Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of P. frutescens Seed Oil, M. oleifera Seed Oil, and Mixed Seed Oil
2.2.1. Quantification of Plant Sterols in P. frutescens, M. oleifera, and Mixed Seed Oils by Gas Chromatography (GC)
2.2.2. Determination of the Fatty Acid Composition in P. frutescens, M. oleifera, and Mixed Seed Oils
2.2.3. Determination of Peroxide Value in P. frutescens, M. oleifera, and Mixed Seed Oils
2.2.4. Thiobarbituric Acid (TBA) Test of P. frutescens, M. oleifera, and Mixed Seed Oils
2.2.5. Color Analysis
2.3. Preparation of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
2.4. Physical Characterization and Physical Stability of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
2.4.1. Size, Polydispersity Index, Zeta Potential, and pH Values
2.4.2. Rheology Study
2.5. Chemical Analysis of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
2.6. Safety Study of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
2.6.1. PBMC Isolation
2.6.2. Cytotoxicity Study of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions against Peripheral Blood Mononuclear Cells
2.6.3. Skin Irritation Test
2.7. Formulation of Emulgels Containing P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsion
2.8. Evaluation of the Physical Characteristics and Stability Testing of Emulgels Containing P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
2.9. Statistical Analysis
3. Results and Discussion
3.1. Plant Sterols of P. frutescens, M. oleifera, and Mixed Seed Oil
3.2. Fatty Acid Compositions of P. frutescens, M. oleifera, and Mixed Seed Oil
3.3. Peroxide Value in P. frutescens, M. oleifera, and Mixed Seed Oil
3.4. Thiobarbituric Acid Test
3.5. Color of P. frutescens, M. oleifera, and Mixed Seed Oil
3.6. Formulation of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
3.7. Appearance of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsion
3.8. Size, Size Distribution, and Surface Charge of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsion
3.9. Physical Stability of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions
3.10. Loading Efficiency and Chemical Stability of P. frutescens, M. oleifera, and Mix Seed Oil Microemulsions
3.11. Cytotoxicity of P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsions against Peripheral Blood Mononuclear Cells
3.12. Safety Evaluation of Microemulsions in Healthy Volunteers
3.13. Physical Characteristics and Stability of Emulgels Containing P. frutescens, M. oleifera, and Mixed Seed Oil Microemulsion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vázquez, L.; Corzo-Martínez, M.; Arranz-Martínez, P.; Barroso, E.; Reglero, G.; Torres, C. Bioactive Lipids. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 467–527. [Google Scholar]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, N.; Takahashi, K.; Tanaka, H.; Ihara, Y.; Ikemoto, A.; Fujii, Y.; Okuyama, H. Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acids. Photochem. Photobiol. 2002, 76, 657–663. [Google Scholar] [CrossRef]
