Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Changes in Lignin Yields
3.2. Changes in NBO Products
3.3. Changes of Macromolecular Traits in Lignins
3.4. Changes in FTIR Spectra
3.5. Statistical Evaluation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Halip, J.A.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Tahir, P.M. Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Petrillo, M.; Grossi, P.; Brzezicki, M. Performance of modified wood. In Wood Modification in Europe: A State–of–Art about Processes, Products and Applications; Jones, D., Sandberg, D., Goli, G., Todaro, L., Eds.; Firenze University Press: Florence, Italy, 2019; pp. 27–33. [Google Scholar]
- Antov, P.; Savov, V.; Krišťák, Ľ.; Réh, R.; Mantanis, G.I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers 2021, 13, 220. [Google Scholar] [CrossRef]
- Zhang, P.; Wie, Y.; Liu, Y.; Gao, J.; Chen, Y.; Fan, Y. Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin. Materials 2018, 11, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, D.V.B.; De Moura, L.F.; Brito, J.O. Effect of heat treatment on color, weight loss, specific gravity and equilibrium moisture content of two low market valued tropical woods. Wood Res. 2014, 59, 253–264. [Google Scholar]
- Rodriguez-Jimenez, S.; Duarte-Aranda, S.; Canche-Escamilla, G. Chemical composition and thermal properties of tropical wood from the Yucatán dry forests. BioResources 2019, 14, 2651–2666. [Google Scholar]
- Xu, J.; Zhang, Y.; Shen, Y.; Li, C.; Wang, Y.; Ma, Z.; Sun, W. New perspective on wood thermal modification: Relevance between the evolution of chemical structure and physical-mechanical properties, and online analysis of release of VOCs. Polymers 2019, 11, 1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.L.; Kocaefe, D.; Amburgey, T.; Zhang, J. A comparative study on brown rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood. Eur. J. Wood Wood Prod. 2007, 65, 353–358. [Google Scholar] [CrossRef]
- Korkut, S. Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 2012, 36, 355–362. [Google Scholar] [CrossRef]
- Ghadge, K.; Pandey, K.K. Effect of Thermal Modification on Physical Properties of Bambusa nutans. In Wood Is Good; Pandey, K.K., Ramakantha, V., Shakti Chauhan, S.S., Arun Kumar, A.N., Eds.; Springer: Singapore, 2017; pp. 287–295. [Google Scholar] [CrossRef]
- Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- Hill, C.A.S. Wood modification: Chemical, Thermal and Other Processes. In Wiley Series in Renewable Resources; Stevens, C.V., Ed.; John Wiley & Sons: Chichester, UK, 2006; 260p. [Google Scholar]
- Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sulaeva, I.; Podzimek, S.; Rössner, D.; Kilpelainen, I.; Sumerskii, I.; Rosenau, T.; Potthast, A. Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem 2018, 11, 3259–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 2011, 33, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.N. Advances in Wood Composites. Polymers 2020, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Pelaez-Samaniego, M.R.; Yadama, V.; Lowell, E.; Espinoza-Herrera, R. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci. Technol. 2013, 47, 1285–1319. [Google Scholar] [CrossRef]
- Hortobágyi, Á.; Pivarčiová, E.; Koleda, P. Holographic Interferometry for Measuring the Effect of Thermal Modification on Wood Thermal Properties. Appl. Sci. 2021, 11, 2516. [Google Scholar] [CrossRef]
