Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of EPDM/Slide-Ring Composites
2.3. Characterization Methods
2.3.1. Compression Set
2.3.2. Dynamic Mechanical Analysis (DMA)
2.3.3. Mechanical Properties
2.3.4. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Compression Set
3.2. Dynamic Mechanical Analysis
3.3. Mechanical Properties
3.4. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okumura, Y.; Ito, K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv. Mater. 2001, 13, 485–487. [Google Scholar] [CrossRef]
- Ito, K. Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, and Properties of Slide-Ring Gels with Freely Movable Junctions. Polym. J. 2007, 39, 489–499. [Google Scholar] [CrossRef]
- Araki, J.; Ito, K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter 2007, 3, 1456–1473. [Google Scholar] [CrossRef]
- Noda, Y.; Hayashi, Y.; Ito, K. From topological gels to slide-ring materials. J. Appl. Polym. Sci. 2014, 15, 131. [Google Scholar] [CrossRef]
- Arunachalam, M.; Gibson, H.W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 2014, 39, 1043–1073. [Google Scholar] [CrossRef]
- Ito, K. Slide-ring materials using topological supramolecular architecture. Curr. Opin. Solid State Mater. Sci. 2010, 14, 28–34. [Google Scholar] [CrossRef]
- Mayumi, K.; Ito, K. Structure and dynamics of polyrotaxane and slide-ring materials. Polymer 2010, 51, 959–967. [Google Scholar] [CrossRef] [Green Version]
- Mayumi, K.; Liu, C.; Yasuda, Y.; Ito, K. Softness, Elasticity, and Toughness of Polymer Networks with Slide-Ring Cross-Links. Gels 2021, 7, 91. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Sun, Y. Stretchable slide-ring supramolecular hydrogel for flexible electronic devices. Commun. Mater. 2022, 3, 2. [Google Scholar] [CrossRef]
- Bele, A.; Dascalu, M.; Tugui, C.; Farcas, A. Silicone elastomers with improved electro-mechanical performance using slide-ring polymers. J. Polym. Res. 2022, 29, 202. [Google Scholar] [CrossRef]
- Li, X.; Kang, H.; Luo, Q.; Shen, J. Preparation and properties of a novel poly (lactic-acid)-based thermoplastic vulcanizate from both experiments and simulations. RSC Adv. 2022, 12, 9534–9542. [Google Scholar] [CrossRef]
- Araki, J.; Kataoka, T.; Ito, K. Preparation of a “sliding graft copolymer”, an organic solvent-soluble polyrotaxane containing mobile side chains, and its application for a crosslinked elastomeric supramolecular film. Soft Matter 2008, 4, 245–249. [Google Scholar] [CrossRef]
- Wu, R.; Lai, J.; Pan, Y.; Zheng, Z.; Ding, X. High-strain slide-ring shape-memory polycaprolactone-based polyurethane. Soft Matter 2018, 14, 4558–4568. [Google Scholar] [CrossRef]
- Ishigami, A.; Watanabe, K.; Kurose, T.; Ito, H. Physical and morphological properties of tough and transparent PMMA-based blends modified with polyrotaxane. Polymers 2020, 12, 1790. [Google Scholar] [CrossRef]
- Goto, T.; Sakakibara, N.; Inoue, K.; Mayumi, K.; Shimizu, Y.; Ito, T.; Ito, K.; Hakuta, Y.; Terashima, K. Fabrication of flexible porous slide-ring polymer/carbon nanofiber composite elastomer by simultaneous freeze-casting and cross-linking reaction with dimethyl sulfoxide. Compos. Sci. Technol. 2021, 215, 109028. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, D.; Yang, J.; Nishi, T.; Ito, K.; Zhao, X.; Zhang, L. Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property. Sci. Rep. 2016, 6, 22810. [Google Scholar] [CrossRef]
- Wang, J.; Geng, X.; Wang, W.; Zhang, L.; Zhao, W.; Nishi, T. Nitrile rubber/sliding graft copolymer damping material with significantly improved strength and damping performance. J. Appl. Polym. Sci. 2018, 136, 47188. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, X.; Wang, W.; Geng, X.; Zhang, L.; Guo, B.; Nishi, T.; Hu, G.H. Significantly improving strength and damping performance of nitrile rubber via incorporating sliding graft copolymer. Ind. Eng. Chem. Res. 2018, 57, 16692–16700. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Ishikawa, Y.; Kirihara, K.; Ito, T.; Mayumi, K.; Ito, K.; Terashima, K.; Hakuta, Y.; Shimizu, Y. Slide-Ring Material/Highly Dispersed Graphene Oxide Composite with Mechanical Strength and Tunable Electrical Conduction as a Stretchable-Base Substrate. ACS Appl. Mater. Interfaces 2020, 12, 47911–47920. [Google Scholar] [CrossRef]