- Hou, M.; Li, Q.; Liu, X.; Lu, C.; Li, S.; Wang, Z.; Dang, L. Substantial Enhancement of the Antioxidant Capacity of an α-Linolenic Acid Loaded Microemulsion: Chemical Manipulation of the Oil–Water Interface by Carbon Dots and Its Potential Application. J. Agric. Food Chem. 2018, 66, 6917–6925. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Hou, M.; Zhang, B.; Liu, T.; Guo, Y.; Dang, L.; Wang, Z. Enhancement of the solubility and antioxidant capacity of α-linolenic acid using an oil in water microemulsion. Food Funct. 2017, 8, 2792–2802. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, Y.W.; Kim, D.H.; Seo, B.H.; Suh, H.S.; Choi, Y.S. A Randomized, Placebo-Controlled Trial of Gamma Linolenic Acid as an Add-on Therapy to Minocycline for the Treatment of Rosacea. Ann. Dermatol. 2020, 32, 466. [Google Scholar] [CrossRef]
- Ando, H.; Ryu, A.; Hashimoto, A.; Oka, M.; Ichihashi, M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch Derm. Res 1998, 290, 375–381. [Google Scholar] [CrossRef]
- Cardoso, C.R.; Souza, M.A.; Ferro, E.A.; Favoreto, S., Jr.; Pena, J.D. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair. Regen. 2004, 12, 235–243. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M. Promising features of Moringa oleifera oil: Recent updates and perspectives. Lipids Health Dis. 2016, 15, 212. [Google Scholar] [CrossRef] [Green Version]
- Naik, A.; Pechtold, L.A.R.M.; Potts, R.O.; Guy, R.H. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Control. Release 1995, 37, 299–306. [Google Scholar] [CrossRef]
- He, C.-X.; He, Z.-G.; Gao, J.-Q. Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2010, 7, 445–460. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef]
- Singhal, M.; Lapteva, M.; Kalia, Y.N. Formulation challenges for 21st century topical and transdermal delivery systems. Expert Opin. Drug Deliv. 2017, 14, 705–708. [Google Scholar] [CrossRef] [Green Version]
- Nandgude Tanaji, D. Emulgel: A Comprehensive Review for Topical Delivery of Hydrophobic Drugs. Asian J. Pharm. 2018, 12, 382–393. [Google Scholar] [CrossRef]
- Pagano, C.; Baiocchi, C.; Beccari, T.; Blasi, F.; Cossignani, L.; Ceccarini, M.R.; Orabona, C.; Orecchini, E.; Di Raimo, E.; Primavilla, S.; et al. Emulgel Loaded with Flaxseed Extracts as New Therapeutic Approach in Wound Treatment. Pharmaceutics 2021, 13, 1107. [Google Scholar] [CrossRef]
- Laakso, P. Analysis of sterols from various food matrices. Eur. J. Lipid Sci. Technol. 2005, 107, 402–410. [Google Scholar] [CrossRef]
- Torri, L.; Bondioli, P.; Folegatti, L.; Rovellini, P.; Piochi, M.; Morini, G. Development of Perilla seed oil and extra virgin olive oil blends for nutritional, oxidative stability and consumer acceptance improvements. Food Chem. 2019, 286, 584–591. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Yang, M.-H.; Lin, J.-H.; Lee, M.-H. Lipid profile and oxidative stability of commercial egg products. J. Food Drug Anal. 2005, 13, 78–83. [Google Scholar] [CrossRef]
- Tunit, P.; Thammarat, P.; Okonogi, S.; Chittasupho, C. Hydrogel Containing Borassus flabellifer L. Male Flower Extract for Antioxidant, Antimicrobial, and Anti-Inflammatory Activity. Gels 2022, 8, 126. [Google Scholar] [CrossRef]
- Phetkate, P.; Kummalue, T.; Rinthong, P.O.; Kietinun, S.; Sriyakul, K. Study of the safety of oral Triphala aqueous extract on healthy volunteers. J. Integr. Med. 2020, 18, 35–40. [Google Scholar] [CrossRef]
- Zhao, B.; Fu, S.; Li, H.; Chen, Z. Chemical Characterization of Chinese Perilla Seed Oil. J. Oleo Sci. 2021, 70, 1575–1583. [Google Scholar] [CrossRef]
- Yuenyong, J.; Pokkanta, P.; Phuangsaijai, N.; Kittiwachana, S.; Mahatheeranont, S.; Sookwong, P. GC-MS and HPLC-DAD analysis of fatty acid profile and functional phytochemicals in fifty cold-pressed plant oils in Thailand. Heliyon 2021, 7, e06304. [Google Scholar] [CrossRef]