- Ditommaso, G.; Gaff, M.; Kačík, F.; Sikora, A.; Sethy, A.; Corleto, R.; Razaei, F.; Kaplan, L.; Kubš, J.; Das, S.; et al. Interaction of technical and technological factors on qualitative and energy/ecological/economic indicators in the production and processing of thermally modified merbau wood. J. Clean. Prod. 2020, 252, 119793. [Google Scholar] [CrossRef]
- Noh, N.I.F.; Ahmad, Z. Heat treatment on keruing and light red meranti: The effect of heat exposure at different levels of temperature on bending strength properties. IOP Conf. Ser. Mater. Sci. Eng. 2017, 271, 012060. [Google Scholar] [CrossRef]
- Gašparík, M.; Gaff, M.; Kačík, F.; Sikora, A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources 2019, 14, 2667–2683. [Google Scholar] [CrossRef]
- Devashankar, S. FTIR, Powder X-RD and DSC Analysis of African Padauk Wood to Elucidate Possible Applications. In Macromolecular Symposia; Awasthi, K., Babu, S.B., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Wang, C.; Qin, Y.; Wang, F.; Wang, Z.; Huan, A. Effect of Iron Oxide on the Protective Photochromism of African Padauk. Adv. Polym. Technol. 2019, 1–8. [Google Scholar] [CrossRef]
- Kroupa, M.; Gaff, M.; Karlsson, O.; Myronycheva, O.; Sandberg, D. Effects of thermal modification on bending properties and chemical structure of Iroko and Padauk. In Proceedings of the 9th European Conference on Wood Modification, Burgers’ Zoo, Arnhem, The Netherlands, 17–18 September 2018; Jos, C., Thomas, H., Bôke, T., Holger, M., Brigitte, J., Jos, G., Eds.; SHR Wageningen: Wageningen, The Netherlands, 2018; pp. 155–161, ISBN 978-90-829466-1-1. [Google Scholar]
- Hu, C.; Jiang, G.; Xiao, M.; Zhou, J.; Yi, Z. Effects of heat treatment on water-soluble extractives and color changes of merbau heartwood. J. Wood Sci. 2012, 58, 465–469. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Lu, Z.; Gu, J.; Hu, C. Effects of heat treatment on durability of merbau heartwood. BioResources 2016, 11, 426–438. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.; Ozarska, B. Mechanical characteristics of impregnated white Jabon wood (Anthocephalus cadamba) using merbau extractives and selected polymerised merbau extractives. Maderas-Cienc. Tecnol. 2019, 21, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Malik, J.; Santoso, A.; Ozarska, B. Polymerised merbau extractives as impregnating material for wood properties enhancement. IOP Conf. Series: Mater. Sci. Eng. 2020, 935. [Google Scholar] [CrossRef]
- Makovická-Osvaldová, L.; Gašparík, M.; Castellanos, J.R.S.; Markert, F.; Kadlicová, P.; Čekovská, H. Effect of thermal treatment on selected fire safety features of tropical wood. Commun.-Sci. Lett. Univ. Žilina 2018, 20, 3–7. [Google Scholar]
- Kamboj, G.; Gašparík, M.; Gaff, M.; Kačík, F.; Sethy, A.K.; Corleto, R.; Razaei, F.; Ditommaso, G.; Sikora, A.; Kaplan, L.; et al. Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp.) wood. J. Build. Eng. 2020, 29, 101213. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Ethanol-Toluene Solubility of Wood; ASTM D1107-96(2013); ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory: Golden, CO, USA, 2012. Available online: http://www.nrel.gov/biomass/analytical_procedures.html (accessed on 20 February 2021).
