Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Feedstock Selection and Preparation
2.2. Design of the Research Experiments
2.3. Thermogravimetric Experiments
2.4. Chemical Analysis of the Obtained Volatile Products
2.5. Pyrolysis Kinetics of MFPW and Simulation of TGA-DTG Curves
3. Results and Discussion
3.1. TGA-DTG Analysis
3.2. Chemical Analysis of the Obtained Volatile Products
3.3. Chemical Analysis of the Synthesized Chemical Compounds Using GC–MS
3.4. Kinetic Analysis of Catalytic Pyrolysis of MFPW
3.4.1. Evaluation of Activation Energy for the Entire MFPW Catalytic Pyrolysis
3.4.2. Estimation of Activation Energies for Each Conversion Zone
3.4.3. Fitting of TGA Data Using DAEM
3.4.4. Fitting of DTG Data Using IPR
4. Conclusions
- TGA measurements were employed to determine the effect of ZSM-5 addition and its concentrations on thermal decomposition of MFPW sample, thus revealing that TGA and DTG profiles were not affected by the catalyst with a total weight loss estimated at 87–90 wt.%.
- FTIR results showed that at the maximum degeneration temperatures, methane and carboxylic acid residues, C-O-C stretching and –CH2– bending are the main volatile components and their intensity increased with increase in ZSM-5 concentration and heating rate.
- GC-MS analysis showed that, at 50 wt.% of ZSM-5, the pyrolyzed MFPW sample was very rich in volatile and flammable compounds (e.g., benzene, hexane and toluene), which indicates that the catalytic pyrolysis process can be used to convert paraffin wax resulting from pyrolysis of MFPW into bio-crude and light hydrocarbons (petroleum oil).
- The kinetic models of pyrolysis, for which model-free methods were applied, revealed that the maximum activation energies can be achieved at 30 wt.% of catalyst and estimated at 263 kJ mol−1 (KAS) and 296 kJ mol-1 (FWO).
- DAEM and IPR were successful for simultaneous fitting of the TGA and DTG experimental data with deviations below <1. In addition, the pre-exponential factor was calculated using DAEM and IPR.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mumbach, G.D.; Alves, J.L.F.; Da Silva, J.C.G.; De Sena, R.F.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Thermal investigation of plastic solid waste pyrolysis via the deconvolution technique using the asymmetric double sigmoidal function: Determination of the kinetic triplet, thermodynamic parameters, thermal lifetime and pyrolytic oil composition for clean energy recovery. Energy Convers. Manag. 2019, 200, 112031. [Google Scholar] [CrossRef]
- Dong, J.; Tang, Y.; Nzihou, A.; Chi, Y. Key factors influencing the environmental performance of pyrolysis, gasification and incineration Waste-to-Energy technologies. Energy Convers. Manag. 2019, 196, 497–512. [Google Scholar] [CrossRef] [Green Version]
- De Weerdt, L.; Sasao, T.; Compernolle, T.; Van Passel, S.; De Jaeger, S. The effect of waste incineration taxation on industrial plastic waste generation: A panel analysis. Resour. Conserv. Recycl. 2020, 157, 104717. [Google Scholar] [CrossRef]
- Yang, R.-X.; Wu, S.-L.; Chuang, K.-H.; Wey, M.-Y. Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed. Renew. Energy 2020, 159, 10–22. [Google Scholar] [CrossRef]
- Wang, Z.; Burra, K.G.; Lei, T.; Gupta, A.K. Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review. Prog. Energy Combust. Sci. 2021, 84, 100899. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, G.; Chen, C.; Wang, Y.; Wang, W.; Li, A. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Process. Technol. 2020, 206, 106455. [Google Scholar] [CrossRef]
- Dunkle, M.N.; Pijcke, P.; Winniford, W.L.; Ruitenbeek, M.; Bellos, G. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV. J. Chromatogr. A 2021, 1637, 461837. [Google Scholar] [CrossRef]
- Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 2021, 769, 144483. [Google Scholar] [CrossRef] [PubMed]
- Mumladze, T.; Yousef, S.; Tatariants, M.; Kriūkienė, R.; Makarevičius, V.; Lukošiūtė, S.-I.; Bendikiene, R.; Denafas, G.; Lukošiūtėc, S.-I. Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chem. 2018, 20, 3604–3618. [Google Scholar] [CrossRef]
- Mulakkal, M.C.; Castillo, A.C.; Taylor, A.C.; Blackman, B.R.; Balint, D.S.; Pimenta, S.; Charalambides, M.N. Advancing mechanical recycling of multilayer plastics through finite element modelling and environmental policy. Resour. Conserv. Recycl. 2021, 166, 105371. [Google Scholar] [CrossRef]
- Orozco, S.; Alvarez, J.; Lopez, G.; Artetxe, M.; Bilbao, J.; Olazar, M. Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. Energy Convers. Manag. 2021, 229, 113768. [Google Scholar] [CrossRef]
- Ma, C.; Yan, Q.; Yu, J.; Chen, T.; Wang, D.; Liu, S.; Bikane, K.; Sun, L. The behavior of heteroatom compounds during the pyrolysis of waste computer casing plastic under various heating conditions. J. Clean. Prod. 2019, 219, 461–470. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Rodríguez-Luna, L.; Bustos-Martínez, D.; Valenzuela, E. Two-step pyrolysis for waste HDPE valorization. Process. Saf. Environ. Prot. 2021, 149, 526–536. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striugas, N.; Abdelnaby, M.A. Modeling of metalized food packaging plastics pyrolysis kinetics using an independent parallel reactions kinetic model. Polymers 2020, 12, 1763. [Google Scholar] [CrossRef] [PubMed]
- Veksha, A.; Yin, K.; Moo, J.G.S.; Oh, W.-D.; Ahamed, A.; Chen, W.Q.; Weerachanchai, P.; Giannis, A.; Lisak, G. Processing of flexible plastic packaging waste into pyrolysis oil and multi-walled carbon nanotubes for electrocatalytic oxygen reduction. J. Hazard. Mater. 2020, 387, 121256. [Google Scholar] [CrossRef]
- Ahamed, A.; Veksha, A.; Yin, K.; Weerachanchai, P.; Giannis, A.; Lisak, G. Environmental impact assessment of converting flexible packaging plastic waste to pyrolysis oil and multi-walled carbon nanotubes. J. Hazard. Mater. 2020, 390, 121449. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Rajarao, R.; Gong, B.; Wang, Y.; Kong, C.; Sahajwalla, V. Thermo-delamination of metallised composite plastic: An innovative approach to generate Aluminium from packaging plastic waste. J. Clean. Prod. 2019, 211, 321–329. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Zakarauskas, K.; Praspaliauskas, M.; AbdelNaby, M.A. Pyrolysis kinetic behavior and TG-FTIR-GC–MS analysis of metallised food packaging plastics. Fuel 2020, 282, 118737. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Zakarauskas, K.; Striūgas, N. Microcrystalline paraffin wax, biogas, carbon particles and aluminum recovery from metallised food packaging plastics using pyrolysis, mechanical and chemical treatments. J. Clean. Prod. 2021, 290, 125878. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Subadra, S.P.; Striūgas, N. Functionalization of char derived from pyrolysis of metallised food packaging plastics waste and its application as a filler in fiberglass/epoxy composites. Process. Saf. Environ. Prot. 2021, 147, 723–733. [Google Scholar] [CrossRef]
- Gin, A.; Hassan, H.; Ahmad, M.; Hameed, B.; Din, A.M. Recent progress on catalytic co-pyrolysis of plastic waste and lignocellulosic biomass to liquid fuel: The influence of technical and reaction kinetic parameters. Arab. J. Chem. 2021, 14, 103035. [Google Scholar] [CrossRef]
- Yao, D.; Li, H.; Dai, Y.; Wang, C.-H. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chem. Eng. J. 2021, 408, 127268. [Google Scholar] [CrossRef]
- Al-Salem, S.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef]