- Bondioli, P.; Folegatti, L.; Rovellini, P. Oils rich in alpha linolenic acid: Chemical composition of perilla (Perilla frutescens) seed oil. OCL-Oilseeds Fats Crops Lipids 2020, 27, 67. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Iqbal, T.; Bhanger, M. Physico-Chemical Characterization of Moringa concanensis Seeds and Seed Oil. J. Am. Oil Chem. Soc. 2007, 84, 413–419. [Google Scholar] [CrossRef]
- Lalas, S.; Tsaknis, J. Characterization of Moringa oleifera Seed Oil Variety “Periyakulam 1”. J. Food Compos. Anal. 2002, 15, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Allam, S.S. Characterization of Moringa (ben) seed oil grown in Egypt. Minia J. Agric. Res. Dev. 2009, 29, 1–21. [Google Scholar]
- Özcan, M.M. Moringa spp: Composition and bioactive properties. South Afr. J. Bot. 2020, 129, 25–31. [Google Scholar] [CrossRef]
- Phatangare, N.; Deshmukh, K.; Murade, V.; Naikwadi, P.; Hase, D.; Chavhan, M.; Velis, H. Isolation and Characterization of β-Sitosterol from Justicia gendarussa burm. F.-An Anti-Inflammatory Compound. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 209554921. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, L.; Hou, W.; Wu, J. β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF-κB Pathways in LPS-Exposed BV2 Cells. Biomed. Res. Int. 2020, 2020, 7532306. [Google Scholar] [CrossRef]
- Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B.; Cervantes-Hernández, I.; Madrigal-Santillán, O.; Morales-González, J.A.; Álvarez-González, I.; Madrigal-Bujaidar, E. Evaluation of The Anti-Inflammatory Capacity of Beta-Sitosterol in Rodent Assays. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 123–130. [Google Scholar] [CrossRef]
- Kangwan, N.; Pintha, K.; Khanaree, C.; Kongkarnka, S.; Chewonarin, T.; Suttajit, M. Anti-inflammatory effect of Perilla frutescens seed oil rich in omega-3 fatty acid on dextran sodium sulfate-induced colitis in mice. Res. Pharm. Sci. 2021, 16, 464–473. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.-R.; Jeon, I.; Jung, H.; Heo, J.B.; Kim, T.-Y.; Chen, G. Fatty acid composition and oil content of seeds from perilla (Perilla frutescens (L.) var. frutescens) germplasm of Republic of Korea. Genet. Resour. Crop Evol. 2019, 66, 1615–1624. [Google Scholar] [CrossRef]
- Tsaknis, J.; Lalas, S.; Gergis, V.; Dourtoglou, V.; Spiliotis, V. Characterization of Moringa oleifera variety Mbololo seed oil of Kenya. J. Agric. Food Chem. 1999, 47, 4495–4499. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.; Nour, A.; Ishag, O.; Ali, M.; Erwa, I.; Nour, A. Physicochemical Properties and Fatty Acids Composition of Sudanese Moringa oleifera Seed Oil. J. Turk. Chem. Soc. Sect. A Chem. 2020, 7, 911–931. [Google Scholar] [CrossRef]
- Tunit, P.; Kietinun, S.; Sriyakul, K.; Tungsukruthai, P.; Chittasupho, C. Enhancement of Antioxidant Activity by the Combination of Moringa oleifera and Perilla frutescens Seed Oils in Microemulsion. Key Eng. Mater. 2020, 859, 100–106. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.-T. Oxidative stability of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils upon stripping. Eur. J. Lipid Sci. Technol. 2004, 106, 35–43. [Google Scholar] [CrossRef]
- Hong, S.-J.; Rho, S.-J.; Lee, A.-Y.; Park, H.; Cui, J.; Park, J.; Hong, S.-J.; Kim, Y.-R.; Kim, G. Rancidity Estimation of Perilla Seed Oil by Using Near-Infrared Spectroscopy and Multivariate Analysis Techniques. J. Spectrosc. 2017, 2017, 1082612. [Google Scholar] [CrossRef] [Green Version]
- Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative stability of selected edible oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef] [Green Version]
- Salama, M.; el Harkaoui, S.; Nounah, I.; Sakr, H.; Abdin, M.; Owon, M.; Osman, M.; Ibrahim, A.; Charrouf, Z.; Matthäus, B. Oxidative stability of Opuntia ficus-indica seeds oil blending with Moringa oleifera seeds oil. OCL 2020, 27, 53. [Google Scholar] [CrossRef]
- Gheisari, H. Correlation between acid, TBA, peroxide and iodine values, catalase and glutathione peroxidase activities of chicken, cattle and camel meat during refrigerated storage. Vet. World 2011, 4, 153–157. [Google Scholar] [CrossRef]
- Subongkot, T.; Ngawhirunpat, T. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. Int. J. Nanomed. 2017, 12, 5585–5599. [Google Scholar] [CrossRef] [Green Version]
- Udomrati, S.; Cheetangdee, N.; Gohtani, S.; Surojanametakul, V.; Klongdee, S. Emulsion stabilization mechanism of combination of esterified maltodextrin and Tween 80 in oil-in-water emulsions. Food Sci. Biotechnol. 2020, 29, 387–392. [Google Scholar] [CrossRef]
- Elfiyani, R.; Amalia, A.; Pratama, S. Effect of Using the Combination of Tween 80 and Ethanol on the Forming and Physical Stability of Microemulsion of Eucalyptus Oil as Antibacterial. J. Young Pharm. 2017, 9, s1–s4. [Google Scholar] [CrossRef] [Green Version]
- Syed, H.; Kok-Khiang, P. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta Pol. Pharm. 2014, 71, 301–309. [Google Scholar]
- Pumival, P.; Tadtong, S.; Athikomkulchai, S.; Chittasupho, C. Antifungal Activity and the Chemical and Physical Stability of Microemulsions Containing Citrus hystrix DC Leaf Oil. Nat. Prod. Commun. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Gradzielski, M. Effect of the Cosurfactant Structure on the Bending Elasticity in Nonionic Oil-in-Water Microemulsions. Langmuir 1998, 14, 6037–6044. [Google Scholar] [CrossRef]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010, 5, 1595–1616. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Butt, U.; ElShaer, A.; Snyder, L.A.S.; Al-Kinani, A.A.; Le Gresley, A.; Alany, R.G. Fatty Acid Based Microemulsions to Combat Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae and Staphylococcus aureus. Nanomedicine 2018, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Segger, D.; Aßmus, U.; Brock, M.; Erasmy, J.; Finkel, P.; Fitzner, A.; Heuss, H.; Kortemeier, U.; Munke, S.; Rheinländer, T.; et al. Multicenter study on measurement of the natural pH of the skin surface. Int. J. Cosmet. Sci. 2008, 30, 75. [Google Scholar] [CrossRef]
- Lee, S.; Teo, C.; Tan, W.-J.; Yan, L.; Lim, H.; Siew Yong, T. Lipid microemulsion-based hydrogels for effective topical delivery of phenytoin. Int. J. Pharm. Pharm. Sci. 2016, 8, 240–246. [Google Scholar] [CrossRef]
- Ogunsina, B.S.; Indira, T.N.; Bhatnagar, A.S.; Radha, C.; Debnath, S.; Gopala Krishna, A.G. Quality characteristics and stability of Moringa oleifera seed oil of Indian origin. J. Food Sci. Technol. 2014, 51, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and Chemical Stability of Curcumin in Aqueous Solutions and Emulsions: Impact of pH, Temperature, and Molecular Environment. J. Agric. Food Chem. 2017, 65, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Kharat, M.; Zhang, G.; McClements, D.J. Stability of curcumin in oil-in-water emulsions: Impact of emulsifier type and concentration on chemical degradation. Food Res. Int. 2018, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Bergonzi, M.C.; Hamdouch, R.; Mazzacuva, F.; Isacchi, B.; Bilia, A.R. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT—Food Sci. Technol. 2014, 59, 148–155. [Google Scholar] [CrossRef]