- Kačíková, D.; Kubovský, I.; Ulbriková, N.; Kačík, F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Appl. Sci. 2020, 10, 5021. [Google Scholar] [CrossRef]
- Rousset, P.; Lapierre, C.; Pollet, B.; Quirino, W.; Perre, P. Effect of severe thermal treatment on spruce and beech wood lignins. Ann. For. Sci. 2009, 66, 110. [Google Scholar] [CrossRef] [Green Version]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem 2018, 20, 2192–2205. [Google Scholar] [CrossRef] [Green Version]
- Dahali, R.; Lee, S.H.; Ashaari, Z.; Bakar, E.S.; Ariffin, H.; Khoo, P.S.; Bawon, P.; Salleh, Q.N. Durability of Superheated Steam-Treated Light Red Meranti (Shorea spp.) and Kedondong (Canarium spp.) Wood against White Rot Fungus and Subterranean Termite. Sustainability 2020, 12, 4431. [Google Scholar] [CrossRef]
- Windeisen, E.; Wegener, G. Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 2008, 27, 157–162. [Google Scholar] [CrossRef]
- Syafii, W. The effect of lignin composition on delignification rate of some tropical hardwoods. Indones. J. Trop. Agric. 2001, 10, 9–13. [Google Scholar] [CrossRef]
- Evtuguin, D.V.; Neto, C.P.; Silva, A.M.S.; Domingues, P.M.; Amado, F.M.L.; Robert, D.; Faix, O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food. Chem. 2001, 49, 4252–4261. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, M.G.; Ruiz, J.; Norambuena, M.; Mendonça, R.T. Structural features of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas-Cienc. Tecnol. 2015, 17, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Rana, R.; Langenfeld-Heyser, R.; Finkeldey, R.; Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci. Technol. 2010, 44, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Hwang, H.; Oh, S.; Kim, Y.S.; Kim, U.J.; Choi, J.W. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 2014, 66, 57–65. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Curt, M.D.; Fernández, J.; Marques, A.V.; Pereira, H. Biomass production of four Cynara cardunculus clones and lignin composition analysis. Biomass Bioenergy 2015, 76, 86–95. [Google Scholar] [CrossRef]
- Cui, C.; Sadeghifar, H.; Sen, S.; Argyropoulos, D.S. Towards thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources 2012, 8, 864–886. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.V.; Argyropoulos, D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem 2017, 10, 3284–3303. [Google Scholar] [CrossRef] [PubMed]
- Bubeníková, T.; Luptáková, J.; Kačíková, D.; Kačík, F. Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Fac. Xylologiae 2018, 60, 33–42. [Google Scholar]
- Dörrstein, J.; Scholz, R.; Schwarz, D.; Schieder, D.; Sieber, V.; Walther, F.; Zollfrank, C. Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites. Compos. Struct. 2018, 189, 349–356. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Hosseini, G.; Tarmian, A.; Papadopoulos, A.N. Fluid Flow in Nanosilver-Impregnated Heat-Treated Beech Wood in Different Mediums. Appl. Sci. 2020, 10, 1919. [Google Scholar] [CrossRef] [Green Version]
- Poletto, M.; Zeni, M.; Zattera, A.J. Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. J. Thermoplast. Compos. Mater. 2012, 25, 821–833. [Google Scholar] [CrossRef]
- Mattos, B.D.; Lourençon, T.V.; Serrano, L.; Labidi, J.; Gatto, D.A. Chemical modification of fast-growing eucalyptus wood. Wood Sci. Technol. 2015, 2, 273–288. [Google Scholar] [CrossRef]
