2012, 28, 89–92. [Google Scholar] [CrossRef]
- Bus, S.A.; Armstrong, D.G.; van Deursen, R.W.; Lewis, J.E.; Caravaggi, C.F.; Cavanagh, P.R. IWGDF guidance on footwear and offloading interventions to prevent and heal foot ulcers in patients with diabetes. Diabetes/Metab. Res. Rev. 2016, 32 (Suppl. s1), 25–36. [Google Scholar] [CrossRef] [Green Version]
- Lavery, L.A.; La Fontaine, J.; Kim, P.J. Preventing the first or recurrent ulcers. Med. Clin. N. Am. 2013, 97, 807–820. [Google Scholar] [CrossRef]
- Lavery, L.A.; Peters, E.J.; Armstrong, D.G. What are the most effective interventions in preventing diabetic foot ulcers? Int. Wound J. 2008, 5, 425–433. [Google Scholar] [CrossRef] [PubMed]
- La Sala, L.; Prattichizzo, F.; Ceriello, A. The link between diabetes and atherosclerosis. Eur. J. Prev. Cardiol. 2019, 26, 15–24. [Google Scholar] [CrossRef]
- Pecoraro, R.E.; Reiber, G.E.; Burgess, E.M. Pathways to Diabetic Limb Amputation: Basis for Prevention. Diabetes Care 1990, 13, 513–521. [Google Scholar] [CrossRef]
- Perez-Favila, A.; Martinez-Fierro, M.L.; Rodriguez-Lazalde, J.G.; Cid-Baez, M.A.; Zamudio-Osuna, M.d.J.; Martinez-Blanco, M.d.R.; Mollinedo-Montaño, F.E.; Rodriguez-Sanchez, I.P.; Castañeda-Miranda, R.; Garza-Veloz, I. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina 2019, 55, 714. [Google Scholar] [CrossRef] [Green Version]
- Wetzler, C.; Kämpfer, H.; Stallmeyer, B.; Pfeilschifter, J.; Frank, S. Large and Sustained Induction of Chemokines during Impaired Wound Healing in the Genetically Diabetic Mouse: Prolonged Persistence of Neutrophils and Macrophages during the Late Phase of Repair. J. Investig. Dermatol. 2000, 115, 245–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, K.A.; Liu, Z.J.; Xiao, M.; Chen, H.; Goldstein, L.J.; Buerk, D.G.; Nedeau, A.; Thom, S.R.; Velazquez, O.C. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J. Clin. Investig. 2007, 117, 1249–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, L.; Ginebri, A.; Hagman, J.; Francesconi, F.; Carboni, I.; Chimenti, S. Local treatment of chronic cutaneous leg ulcers with recombinant human granulocyte-macrophage colony-stimulating factor. J. Eur. Acad. Dermatol. Venereol. 2002, 16, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Trengove, N.J.; Stacey, M.C.; Macauley, S.; Bennett, N.; Gibson, J.; Burslem, F.; Murphy, G.; Schultz, G. Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair Regen. 1999, 7, 442–452. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Iga, T.; Mori, Y. Tumor necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts. FEBS Lett. 1990, 269, 93–95. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.C.; Lan, C.E. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. J. Dermatol. Sci. 2016, 84, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2010, 1802, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, J.; Zhang, Q.; Zhang, D.; Xiang, F.; Jia, J.; Wei, P.; Zhang, J.; Hu, J.; Huang, Y. High Glucose Suppresses Keratinocyte Migration Through the Inhibition of p38 MAPK/Autophagy Pathway. Front. Physiol. 2019, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulbrecht, J.S.; Cavanagh, P.R.; Caputo, G.M. Foot Problems in Diabetes: An Overview. Clin. Infect. Dis. 2004, 39, S73–S82. [Google Scholar] [CrossRef]
- Catrina, S.-B.; Zheng, X. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers. Diabetes/Metab. Res. Rev. 2016, 32, 179–185. [Google Scholar] [CrossRef]