- Kumaran, K.; Sharma, I. Catalytic pyrolysis of plastic waste: A Review. In Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 4 February–9 April 2020; pp. 1–4. [Google Scholar]
- Sivagami, K.; Divyapriya, G.; Selvaraj, R.; Madhiyazhagan, P.; Sriram, N.; Nambi, I. Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: A pilot scale study. Process. Saf. Environ. Prot. 2021, 149, 497–506. [Google Scholar] [CrossRef]
- Susastriawan, A.; Purnomo; Sandria, A. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Therm. Sci. Eng. Prog. 2020, 17, 100497. [Google Scholar] [CrossRef]
- Tuffi, R.; D’Abramo, S.; Cafiero, L.M.; Trinca, E.; Ciprioti, S.V.; Cafiero, L. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics. Express Polym. Lett. 2018, 12, 82–99. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Manag. 2018, 79, 615–624. [Google Scholar] [CrossRef]
- Kim, S.; Lee, N.; Lee, J. Pyrolysis for Nylon 6 Monomer Recovery from Teabag Waste. Polymers 2020, 12, 2695. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Mohamed, A.; Abdelnaby, M.A. Morphology, compositions, thermal behavior and kinetics of pyrolysis of lint-microfibers generated from clothes dryer. J. Anal. Appl. Pyrolysis 2021, 155, 105037. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, S.; Su, W.; Wu, W.; Tang, J.; Qi, W. Kinetic studies on the pyrolysis of plastic waste using a combination of mod-el-fitting and model-free methods. Waste Manag. Res. 2020, 38, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Feng, B.; Zhang, L.; Zhang, P.; Sheng, L. Theoretical chemical kinetics for catalytic pyrolysis of methyl acetate over H-ZSM-5 zeolites. Fuel 2020, 277, 118101. [Google Scholar] [CrossRef]
- Liang, J.; Shan, G.; Sun, Y. Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts. Renew. Sustain. Energy Rev. 2021, 139, 110707. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 2: Effect of process temperature on product characteristics and their future applications. J. Environ. Manag. 2020, 261, 110112. [Google Scholar] [CrossRef]
- Ma, W.; Rajput, G.; Pan, M.; Lin, F.; Zhong, L.; Chen, G. Pyrolysis of typical MSW components by Py-GC/MS and TG-FTIR. Fuel 2019, 251, 693–708. [Google Scholar] [CrossRef]
- Bu, Q.; Cao, M.; Wang, M.; Zhang, X.; Mao, H. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating. Sci. Total Environ. 2021, 754, 142174. [Google Scholar] [CrossRef]
- Muhammad, I.; Manos, G. Simultaneous pretreatment and catalytic conversion of polyolefins into hydrocarbon fuels over acidic zeolite catalysts. Process. Saf. Environ. Prot. 2021, 146, 702–717. [Google Scholar] [CrossRef]
- Merckel, R.D.; Heydenrych, M.D.; Sithole, B.B. Pyrolysis oil composition and catalytic activity estimated by cumulative mass analysis using Py-GC/MS EGA-MS. Energy 2021, 219, 119428. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Che, L.; Peng, H.; Zhu, S.; Yang, F.; Zhang, X. Effect of volatile reactions on oil production and composition in thermal and catalytic pyrolysis of polyethylene. Fuel 2020, 271, 117308. [Google Scholar] [CrossRef]
- Kuan, Y.-H.; Wu, F.-H.; Chen, G.-B.; Lin, H.-T.; Lin, T.-H. Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends. Energy 2020, 201, 117559. [Google Scholar] [CrossRef]
- Prashanth, P.F.; Shravani, B.; Vinu, R.; Lavanya, M.; Prabu, V.R. Production of diesel range hydrocarbons from crude oil sludge via microwave-assisted pyrolysis and catalytic upgradation. Process. Saf. Environ. Prot. 2021, 146, 383–395. [Google Scholar] [CrossRef]
- Yousef, S.; Šereika, J.; Tonkonogovas, A.; Hashem, T.; Mohamed, A. CO2/CH4, CO2/N2 and CO2/H2 selectivity performance of PES membranes under high pressure and temperature for bio-gas upgrading systems. Environ. Technol. Innovation 2021, 21, 101339. [Google Scholar] [CrossRef]
