The Viscoelastic Swirled Flow in the Confusor
Abstract
:1. Introduction
2. Materials and Methods
3. Approbation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Wang, Z.; Smith, D.E. Numerical analysis of screw swirling effects on fiber orientation in large area additive manufacturing polymer composite deposition. Compos. B. Eng. 2019, 177, 107284. [Google Scholar] [CrossRef]
- Öztekin, A.; Brown, R.A.; McKinley, G.H. Quantitative prediction of the viscoelastic instability in cone-and-plate flow of a Boger fluid using a multi-mode Giesekus model. J. Non-Newton. Fluid Mech. 1994, 54, 351–377. [Google Scholar] [CrossRef]
- Quinzani, L.M.; Armstrong, R.C.; Brown, R.A. Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction. J. Non-Newton. Fluid Mech. 1994, 52, 1–36. [Google Scholar] [CrossRef]
- Ahmed, R.; Liang, R.F.; Mackley, M.R. The experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes. J. Non-Newton. Fluid Mech. 1995, 59, 129–153. [Google Scholar] [CrossRef]
- Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T. Viscoelastic analysis of complex polymer melt flows using the eXtended Pom–Pom model. J. Non-Newton. Fluid Mech. 2002, 108, 301–326. [Google Scholar] [CrossRef]
- Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 1982, 11, 69–109. [Google Scholar] [CrossRef]
- Phan-Thien, N.; Tanner, R.I. A new constitutive equation derived from network theory. J. Non-Newton. Fluid Mech. 1977, 2, 353–365. [Google Scholar] [CrossRef]
- Verbeeten, W.M.H.; Peters, G.W.M.; Baaijens, F.P.T. Differential constitutive equations for polymer melts: The extended Pom-Pom Model. J. Rheol. 2001, 45, 823–844. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, J.G. Non-Newtonian effects in steady motion of some idealised elastico-viscous liquids. Proc. R. Soc. London Ser. A 1958, 245, 278–297. [Google Scholar]
- Bird, R.B.; Dotson, P.J.; Johnson, N.L. Polymer solution rheology based on a finitely extensible bead-spring chain model. J. Non-Newton. Fluid Mech. 1980, 7, 213–235. [Google Scholar] [CrossRef]
- Afonso, A.M.; Oliveira, P.J.; Pinho, F.T.; Alves, M.A. Dynamics of high-Deborah-number entry flows: A numerical study. J. Fluid Mech. 2011, 677, 272–304. [Google Scholar] [CrossRef]
- Boger, D.V. Viscoelastic flows through contractions. Ann. Rev. Fluid Mech. 1987, 19, 157–182. [Google Scholar] [CrossRef]
- Musil, J.; Zatloukal, M. Historical review of secondary entry flows in polymer melt extrusion. Polym. Rev. 2018, 59, 1338–1390. [Google Scholar] [CrossRef]
- Alves, M.A.; Oliveira, P.J.; Pinho, F.T. Numerical Methods for viscoelastic fluid flows. Annu. Rev. Fluid Mech. 2021, 53, 509–541. [Google Scholar] [CrossRef]
- Gordon, P.A.; Liu, F.; Meier, H.A.; Panchadhara, R.; Srivastava, V. A material point method for simulation of viscoelastic flows. Comput. Part. Mech. 2019, 6, 311–325. [Google Scholar] [CrossRef]
- Comminal, R.; Hattel, J.H.; Alves, M.A.; Spangenberg, J. Vortex behavior of the Oldroyd-B fluid in the 4-1 planar contraction simulated with the streamfunction–log-conformation formulation. J. Non-Newton. Fluid Mech. 2016, 237, 1–15. [Google Scholar] [CrossRef]
- Hooshyar, S.; Germann, N. Shear Banding in 4:1 Planar Contraction. Polymers 2019, 11, 417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, M.F.; Tamaddon-Jahromi, H.R.; López-Aguilar, J.E.; Binding, D.M. Enhanced pressure drop, planar contraction flows and continuous spectrum models. J. Non-Newton. Fluid Mech. 2019, 273, 104184. [Google Scholar] [CrossRef]
- Jahromi, H.R.T.; Webster, M.F. Transient behaviour of branched polymer melts through planar abrupt and rounded contractions using Pom–Pom models. Mech. Time-Depend. Mater. 2011, 15, 181–211. [Google Scholar]
- Mu, Y.; Zhao, G.; Wu, X.; Zhai, J. Modeling and simulation of three-dimensional planar contraction flow of viscoelastic fluids with PTT, Giesekus and FENE-P constitutive models. Appl. Math. Comput. 2012, 218, 8429–8443. [Google Scholar] [CrossRef]
- Holmes, L.; Favero, J.; Osswald, T. Numerical simulation of three-dimensional viscoelastic planar contraction flow using the software OpenFOAM. Comput. Chem. Eng. 2012, 37, 64–73. [Google Scholar] [CrossRef]
- Joie, J.; Graebling, D. Numerical simulation of polymer flows using non-conforming finite elements. Comput. Fluids 2013, 79, 178–189. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Miller, G.H. Numerical simulations of viscoelastic flow in complex geometries using a multi-mode Giesekus model. J. Non-Newton. Fluid Mech. 2014, 210, 29–40. [Google Scholar] [CrossRef]
- Evans, J.D.; França, H.L.; Oishi, C.M. Application of the natural stress formulation for solving unsteady viscoelastic contraction flows. J. Comput. Phys. 2019, 388, 462–489. [Google Scholar] [CrossRef]