- Botusan, I.R.; Sunkari, V.G.; Savu, O.; Catrina, A.I.; Grünler, J.; Lindberg, S.; Pereira, T.; Ylä-Herttuala, S.; Poellinger, L.; Brismar, K.; et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc. Natl. Acad. Sci. USA 2008, 105, 19426–19431. [Google Scholar] [CrossRef] [Green Version]
- Catrina, S.-B.; Okamoto, K.; Pereira, T.; Brismar, K.; Poellinger, L. Hyperglycemia Regulates Hypoxia-Inducible Factor-1α Protein Stability and Function. Diabetes 2004, 53, 3226–3232. [Google Scholar] [CrossRef] [Green Version]
- Bennett, P.J.; Stocks, A.E.; Whittam, D.J. Analysis of risk factors for neuropathic foot ulceration in diabetes mellitus. J. Am. Podiatr. Med Assoc. 1996, 86, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Lavery, L.A.; Pham, H.; Harvey, C.; Harkless, L.; Veves, A. Role of neuropathy and high foot pressures in diabetic foot ulceration. Diabetes Care 1998, 21, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Pouget, C.; Dunyach-Remy, C.; Pantel, A.; Schuldiner, S.; Sotto, A.; Lavigne, J.-P. Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020, 8, 1580. [Google Scholar] [CrossRef] [PubMed]
- Gallacher, S.J.; Thomson, G.; Fraser, W.D.; Fisher, B.M.; Gemmell, C.G.; MacCuish, A.C. Neutrophil Bactericidal Function in Diabetes Mellitus: Evidence for Association with Blood Glucose Control. Diabet. Med. 1995, 12, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G. An evidence-based approach to diabetic foot infections. Am. J. Surg. 2003, 186, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Tamer, T.M.; Rageh, A.A.; Abou-Zeid, A.M.; Abd El-Zaher, E.H.F.; Kenawy, E.-R. Insight into multidrug-resistant microorganisms from microbial infected diabetic foot ulcers. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A. Diabetic foot infections: Current treatment and delaying the ‘post-antibiotic era’. Diabetes/Metab. Res. Rev. 2016, 32, 246–253. [Google Scholar] [CrossRef]
- Moura, L.I.F.; Dias, A.M.A.; Carvalho, E.; de Sousa, H.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment—A review. Acta Biomater. 2013, 9, 7093–7114. [Google Scholar] [CrossRef] [Green Version]
- Maquart, F.X.; Siméon, A.; Pasco, S.; Monboisse, J.C. Regulation of cell activity by the extracellular matrix: The concept of matrikines. J. Soc. Biol. 1999, 193, 423–428. [Google Scholar] [CrossRef]
- Duca, L.; Floquet, N.; Alix, A.J.P.; Haye, B.; Debelle, L. Elastin as a matrikine. Crit. Rev. Oncol./Hematol. 2004, 49, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Waite, A.J.; Bonner, J.S.; Autenrieth, R. Kinetics and Stoichiometry of Oxygen Release from Solid Peroxides. Environ. Eng. Sci. 1999, 16, 187–199. [Google Scholar] [CrossRef]
- Jägers, J.; Wrobeln, A.; Ferenz, K.B. Perfluorocarbon-based oxygen carriers: From physics to physiology. Pflug. Arch 2021, 473, 139–150. [Google Scholar] [CrossRef]
- White, D.C.; Teasdale, P.R. The oxygenation of blood by hydrogen peroxide: In vitro studies. Br. J. Anaesth. 1966, 38, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, P. Reaction Between Catalase and Hydrogen Peroxide. Nature 1947, 160, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Hiner, A.N.P.; Hernández-Ruiz, J.; Williams, G.A.; Arnao, M.B.; García-Cánovas, F.; Acosta, M. Catalase-like Oxygen Production by Horseradish Peroxidase Must Predominantly Be an Enzyme-Catalyzed Reaction. Arch. Biochem. Biophys. 2001, 392, 295–302. [Google Scholar] [CrossRef]
- Jonsson, K.; Jensen, J.A.; Goodson, W.H., 3rd; Scheuenstuhl, H.; West, J.; Hopf, H.W.; Hunt, T.K. Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann. Surg. 1991, 214, 605–613. [Google Scholar] [CrossRef]