- Mai, T.V.; Chuang, Y.-Y.; Giri, B.R.; Huynh, L.K. Ab-initio studies of thermal unimolecular decomposition of furan: A complementary deterministic and stochastic master equation model. Fuel 2020, 264, 116492. [Google Scholar] [CrossRef]
- Kasperski, J.; Grabowska, B. The effect of plastic film transmittance on heat transfer in a multilayer insulation structure of rectangular air cells for frozen food wrapping. Int. J. Refrig. 2018, 92, 94–105. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z. Study of the thermal behavior, kinetics, and product characteriza-tion of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 2018, 133, 185–197. [Google Scholar] [CrossRef]
Equation No. | Method | Expressions (1)–(7) | Plots | Slope Value |
---|---|---|---|---|
(1) | Kissinger | = − | ln(β/) versus 1/T | −Ea/R |
(2) | Kissinger–Akahira–Sunose | = − | ln(β/T2) versus 1/T | −Ea/R |
(3) | Flynn–Wall–Ozawa | = – 5.335 – | lnβ versus 1/T | −1.0516 Ea/R |
(4) | Friedman | = | ln(dy/dt) versus 1/T | −Ea/R |
(5) | DAEM | = − | ||
(6) | IPR | |||
(7) | (%) | (%) = |
Parameters | Definition |
---|---|
β | Heating rate |
Activation energy | |
Gas constant (J mol−1 K−1) | |
Pre-exponential factor (min−1) | |
Temperature | |
Ci | Mass fraction of each of three subcomponents |
dm/dt | Rate of mass loss |
Y | KAS (KJ/mol) | FWO (KJ/mol) | Friedman (KJ/mol) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ZSM-5 (wt.%) | ZSM-5 (wt.%) | ZSM-5 (wt.%) | ||||||||||
0% | 10% | 30% | 50% | 0% | 10% | 30% | 50% | 0% | 10% | 30% | 50% | |
0.1 | 194 | 189 | 138 | 112 | 224 | 219 | 165 | 140 | 389 | 206 | 187 | 175 |
0.2 | 211 | 192 | 160 | 146 | 243 | 222 | 189 | 175 | 479 | 249 | 226 | 175 |
0.3 | 286 | 159 | 246 | 115 | 321 | 188 | 279 | 140 | 499 | 202 | 278 | 166 |
0.4 | 252 | 170 | 309 | 115 | 286 | 199 | 347 | 140 | 474 | 205 | 310 | 150 |
0.5 | 277 | 184 | 331 | 136 | 311 | 214 | 369 | 166 | 499 | 198 | 303 | 158 |
0.6 | 304 | 177 | 304 | 155 | 340 | 207 | 340 | 184 | 549 | 173 | 293 | 125 |
0.7 | 257 | 177 | 305 | 155 | 291 | 207 | 342 | 184 | 599 | 176 | 277 | 108 |
0.8 | 273 | 176 | 338 | 156 | 306 | 205 | 371 | 184 | 499 | 187 | 298 | 108 |
0.9 | 290 | 176 | 235 | 157 | 323 | 206 | 268 | 184 | 499 | 156 | 215 | 116 |
Avg. | 260 | 178 | 263 | 139 | 294 | 208 | 296 | 166 | 498 | 195 | 265 | 142 |
DAEM | IPR | |||||||
---|---|---|---|---|---|---|---|---|
ZSM-5 (wt.%) | ZSM-5 (wt.%) | |||||||
0% | 10% | 30% | 50% | 0% | 10% | 30% | 50% | |
E1 | 293.36 | 173.302 | 247.577 | 152.431 | 231.754 | 136.908 | 195.585 | 120.420 |
A1 | 1.49 × 1010 | 2.99 × 1013 | 3.74 × 1022 | 3.92 × 1010 | 2.49 × 106 | 4.99 × 109 | 6.25 × 1018 | 6.55 × 106 |
E2 | 363.766 | 214.895 | 306.996 | 189.014 | 343.557 | 202.9563 | 289.940 | 178.513 |
A2 | 1.64 × 1010 | 3.28 × 1013 | 4.11 × 1022 | 4.31 × 1010 | 6.27 × 106 | 1.26 × 1010 | 1.57 × 1019 | 1.65 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eimontas, J.; Striūgas, N.; Abdelnaby, M.A.; Yousef, S. Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst. Polymers 2021, 13, 702. https://doi.org/10.3390/polym13050702
Eimontas J, Striūgas N, Abdelnaby MA, Yousef S. Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst. Polymers. 2021; 13(5):702. https://doi.org/10.3390/polym13050702
Chicago/Turabian StyleEimontas, Justas, Nerijus Striūgas, Mohammed Ali Abdelnaby, and Samy Yousef. 2021. "Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst" Polymers 13, no. 5: 702. https://doi.org/10.3390/polym13050702
APA StyleEimontas, J., Striūgas, N., Abdelnaby, M. A., & Yousef, S. (2021). Catalytic Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of Metallized Food Packaging Plastics with Different Concentrations of ZSM-5 Zeolite Catalyst. Polymers, 13(5), 702. https://doi.org/10.3390/polym13050702