- Nigen, S.; Walters, K. Viscoelastic contraction flows: Comparison of axisymmetric and planar configurations. J. Non-Newton. Fluid Mech. 2002, 102, 343–359. [Google Scholar] [CrossRef]
- Oliveira, M.S.N.; Oliveira, P.J.; Pinho, F.T.; Alves, M.A. Effect of contraction ratio upon viscoelastic flow in contractions: The axisymmetric case. J. Non-Newton. Fluid Mech. 2007, 147, 92–108. [Google Scholar] [CrossRef] [Green Version]
- Habla, F.; Woitalka, A.; Neuner, S.; Hinrichsen, O. Development of a methodology for numerical simulation of non-isothermal viscoelastic fluid flows with application to axisymmetric 4:1 contraction flows. Chem. Eng. J. 2012, 207–208, 772–784. [Google Scholar] [CrossRef]
- Pitz, D.B.; Franco, A.T.; Negrão, C.O.R. Effect of the Reynolds number on viscoelastic fluid flows through axisymmetric sudden contraction. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 1709–1720. [Google Scholar] [CrossRef]
- Wang, Z.; Smith, D.E. Rheology effects on predicted fiber orientation and elastic properties in large scale polymer composite additive manufacturing. J. Compos. Sci. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Garner, F.H.; Nissan, A.H. Rheological properties of high viscosity solutions of long molecules. Nature 1946, 158, 634–635. [Google Scholar] [CrossRef]
- Weissenberg, K. A continuum theory of rheological phenomena. Nature 1947, 159, 310–311. [Google Scholar] [CrossRef] [PubMed]
- Spohn, A.; Mory, M.; Hopfinger, E.J. Experiments on vortex breakdown in a confined flow generated by a rotating disc. J. Fluid Mech. 1998, 370, 73–99. [Google Scholar] [CrossRef]
- Xue, S.C.; Phan-Thien, N.; Tanner, R.I. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic swirling flows in a confined cylinder. Part I. Method and steady flows. J. Non-Newton. Fluid Mech. 1999, 87, 337–367. [Google Scholar] [CrossRef]
- Itoh, M.; Suzuki, M.; Moroi, T. Swirling flow of a viscoelastic fluid in a cylindrical casing. Trans. ASME 2006, 128, 88–94. [Google Scholar] [CrossRef]
- Tamano, S.; Itoh, M.; Ide, Y.; Yokota, K. Vortex shedding in confined swirling flow of polymer solutions. Phys. Fluids 2007, 19, 023103. [Google Scholar] [CrossRef]
- Rusak, Z.; Ly, N.; Tichy, J.A.; Wang, S. Near-critical swirling flow of a viscoelastic fluid in a circular pipe. J. Fluid Mech. 2017, 814, 325–360. [Google Scholar] [CrossRef]
- Majidi, S.; Sadeghy, K. Confined swirling of simplified Phan-Thien-Tanner (SPTT) fluids: Namerical stady. Nihon Reoroji Gakkaishi 2009, 37, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Zafar, A.A.; Shah, N.A.; Nigar, N. On some rotational flows of non-integer order rate type fluids with shear stress on the bound. Ain Shams Eng. J. 2018, 9, 1865–1876. [Google Scholar] [CrossRef]
- Thornhill, T.O.; Petit, T.; Poole, R.J.; Dennis, D.J.C. Vortex breakdown in swirling pipe flow of fluids with shear-dependent viscosity. Phys. Fluids 2018, 30, 114107. [Google Scholar] [CrossRef]
- McKinley, G.H.; Pakdel, P.; Öztekin, A. Rheological and geometric scaling of purely elastic flow instabilities. J. Non-Newton. Fluid Mech. 1996, 67, 19–47. [Google Scholar] [CrossRef]
- Calin, A.; Wilhelm, M.; Balan, C. Determination of the non-linear parameter (mobility factor) of the Giesekus constitutive model using LAOS procedure. J. Non-Newton. Fluid Mech. 2010, 165, 1564–1577. [Google Scholar] [CrossRef]
- Cruz, D.O.A.; Pinho, F.T. Fully-developed pipe and planar flows of multimode viscoelastic fluids. J. Non-Newton. Fluid Mech. 2007, 141, 85–98. [Google Scholar] [CrossRef]
- Kadyirov, A.I.; Abaidullin, B.R.; Vachagina, E.K. Decay of the swirl of flow of a generalized Newtonian fluid. J. Eng. Phys. Thermophys. 2018, 91, 1331–1336. [Google Scholar] [CrossRef]
m | ||||
---|---|---|---|---|
1 | 694.01 | 0.01 | 0.495 | 88.05 |
2 | 3590.41 | 1 | 0.25 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadyirov, A.; Zaripov, R.; Karaeva, J.; Vachagina, E. The Viscoelastic Swirled Flow in the Confusor. Polymers 2021, 13, 630. https://doi.org/10.3390/polym13040630
Kadyirov A, Zaripov R, Karaeva J, Vachagina E. The Viscoelastic Swirled Flow in the Confusor. Polymers. 2021; 13(4):630. https://doi.org/10.3390/polym13040630
Chicago/Turabian StyleKadyirov, Aidar, Rinat Zaripov, Julia Karaeva, and Ekaterina Vachagina. 2021. "The Viscoelastic Swirled Flow in the Confusor" Polymers 13, no. 4: 630. https://doi.org/10.3390/polym13040630
APA StyleKadyirov, A., Zaripov, R., Karaeva, J., & Vachagina, E. (2021). The Viscoelastic Swirled Flow in the Confusor. Polymers, 13(4), 630. https://doi.org/10.3390/polym13040630