- Kačík, F.; Kačíková, D.; Bubeníková, T. Spruce wood lignin alteration after infrared heating at different wood moistures. Cell. Chem. Technol. 2006, 40, 643–648. [Google Scholar]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat-treated pine and eucalypt wood monitored by FTIR. Maderas-Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Košíková, B.; Sláviková, E.; Sasinková, V.; Kačík, F. The use of various yeast strains for removal of pine wood extractive constituents. Wood Res. 2006, 51, 47–53. [Google Scholar]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, D.F. Fourier Transform Infrared Spectroscopy in the Pulp and Paper Industry. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 8361–8388. [Google Scholar]
- Mvondo, R.R.N.; Meukam, P.; Jeong, J.; Meneses, D.D.S.; Nkeng, E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017, 7, 2096–2103. [Google Scholar] [CrossRef]
- Li, M.Y.; Cheng, S.C.; Li, D.; Wang, S.N.; Huang, A.M.; Sun, S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015, 26, 221–225. [Google Scholar] [CrossRef]
- Čabalová, I.; Kačík, F.; Lagaňa, R.; Výbohová, E.; Bubeníková, T.; Čaňová, I.; Ďurkovič, J. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood. BioResources 2018, 13, 157–170. [Google Scholar] [CrossRef]
- Windeisen, E.; Strobel, C.; Wegener, G. Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 2007, 41, 523–536. [Google Scholar] [CrossRef]
- Weiland, J.J.; Guyonnet, R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz. Roh. Werkst. 2003, 61, 216–220. [Google Scholar] [CrossRef]
- Bourgois, J.; Guyonnet, R. Characterization and analysis of torrefied wood. Wood Sci. Technol. 1988, 22, 143–155. [Google Scholar] [CrossRef]
- Kačík, F.; Luptáková, J.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Vacek, V. Chemical Alterations of Pine Wood Lignin during Heat Sterilization. BioResources 2016, 11, 3442–3452. [Google Scholar] [CrossRef] [Green Version]
- Faix, O. Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry; Lin, S.Y., Dence, C.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; Chapter 4.1; pp. 83–109. [Google Scholar]
- Boeriu, C.G.; Bravo, D.; Gosselink, R.J.A.; van Dam, J.E.G. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules 2005, 6, 2815–2821. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.D.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Huang, A.; Wang, S.; Zhang, Q. Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood. BioResources 2016, 11, 4006–4016. [Google Scholar] [CrossRef] [Green Version]
- Jakab, E.; Faix, O.; Till, F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J. Anal. Appl. Pyrol. 1997, 40–41, 171–186. [Google Scholar] [CrossRef]
- Stark, N.M.; Yelle, D.J.; Agarwal, U.P. Techniques for Characterizing Lignin. In Lignin in Polymer Composites; Faruk, O., Sain, M., Eds.; William Andrew Publishing: Oxford, UK, 2016; pp. 49–66. ISBN 978-0-323-35565-0. [Google Scholar]
Product | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
Meranti-KL | 32.42 ± 0.08 | 36.67 ± 0.10 | 36.29 ± 0.09 | 35.33 ± 0.13 |
Padauk-KL | 33.77 ± 0.10 | 34.84 ± 0.04 | 35.53 ± 0.03 | 39.73 ± 0.09 |
Merbau-KL | 33.75 ± 0.23 | 33.23 ± 0.07 | 35.75 ± 0.20 | 44.61 ± 0.23 |
Meranti-DL | 7.57 ± 0.10 | 6.79 ± 0.11 | 7.32 ± 0.06 | 13.54 ± 0.11 |
Padauk-DL | 9.02 ± 0.16 | 10.72 ± 0.41 | 14.20 ± 0.25 | 16.62 ± 0.31 |
Merbau-DL | 9.01 ± 0.11 | 7.97 ± 0.12 | 13.69 ± 0.28 | 15.37 ± 0.11 |
Product | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
p-Hydroxybenzoic acid | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.01 | 0.03 ± 0.01 |
p-Hydroxybenzaldehyde | 1.93 ± 0.12 | 1.44 ± 0.41 | 1.93 ± 0.12 | 0.98 ± 0.16 |