- Gottrup, F. Oxygen in Wound Healing and Infection. World J. Surg. 2004, 28, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, K.-H.; Gess, B.; Lohaus, C.; Meyer, H.E.; Katschinski, D.; Kurtz, A. Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur. J. Biochem. 2003, 270, 4515–4522. [Google Scholar] [CrossRef] [PubMed]
- Hohn, D.C.; MacKay, R.D.; Halliday, B.; Hunt, T.K. Effect of O2 tension on microbicidal function of leukocytes in wounds and in vitro. Surg. Forum 1976, 27, 18–20. [Google Scholar] [PubMed]
- Doctor, N.; Pandya, S.; Supe, A. Hyperbaric oxygen therapy in diabetic foot. J. Postgrad. Med. 1992, 38, 112. [Google Scholar]
- Londahl, M.; Katzman, P.; Nilsson, A.; Hammarlund, C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care 2010, 33, 998–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faglia, E.; Favales, F.; Aldeghi, A.; Calia, P.; Quarantiello, A.; Oriani, G.; Michael, M.; Campagnoli, P.; Morabito, A. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care 1996, 19, 1338–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Quality, O. Hyperbaric Oxygen Therapy for the Treatment of Diabetic Foot Ulcers: A Health Technology Assessment. Ont. Health Technol. Assess. Ser. 2017, 17, 1–142. [Google Scholar]
- Ambiru, S.; Furuyama, N.; Aono, M.; Otsuka, H.; Suzuki, T.; Miyazaki, M. Analysis of risk factors associated with complications of hyperbaric oxygen therapy. J. Crit. Care 2008, 23, 295–300. [Google Scholar] [CrossRef]
- Manning, E.P. Central Nervous System Oxygen Toxicity and Hyperbaric Oxygen Seizures. Aerosp. Med. Hum. Perform. 2016, 87, 477–486. [Google Scholar] [CrossRef]
- Abdi, S.I.H.; Ng, S.M.; Lim, J.O. An enzyme-modulated oxygen-producing micro-system for regenerative therapeutics. Int. J. Pharm. 2011, 409, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Abdi, S.I.H.; Choi, J.Y.; Lau, H.C.; Lim, J.O. Controlled release of oxygen from PLGA-alginate layered matrix and its in vitro characterization on the viability of muscle cells under hypoxic environment. Tissue Eng. Regen. Med. 2013, 10, 131–138. [Google Scholar] [CrossRef]
- Montazeri, L.; Hojjati-Emami, S.; Bonakdar, S.; Tahamtani, Y.; Hajizadeh-Saffar, E.; Noori-Keshtkar, M.; Najar-Asl, M.; Ashtiani, M.K.; Baharvand, H. Improvement of islet engrafts by enhanced angiogenesis and microparticle-mediated oxygenation. Biomaterials 2016, 89, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohseni-Vadeghani, E.; Karimi-Soflou, R.; Khorshidi, S.; Karkhaneh, A. Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: Solid filled versus hollow microparticles. Colloids Surf. B Biointerfaces 2021, 197, 111376. [Google Scholar] [CrossRef]
- McQuilling, J.P.; Opara, E.C. Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems. Methods Mol. Biol. 2017, 1479, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, K.M. Hyperbaric oxygen-generating hydrogels. Biomaterials 2018, 182, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.K.; Ross, C.L.; Smith, L.C.; Jeong, S.S.; Kim, J.; Yoo, J.J.; Harrison, B.S. Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds. Wound Repair Regen. 2015, 23, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qiu, J.; Guo, A.; Ren, R.; He, W.; Liu, S.; Liu, Y. Nanoscale perfluorocarbon expediates bone fracture healing through selectively activating osteoblastic differentiation and functions. J. Nanobiotechnol. 2020, 18, 84. [Google Scholar] [CrossRef]
