Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymerization Degree of the Cellulose Samples and Crystallinity Degree
2.2. Liquid Hot Water (LHW) and Steam Explosion (SE) Pretreatment Processes
2.3. Enzymatic Hydrolysis and HPLC Sugar Analysis
2.4. Assay of Released Sugars and Inhibitors
3. Results and Discussion
3.1. The Degree of Polymerization and Crystallinity of the Bacterial Cellulose
3.2. Properties of Bacterial Cellulose Gel Film after the LHW and SE Pretreatments
3.3. Enzymatic Hydrolysis and HPLC Sugar Analysis
3.4. Released Sugars and Inhibitors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875. [Google Scholar] [CrossRef]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A framework for the design and analysis of integrated multi-product biorefneries from agricultural and forestry wastes. Renew. Sustain. Energy Rev. 2021, 139, 110687. [Google Scholar] [CrossRef]
- Manhongo, T.T.; Chimphango, A.; Thornley, P.; Roder, M. An economic viability and environmental impact assessment of mango processing waste-based biorefneries for co-producing bioenergy and bioactive compounds. Renew. Sustain. Energy Rev. 2022, 148, 111216. [Google Scholar] [CrossRef]
- Park, E.Y.; Naruse, K.; Kato, T. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parte, F.G.B.; Santoso, S.P.; Chou, C.-C.; Verma, V.; Wang, H.-T.; Ismadji, S.; Cheng, K.-C. Current progress on the production, modification, and applications of bacterial cellulose. Crit. Rev. Biotechnol. 2020, 40, 397–414. [Google Scholar] [CrossRef] [Green Version]
- Betlej, I.; Zakaria, S.; Krajewski, K.J.; Boruszewski, P. Bacterial cellulose—Properties and its potential application. Sains Malays 2021, 50, 493–505. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Kari, Z.A.; Noor, N.H.M.; Ray, R.R. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef]
- Picheth, G.F.; Pirich, C.L.; Sierakowski, M.R.; Woehl, M.A.; Sakakibara, C.N.; de Souza, C.F.; Martin, A.A.; da Silva, R.; de Freitas, C.F. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 2017, 104, 97–106. [Google Scholar] [CrossRef]
- Zhong, C. Industrial-scale production and applications of bacterial cellulose. Front. Bioeng. Biotechnol. 2020, 8, 605374. [Google Scholar] [CrossRef]
- Provin, A.P.; dos Reis, V.O.; Hilesheim, S.E.; Bianchet, R.T.; de Aguiar Dutra, A.R.; Cubas, A.L.V. Use of bacterial cellulose in the textile industry and the wettability challenge—A review. Cellulose 2021, 28, 8255–8274. [Google Scholar] [CrossRef]
- Campano, C.; Merayo, N.; Balea, A.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Negro, C.; Blanco, A. Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 2018, 25, 269–280. [Google Scholar] [CrossRef]
- Guan, F.; Chen, S.; Yao, J.; Zheng, W.; Wang, H. ZnS/Bacterial Cellulose/Epoxy Resin (ZnS/BC/E56) nanocomposites with good transparency and flexibility. J. Mater. Sci. Technol. 2017, 32, 153–157. [Google Scholar] [CrossRef]
- Galdino, C.J.S.; Maia, A.D.; Meira, H.M.; Souza, T.C.; Amorim, J.D.P.; Almeida, F.C.G.; Costa, A.F.S.; Sarubbo, L.A. Use of a bacterial cellulose filter for the removal of oil from wastewater. Process Biochem. 2020, 91, 288–296. [Google Scholar] [CrossRef]
- Velásquez-Rianõ, M.; Bojacá, V. Production of bacterial cellulose from alternative low-cost substrates. Cellulose 2017, 24, 2677–2698. [Google Scholar] [CrossRef]
- Tsouko, E.; Kourmentza, C.; Ladakis, D.; Kopsahelis, N.; Mandala, I.; Papanikolaou, S.; Paloukis, F.; Alves, V.; Koutinas, A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 2015, 16, 14832–14849. [Google Scholar] [CrossRef]
- Trček, J.; Dogsa, I.; Accetto, T.; Stopar, D. Acetan and acetan-like polysaccharides: Genetics, biosynthesis, structure, and viscoelasticity. Polymers 2021, 13, 815. [Google Scholar] [CrossRef]
- Bae, S.O.; Shoda, M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl. Microbiol. Biotechnol. 2005, 67, 45–51. [Google Scholar] [CrossRef]
- Gawron, J.; Antczak, A.; Borysiak, S.; Zawadzki, J.; Kupczyk, A. The study of glucose and xylose content by acid hydrolysis of ash wood (Fraxinus excelsior L.) after thermal modification in nitrogen by HPLC method. Bioresources 2014, 9, 3197–3210. [Google Scholar] [CrossRef] [Green Version]