Vanillic acid | 0.33 ± 0.00 | 0.46 ± 0.03 | 0.65 ± 0.07 | 0.16 ± 0.03 |
Vanilline | 14.71 ± 0.25 | 14.19 ± 0.45 | 15.67 ± 0.09 | 16.66 ± 0.20 |
Syringic acid | 0.39 ± 0.03 | 0.38 ± 0.08 | 0.32 ± 0.00 | 0.42 ± 0.02 |
Syringaldehyde | 17.77 ± 1.01 | 18.13 ±0.50 | 20.26 ± 1.01 | 22.21 ± 1.76 |
Total yield on DL | 35.17 ± 1.41 | 34.64 ± 0.52 | 38.87 ± 1.10 | 40.47 ± 1.75 |
S/G ratio | 1.21 ± 0.05 | 1.26 ± 0.08 | 1.26 ± 0.06 | 1.35 ± 0.09 |
Product | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
p-Hydroxybenzoic acid | 0.04 ± 0.01 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 |
p-Hydroxybenzaldehyde | 3.19 ± 0.12 | 3.17 ± 0.33 | 3.08 ± 0.04 | 3.17 ± 0.16 |
Vanillic acid | 1.09 ± 0.05 | 1.04 ± 0.16 | 0.98 ± 0.01 | 0.92 ± 0.05 |
Vanilline | 7.61 ± 0.07 | 8.67 ± 0.22 | 7.96 ± 2.52 | 3.89 ± 0.07 |
Syringic acid | 1.49 ± 0.06 | 1.43 ± 0.20 | 1.41 ± 0.02 | 1.47 ± 0.09 |
Syringaldehyde | 13.33 ± 1.26 | 15.28 ± 1.51 | 14.22 ± 0.50 | 7.11 ± 0.00 |
Total yield on DL | 26.76 ± 1.56 | 29.64 ± 1.97 | 27.68 ± 2.96 | 16.61 ± 0.24 |
S/G ratio | 1.70 ± 0.13 | 1.72 ± 0.19 | 1.75 ± 0.45 | 1.78 ± 0.02 |
Product | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
p-Hydroxybenzoic acid | 0.02 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 |
p-Hydroxybenzaldehyde | 2.86 ± 0.02 | 3.26 ±0.16 | 3.46 ± 0.44 | 3.23 ± 0.12 |
Vanillic acid | 3.49 ± 0.19 | 3.57 ± 0.17 | 4.49 ± 0.98 | 6.13 ± 0.19 |
Vanilline | 1.18 ± 0.08 | 2.24 ± 0.02 | 1.59 ± 0.05 | 0.30 ± 0.02 |
Syringic acid | 1.24 ± 0.05 | 1.41 ± 0.11 | 1.52 ± 0.29 | 1.44 ± 0.03 |
Syringaldehyde | 13.19 ± 0.46 | 26.50 ± 0.48 | 14.18 ± 0.85 | 6.00 ± 0.45 |
Total yield on DL | 21.98 ± 0.30 | 37.02 ± 0.05 | 25.26 ± 0.18 | 17.11 ±0.59 |
S/G ratio | 3.09 ± 0.16 | 4.80 ± 0.18 | 2.58 ± 0.66 | 1.16 ± 0.04 |
Temperature (°C) | Mw (g/mol) | Mn (g/mol) | Mz (g/mol) | PDI |
---|---|---|---|---|
20 | 8627 ± 256 | 2549 ± 26 | 41,157 ± 3769 | 3.38 ± 0.09 |
160 | 8595 ± 122 | 2470 ± 22 | 48,388 ± 2696 | 3.48 ± 0.07 |
180 | 5607 ± 109 | 2217 ± 17 | 15,651 ± 1432 | 2.53 ± 0.03 |
210 | 4253 ± 75 | 1761 ± 16 | 11,071 ± 763 | 2.42 ± 0.04 |
Temperature (°C) | Mw | Mn | Mz | PDI |
---|---|---|---|---|
20 | 4265 ± 303 | 1771 ± 32 | 10,341 ± 529 | 2.41 ± 0.22 |
160 | 4301 ± 103 | 1850 ± 14 | 10,237 ± 279 | 2.32 ± 0.02 |
180 | 4504 ± 105 | 1698 ± 18 | 12,972 ± 494 | 2.65 ± 0.07 |
210 | 4999 ± 48 | 1898 ± 12 | 16,264 ± 669 | 2.63 ± 0.04 |
Temperature (°C) | Mw | Mn | Mz | PDI |
---|---|---|---|---|
20 | 8284 ± 757 | 2772 ± 283 | 37,826 ± 1526 | 2.99 ± 0.17 |
160 | 7461 ± 72 | 3128 ± 31 | 20,268 ± 787 | 2.39 ± 0.02 |
180 | 14,567 ± 107 | 2806 ± 46 | 113,672 ± 8141 | 5.19 ± 0.13 |
210 | 14,728 ± 729 | 2815 ± 31 | 114,080 ± 13,700 | 5.23 ± 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačíková, D.; Kubovský, I.; Gaff, M.; Kačík, F. Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers 2021, 13, 993. https://doi.org/10.3390/polym13070993
Kačíková D, Kubovský I, Gaff M, Kačík F. Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers. 2021; 13(7):993. https://doi.org/10.3390/polym13070993
Chicago/Turabian StyleKačíková, Danica, Ivan Kubovský, Milan Gaff, and František Kačík. 2021. "Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process" Polymers 13, no. 7: 993. https://doi.org/10.3390/polym13070993
APA StyleKačíková, D., Kubovský, I., Gaff, M., & Kačík, F. (2021). Changes of Meranti, Padauk, and Merbau Wood Lignin during the ThermoWood Process. Polymers, 13(7), 993. https://doi.org/10.3390/polym13070993