- Lowe, K.C. Chapter 25—Fluosol®: The first commercial injectable perfluorocarbon oxygen carrier. In Blood Substitutes; Winslow, R.M., Ed.; Academic Press: Oxford, UK, 2006; pp. 276–287. [Google Scholar] [CrossRef]
- Panarin, E.F.; Kalninsh, K.K.; Pestov, D.V. Complexation of hydrogen peroxide with polyvinylpyrrolidone: Ab initio calculations. Eur. Polym. J. 2001, 37, 375–379. [Google Scholar] [CrossRef]
- Żeglin’ski, J.; Piotrowski, G.P.; Piękos’, R. A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry. J. Mol. Struct. 2006, 794, 83–91. [Google Scholar] [CrossRef]
- Sudur Zalluhoglu, F.; Dogan, E.M.; Namusuubo, N.P.; Orbey, N.; Jahngen, E. In Situ Encapsulation of Hydrogen Peroxide in a Silica Matrix in the Presence of Divalent Metal Ions (Mg2+ and Ca2+). Ind. Eng. Chem. Res. 2017, 56, 2607–2614. [Google Scholar] [CrossRef]
- Harrison, B.S.; Eberli, D.; Lee, S.J.; Atala, A.; Yoo, J.J. Oxygen producing biomaterials for tissue regeneration. Biomaterials 2007, 28, 4628–4634. [Google Scholar] [CrossRef]
- Pedraza, E.; Coronel, M.M.; Fraker, C.A.; Ricordi, C.; Stabler, C.L. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials. Proc. Natl. Acad. Sci. USA 2012, 109, 4245–4250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Endo, H.; Okuyama, H.; Takeda, T.; Iwahashi, H.; Imagawa, A.; Yamagata, K.; Shimomura, I.; Inoue, M. Cellular hypoxia of pancreatic beta-cells due to high levels of oxygen consumption for insulin secretion in vitro. J. Biol. Chem. 2011, 286, 12524–12532. [Google Scholar] [CrossRef] [Green Version]
- Shiekh, P.A.; Singh, A.; Kumar, A. Oxygen-Releasing Antioxidant Cryogel Scaffolds with Sustained Oxygen Delivery for Tissue Engineering Applications. ACS Appl. Mater. Interfaces 2018, 10, 18458–18469. [Google Scholar] [CrossRef]
- Shiekh, P.A.; Singh, A.; Kumar, A. Engineering Bioinspired Antioxidant Materials Promoting Cardiomyocyte Functionality and Maturation for Tissue Engineering Application. ACS Appl. Mater. Interfaces 2018, 10, 3260–3273. [Google Scholar] [CrossRef] [PubMed]
- Spiess, B.D. Perfluorocarbon emulsions as a promising technology: A review of tissue and vascular gas dynamics. J. Appl. Physiol. 2009, 106, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa, M.; Rahimi, R.; Huang, T.L.; Alemdar, N.; Khademhosseini, A.; Dokmeci, M.R.; Ziaie, B. A paper-based oxygen generating platform with spatially defined catalytic regions. Sens. Actuators B Chem. 2014, 198, 472–478. [Google Scholar] [CrossRef]
- Fries, R.B.; Wallace, W.A.; Roy, S.; Kuppusamy, P.; Bergdall, V.; Gordillo, G.M.; Melvin, W.S.; Sen, C.K. Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 2005, 579, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Kalliainen, L.K.; Gordillo, G.M.; Schlanger, R.; Sen, C.K. Topical oxygen as an adjunct to wound healing: A clinical case series. Pathophysiology 2003, 9, 81–87. [Google Scholar] [CrossRef]
- Patil, P.S.; Fountas-Davis, N.; Huang, H.; Michelle Evancho-Chapman, M.; Fulton, J.A.; Shriver, L.P.; Leipzig, N.D. Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability. Acta Biomater. 2016, 36, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.-E.; Song, Y.-R.; Gwon, H.-J.; Lim, Y.-M.; Baik, S.-H. Preparation and characterization of oxygen generating (OG) hydrogels using γ-ray irradiation crosslinking. Macromol. Res. 2012, 20, 1137–1143. [Google Scholar] [CrossRef]
- Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010, 163, 257–268. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Bawa, H.K.; Ng, G.; Wu, Y.; Libera, M.; van der Mei, H.C.; Busscher, H.J.; Yu, X. Oxygen-Generating Nanofiber Cell Scaffolds with Antimicrobial Properties. ACS Appl. Mater. Interfaces 2011, 3, 67–73. [Google Scholar] [CrossRef]
- Abudula, T.; Gauthaman, K.; Hammad, A.H.; Joshi Navare, K.; Alshahrie, A.A.; Bencherif, S.A.; Tamayol, A.; Memic, A. Oxygen-Releasing Antibacterial Nanofibrous Scaffolds for Tissue Engineering Applications. Polymers 2020, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Song, Y.J.; Lim, Y.G.; Park, K. Facile Fabrication of Oxygen-Releasing Tannylated Calcium Peroxide Nanoparticles. Materials 2020, 13, 3864. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, C.; Han, X.; Guo, A.; Chen, X.; Liu, S.; Liu, Y. Improved Healing of Diabetic Foot Ulcer upon Oxygenation Therapeutics through Oxygen-Loading Nanoperfluorocarbon Triggered by Radial Extracorporeal Shock Wave. Oxidative Med. Cell. Longev. 2019, 2019, 5738368. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Cheng, Y.; Tian, J.; Yang, P.; Zhang, X.; Chen, Y.; Hu, Y.; Wu, J. Dissolved oxygen from microalgae-gel patch promotes chronic wound healing in diabetes. Sci. Adv. 2020, 6, eaba4311. [Google Scholar] [CrossRef]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen 2009, 17, 763–771. [Google Scholar] [CrossRef] [Green Version]
- Lowe, K.C. Perfluorinated blood substitutes and artificial oxygen carriers. Blood Rev. 1999, 13, 171–184. [Google Scholar] [CrossRef] [PubMed]
Commercial Dressing | Company | Composition | Main Characteristics |
---|---|---|---|
Bionect® | BioScience | 0.2% of sodium salt of hyaluronic acid |
|
Unite® Biomatrix | Synovis Orthopedic and WoundCare, Inc. | Non-reconstituted collagen |
|
BGC Matrix® | Mölnlycke Health Care US, LLC | Collagen and advanced carbohydrate beta-glucan |
|
Promogran Prisma® Matrix | Systagenix | Collagen, oxidized regenerated cellulose (ORC), and silver-ORC matrix |
|
Dermacol/Ag™ Collagen Matrix Dressing with Silver | DermaRite Industries | Collagen, sodium alginate, carboxyl methyl-cellulose, ethylenediamine-tetraacetic acid (EDTA) and silver chloride |
|
Fibracol® Plus Collagen Wound Dressing with Alginate | Systagenix | Collagen and calcium alginate fibers wound |
|
Aquacel Hydrofiber® Wound Dressing | ConvaTec | Antimicrobial hydrofiber containing carboxymethyl cellulose with ionic silver |
|
Regranex® Gel | Healthpoint Biotherapeutics | Human recombinant PDGF-BB 2 incorporated in aqueous sodium carboxymethylcellulose |
|
MediHoney® Adhesive Honeycolloid Dressing | Derma Sciences, Inc. | 80% active Leptospermum honey with colloidal alginate |
|
MediHoney® Calcium Alginate Dressing | Derma Sciences, Inc. | Contains 95% active Leptospermum honey with calcium alginate |
|
Algisite◇ M Calcium Alginate Dressing | Smith & Nephew, Inc. | Calcium-alginate |
|
Sorbalgon® | Hartman USA, Inc. | Calcium alginate |
|
Kaltostat® Dressing | ConvaTec | Sodium and calcium salts of alginic acid |
|
Tegaderm™ High Gelling Alginate Dressing | 3 M Health Care | Polyurethane dressing containing alginate |
|
GranuDerm™ Sentry™ | Acute Care Solutions, LLC | Alginate hydrocolloid with polyurethane |
|
Biatain® Heel Foam Dressing | Coloplast Corp. | 3-D non-adhesive foam of polyurethane |
|
Biatain Ibu Foam Dressing Non-adhesive | Coloplast Corp. | Combination of polyurethane-foam, polyurethane film, polyethylene and ibuprofen |
|