- Nishi, T.; Murota, N. Elastomeric seismic-protection isolators for buildings and bridges. Chin. J. Polym. Sci. 2013, 31, 50–57. [Google Scholar] [CrossRef]
- Reggio, A.; De Angelis, M. Combined primary–secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings. J. Sound Vib. 2014, 333, 2386–2403. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Xiang, P.; Tian, M.; Fong, H.; Jin, R.; Zhang, L.-Q. Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance. Polymer 2007, 48, 6056–6063. [Google Scholar] [CrossRef]
- Sharma, A.K.; Pandey, A.; Shukla, D.K.; Pandey, K.N. Effect of Self-Healing Dicyclopentadiene Microcapsules on Fracture Toughness of Epoxy. Mater. Today Proc. 2018, 5, 21256–21262. [Google Scholar] [CrossRef]
- Sheshkar, N.; Verma, G.; Pandey, C.; Sharma, A.K.; Gupta, A. Enhanced thermal and mechanical properties of hydrophobic graphite-embedded polydimethylsiloxane composite. J. Polym. Res. 2021, 28, 403. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, J.; Zhao, D.; Lu, Y.; Wang, W.; Zhang, L.; Nishi, T. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties. Int. J. Smart Nano Mater. 2015, 6, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Park, J.Y.; Hwang, S.H. Study on rear door fixed glass weather-strip for automobile using EPDM/Polypropylene blend. Elastomer 2000, 35, 115–121. [Google Scholar]
- Andrew, C. An Introduction to Rubber Technology, 2nd ed.; Smithers Rapra Technology Limited: Shawbury, UK, 1999. [Google Scholar]
- Kwak, G.H.; Inoue, K.; Tominaga, Y.; Asai, S.; Sumita, M. Characterization of the vibrational damping loss factor and viscoelastic properties of ethylene-propylene rubbers reinforced with micro-scale fillers. J. App. Polym. Sci. 2001, 82, 3058–3066. [Google Scholar] [CrossRef]
- ASTM D 395-03; Standard Test Methods for Rubber Property—Compression Set. ASTM International: West Conshohocken, PA, USA, 2011.
- Sc, T.C. Elastomeric Seismic-Protection Isolators-Part 1: Test Methods; ISO 22762-1:2005; International Organization for Standardization (ISO): Geneva, Switzerland, 2005. [Google Scholar]
- Burtscher, S.L.; Dorfmann, A. Compression and shear tests of anisotropic high damping rubber bearings. Eng. Struct. 2004, 26, 1979–1991. [Google Scholar] [CrossRef]
- Ghassemieh, E. Enhancement of the properties of EPDM/NBR elastomers using nanoclay for seal applications. Polym. Compos. 2009, 30, 1657–1667. [Google Scholar] [CrossRef]
Ingredients | Contents (phr) a |
---|---|
EPDM | 100 |
SR | 0, 5, 10, and 15 |
Zinc Oxide | 5.0 |
Stearic acid | 1.0 |
2-Mercaptobenzothiazole (MBT) | 0.5 |
Tetramethyl thiuram disulfide (TMTD) | 1.0 |
Sulfur | 1.5 |
SR Contents | % of C-Set Improvement |
---|---|
0 phr | ----- |
5 phr | 35.6 |
10 phr | 36.8 |
15 phr | 38.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Sahu, P.; Oh, J.S. Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites. Polymers 2022, 14, 2121. https://doi.org/10.3390/polym14102121
Kim G, Sahu P, Oh JS. Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites. Polymers. 2022; 14(10):2121. https://doi.org/10.3390/polym14102121
Chicago/Turabian StyleKim, Gyuri, Pranabesh Sahu, and Jeong Seok Oh. 2022. "Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites" Polymers 14, no. 10: 2121. https://doi.org/10.3390/polym14102121
APA StyleKim, G., Sahu, P., & Oh, J. S. (2022). Physical Properties of Slide-Ring Material Reinforced Ethylene Propylene Diene Rubber Composites. Polymers, 14(10), 2121. https://doi.org/10.3390/polym14102121