- Rebelo, A.R.; Archer, A.J.; Chen, X.; Liu, C.; Yang, G.; Liu, Y. Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 2018, 19, 203–2011. [Google Scholar] [CrossRef]
- Okajima, K.; Matsuda, Y.; Kamide, K. Study on change in the degree of polymerisation of bacterial cellulose produced by Acetobacter xylinum during its cultivation. Polym. Int. 1991, 25, 145–151. [Google Scholar] [CrossRef]
- Taherzadeh, M.J.; Karimi, K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources 2007, 2, 707–738. [Google Scholar]
- Wyman, C.E. Handbook on Bioethanol: Production and Utilization; Taylor & Francis: Washington, DC, USA, 1996. [Google Scholar]
- Jorgensen, H.; Kutter, J.P.; Olsson, L. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis. Anal. Biochem. 2003, 317, 85–93. [Google Scholar] [CrossRef]
- Li, W.-C.; Han, L.-J.; Peng, T.-B.; Xie, Y.-Y.; Zou, Y.; Li, L.-Z.; Jia, S.-R.; Zhong, C. Structural and behavior changes of herbaceous and hardwood biomass during steam explosion pretreatment and enzymatic hydrolysis. Bioresources 2020, 15, 691–705. [Google Scholar] [CrossRef]
- Imman, S.; Laosiripojana, N.; Champreda, V. Efects of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl. Biochem. Biotechnol. 2018, 184, 432–443. [Google Scholar] [CrossRef]
- Antczak, A.; Szadkowski, J.; Szadkowska, D.; Zawadzki, J. Assesment of the effectiveness of liquid hot water and steam explosion pretreatment of fast—Growing poplar (Populus trichocarpa) wood. Wood Sci. Technol. 2022, 56, 87–109. [Google Scholar] [CrossRef]
- Langan, P.; Petridis, L.; O’Neill, H.M.; Pingali, S.V.; Foston, M.; Nishiyama, Y.; Schultz, R.; Lindner, B.; Hanson, B.L.; Harton, S.; et al. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem. 2014, 16, 63–68. [Google Scholar] [CrossRef]
- Antczak, A.; Radomski, A.; Drożdżek, M.; Zawadzki, J.; Zielenkiewicz, T. Thermal ageing of cellulose with natural and synthetic antioxidants under various conditions. Drewno 2016, 59, 139–152. [Google Scholar] [CrossRef]
- Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Borysiak, S.; Antczak, A.; Czekała, W. Transformation of Miscanthus and Sorghum cellulose during methane fermentation. Cellulose 2018, 25, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Timpa, J.D. Application of universal calibration in gel permeation chromatography—For molecular weight determinations of plant cell wall polymers; cotton fiber. Agrric. Food Chem. 1991, 39, 270–275. [Google Scholar] [CrossRef]
- Bikova, T.; Treimanis, A. Problems of the MMD analysis of cellulose by SEC using DMA/LiCl: A review. Carbohyd. Polym. 2002, 48, 23–28. [Google Scholar] [CrossRef]
- Hindeleh, A.M.; Johnson, D.J. The resolution of multipeak data in fibre science. J. Phys. Appl. Phys. 1971, 4, 259–263. [Google Scholar] [CrossRef]
- Szadkowski, J.; Radomski, A.; Szadkowska, D.; Zakrzewski, A.; Rębkowski, B.; Marchwicka, M.; Lewandowska, A. Zmiany rozkładu dostępnych mezoporów w drewnie topoli białej (Populus alba L.,) w wyniku cyklicznnego suszenia. Episteme 2015, 26, 399–407. [Google Scholar]
- Nethercot, D. Handbook of Wood Chemistry and Wood Composites; Taylor & Francis: Washington, DC, USA, 2005. [Google Scholar]
- Antczak, A.; Marchwicka, M.; Szadkowski, J.; Drożdżek, M.; Gawron, J.; Radomski, A.; Zawadzki, J. Sugars yield obtained after acid and enzymatic hydrolysis of fast-growing poplar wood species. BioResources 2018, 13, 8629–8645. [Google Scholar] [CrossRef]
- Adney, B.; Baker, J. Measurement of Cellulase Activities (NREL/TP-510-42628); National Renewable Energy Laboratory: Golden, CO, USA, 1996. [Google Scholar]
- Hallac, B.B.; Ragauskas, A. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefining 2011, 5, 215–225. [Google Scholar] [CrossRef]
- Antczak, A.; Mańkowski, P.; Boruszewski, P. Chemical studies of ozone impact on pinewood (Pinus sylvestris L.) degradation. Ann. Wars. Univ. Life Sci. For. Wood Technol. 2011, 73, 98–105. [Google Scholar]