MANUKAhd® | ManukaMed USA, Inc. | Polyurethane foam and film in backing and an absorbent dressing pad of polyacrylate polymers impregnated with ManukaMed® honey |
|
DuoDERM® CGF® | ConvaTec | Polyurethane foam |
|
SOLOSITE® Conformable Wound Gel Dressing | Smith & Nephew, Inc. | Polyurethane and polyethylene hydrogel |
|
Silverlon® Island Wound Dressing | Argentum Medical, LLC | Polyurethane film containing silver |
|
Allevyn | Smith & Nephew, Inc. | Polyurethane films combined with polyurethane foam containing 5% silver sulphadiazine. |
|
Meliplex Ag | Molnlycke Heath Care | Polyurethane foam containing a silver compound (silver sulphate) |
|
Ligasano | Ligasano | Honeycomb-polyurethane foam |
|
Compound | Descriptions | Ref. |
---|---|---|
Calcium peroxide | Released by hydrolytic decomposition Reported saturated concentration: 22 mg/L | [55] |
Magnesium peroxide | Released by hydrolytic decomposition Reported saturated concentration: 44 mg/L | [55] |
Sodium percarbonate | Released by hydrolytic decomposition Reported saturated concentration: 31 mg/L | [55] |
Perfluorodecalin (PFD) (C10F18) | Oxygen solubility: 403 mL/LPFD | [56] |
Perfluorooctylbromide (PFOB) (C8BrF17) | Oxygen solubility: 527 mL/LPFD | [56] |
Hydrogen peroxide | Converted by blood, catalase, and Horseradish peroxidase | [57,58,59] |
Compound | Oxygen-Releasing Composite | Descriptions | Ref. |
---|---|---|---|
Hydrogen Peroxide | H2O2-loading poly(D,L-lactide-co-glycolide) (PLGA) particle | Catalase was immobilized alginate used for detoxifying H2O2. | [70,71] |
H2O2-incoporating polyvinylpyrrolidone (PVP)/poly(D,L-lactide-co-glycolide) (PLGA) core-shell microparticle | Catalase was covalently incorporated onto the surface of microparticles. | [72] | |
Calcium Peroxide (CPO) | CPO-loading poly (L-lactic acid) (PLLA) nanoparticle | Catalase was grafted onto the surface of hollow nanoparticles. Nano CPOs were loaded. | [73] |
CPO-encapsulated alginate microcapsule | Because of calcium, alginates were immediately cross-linked. | [74] | |
CPO-mediated thiolated gelatin | Thiolated gelatins formed a cross-linkable hydrogel due to CaO2-mediated oxidative cross-linking reaction. | [75] | |
Sodium percarbonate (SPO) | CPO-loading poly (L-lactic acid) (PLLA) nanoparticle | Catalase was grafted onto the surface of hollow nanoparticles. | [73] |
CPO/SPO-PVA and PCL film | In the final contrast, a gelatin layer was served as decomposing H2O2 through manganese chloride (MnCl2). | [76] | |
Perfluorocarbon | Nano-sized perfluorocarbon 1 stabilized by human serum albumin (HSA) | HSA-stabilized nano-emulsion PFC materials have small size in diameter (~80 nm). | [77] |
Perfluorodecalin (C10F18) and perfluoro-n-tripropylamine, (C3F7)3N, based-emulsion | (C3F7)3N was used for stabilizing the final emulsion | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.-J.; Jang, I. Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers. Polymers 2021, 13, 4131. https://doi.org/10.3390/polym13234131
Lim D-J, Jang I. Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers. Polymers. 2021; 13(23):4131. https://doi.org/10.3390/polym13234131
Chicago/Turabian StyleLim, Dong-Jin, and Insoo Jang. 2021. "Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers" Polymers 13, no. 23: 4131. https://doi.org/10.3390/polym13234131
APA StyleLim, D. -J., & Jang, I. (2021). Oxygen-Releasing Composites: A Promising Approach in the Management of Diabetic Foot Ulcers. Polymers, 13(23), 4131. https://doi.org/10.3390/polym13234131