- Fan, X.; Gao, Y.; He, W.; Hu, H.; Tian, M.; Wang, K.; Pan, S. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 2016, 151, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Stanisławska, A.; Staroszczyk, H.; Szkodo, M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr. Polym. 2020, 236, 116023. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gladysheva, E.K.; Skiba, E.A.; Budaeva, V.V. A study of properties and enzymatic hydrolysis of bacterial cellulose. Cellulose 2019, 26, 2255–2265. [Google Scholar] [CrossRef]
- Sederavičiūtė, F.; Bekampienė, P.; Domskienė, J. Effect of pretreatment procedure on properties of Kombucha fermented bacterial cellulose membrane. Polym. Test. 2019, 78, 105941. [Google Scholar] [CrossRef]
- Betlej, I.; Salerno-Kochan, R.; Jankowska, A.; Krajewski, K.; Wilkowski, J.; Rybak, K.; Nowacka, M.; Boruszewski, P. The Impact of the mechanical modification of bacterial cellulose films on selected quality parameters. Coatings 2021, 11, 1275. [Google Scholar] [CrossRef]
- Balan, R.; Antczak, A.; Brethauer, S.; Zielenkiewicz, T.; Studer, M.H. Steam explosion pretreatment of beechwood. Part 1: Comparison of the enzymatic hydrolysis of washed solids and whole pretreatment slurry at different solid loadings. Energies 2020, 13, 3653. [Google Scholar] [CrossRef]
- Antczak, A.; Świerkosz, R.; Szeniawski, M.; Marchwicka, M.; Akus-Szylberg, F.; Przybysz, P.; Zawadzki, J. The comparison of acid and enzymatic hydrolysis of pulp obtained from poplar wood (Populus sp.) by the Kraft method. Drewno 2019, 63, 53–66. [Google Scholar] [CrossRef]
- Zawadzki, J.; Szadkowska, D.; Antczak, A.; Elbe, P.; Radomski, A.; Drożdżek, M.; Zielenkiewicz, T.; Kosińska, T. Effect of furfural on the enzyme activity during enzymatic hydrolysis of cellulose isolated from poplar wood (Populus sp.). Przem. Chem. 2015, 94, 1941–1944. [Google Scholar] [CrossRef]
- Akus-Szylberg, F.; Antczak, A.; Zawadzki, J. Hydrothermal pretreatment of poplar (Populus trichocarpa) wood and its impact on chemical composition and enzymatic hydrolysis yield. Drewno 2020, 63, 5–18. [Google Scholar] [CrossRef]
- Arora, A.; Martin, E.M.; Pelkki, M.H.; Carrier, D.J. Effect of formic acid and furfural on the enzymatic hydrolysis of cellulose powder and dilute acid-pretreated poplar hydrolysates. ACS Sustain. Chem. Eng. 2013, 1, 23–28. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels. 2013, 6, 16. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value (SD) | Notes |
---|---|---|
Crystallinity degree | 46 (0.8) % | dry film |
Molar mass: Number average Mn Weight average Mw Molar mass dispersity Đ Polymerization degree DPw | 324 (73) kg/mol 984 (60) kg/mol 3.2 (0.9) 6080 (370) | dry film |
Pretreatment Method | Dry Matter Content of Bacterial Cellulose (SD) |
---|---|
Raw cellulose LHW, 130 °C | 2.8 (0.4)% 3.0 (0.7)% |
LHW, 190 °C | 3.9 (0.6)% |
SE, 130 °C | 5.4 (0.5)% |
SE, 190 °C | 7.8 (0.16)% |
Pretreatment Method | Glucose Yield (SD) |
---|---|
Raw (non-treated) | 58.4 (3.4)% |
LHW, 130 °C | 88.0 (2.4)% |
LHW, 190 °C | 80.1 (1.5)% |
SE, 130 °C | 88.7 (1.8)% |
SE, 190 °C | 67.3 (2.7)% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betlej, I.; Antczak, A.; Szadkowski, J.; Drożdżek, M.; Krajewski, K.; Radomski, A.; Zawadzki, J.; Borysiak, S. Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers 2022, 14, 2032. https://doi.org/10.3390/polym14102032
Betlej I, Antczak A, Szadkowski J, Drożdżek M, Krajewski K, Radomski A, Zawadzki J, Borysiak S. Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers. 2022; 14(10):2032. https://doi.org/10.3390/polym14102032
Chicago/Turabian StyleBetlej, Izabela, Andrzej Antczak, Jan Szadkowski, Michał Drożdżek, Krzysztof Krajewski, Andrzej Radomski, Janusz Zawadzki, and Sławomir Borysiak. 2022. "Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments" Polymers 14, no. 10: 2032. https://doi.org/10.3390/polym14102032
APA StyleBetlej, I., Antczak, A., Szadkowski, J., Drożdżek, M., Krajewski, K., Radomski, A., Zawadzki, J., & Borysiak, S. (2022). Evaluation of the Hydrolysis Efficiency of Bacterial Cellulose Gel Film after the Liquid Hot Water and Steam Explosion Pretreatments. Polymers, 14(10), 2032. https://doi.org/10.3390/polym14102032