- Pourahmad, J.; Salimi, A. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predicting Immunosuppressive Effects of Drugs and Xenobiotics. Iran J. Pharm. Res. 2015, 14, 979. [Google Scholar]
- Vanacker, N.; Blouin, R.; Ster, C.; Lacasse, P. Effect of different fatty acids on the proliferation and cytokine production of dairy cow peripheral blood mononuclear cells. J. Dairy Sci. 2022, 105, 3508–3517. [Google Scholar] [CrossRef]
- Sureda, A.; Martorell, M.; Bibiloni, M.D.M.; Bouzas, C.; Gallardo-Alfaro, L.; Mateos, D.; Capó, X.; Tur, J.A.; Pons, A. Effect of Free Fatty Acids on Inflammatory Gene Expression and Hydrogen Peroxide Production by Ex Vivo Blood Mononuclear Cells. Nutrients 2020, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Guan, J.; Tian, Y.H.; Su, G.Y.; Zhao, Y.Q. Acute and sub-chronic 90-day oral toxicity study of Perilla seed oil in rodents and Beagle dogs. Regul. Toxicol. Pharm. 2019, 103, 229–236. [Google Scholar] [CrossRef]
- Kamalashiran, C.; Pattaraarchachai, J.; Muengtaweepongsa, S. Feasibility and Safety of Perilla Seed Oil as an Additional Antioxidative Therapy in Patients with Mild to Moderate Dementia. J. Aging Res. 2018, 2018, 1–5. [Google Scholar] [CrossRef]
- Athikomkulchai, S.; Tunit, P.; Tadtong, S.; Jantrawut, P.; Sommano, S.R.; Chittasupho, C. Moringa oleifera Seed Oil Formulation Physical Stability and Chemical Constituents for Enhancing Skin Hydration and Antioxidant Activity. Cosmetics 2020, 8, 2. [Google Scholar] [CrossRef]
- Tenjarla, S. Microemulsions: An overview and pharmaceutical applications. Crit. Rev. Drug. Carr. Syst. 1999, 16, 461–521. [Google Scholar] [CrossRef]
- Ita, K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm. Dev. Technol. 2017, 22, 467–475. [Google Scholar] [CrossRef]
Compound | Content (mg/100 g) | ||
---|---|---|---|
P. frutescens Seed Oil | M. oleifera Seed Oil | Mixed Seed Oil | |
β-sitosterol | 212.67 | 54.48 | 57.18 |
Campesterol | 3.37 | 8.94 | - |
Stigmasterol | - | 21.37 | - |
Brassicasterol | - | 0.54 | - |
P. frutescens Seed Oil | M. oleifera Seed Oil | Mixed Seed Oil | |
---|---|---|---|
Saturated fatty acid (g/100 g) | |||
Lauric acid (C12:0) | 0.16 | - | 0.06 |
Myristic acid (C14:0) | 0.15 | 0.19 | 0.12 |
Palmitic acid (C16:0) | 6.95 | 7.91 | 6.78 |
Heptadecanoic acid (C17:0) | - | 0.10 | - |
Stearic acid (C18:0) | 2.63 | 4.88 | 4.19 |
Arachidic acid (C20:0) | 0.15 | 3.19 | 1.85 |
Behenic acid (C22:0) | - | 5.91 | 2.84 |
Lignoceric acid (C24:0) | - | 1.59 | 0.62 |
Unsaturated fatty acid (g/100 g) | |||
Palmitoleic acid (C16:1) | 1.27 | 0.62 | |
Cis-9-Oleic acid (C18:1n9c) | 11.51 | 66.03 | 36.84 |
Linoleic acid (C18:2n6c) | 17.78 | 1.53 | 9.96 |
Alpha-Linolenic acid (C18:3n3) | 56.27 | 0.25 | 31.71 |
Cis-11-Eicosenoic acid (C20:1n11) | - | 2.38 | - |
Erucic acid (C22:1n9) | - | 0.15 | - |
Color | P. frutescen Seed Oil | M. oleifera Seed Oil | Mixed Seed Oil |
---|---|---|---|
L* | 49.96 ± 0.04 | 61.94 ± 27.11 | 48.43 ± 0.13 |
a* | 2.51 ± 0.02 | 1.42 ± 5.77 | 3.25 ± 0.06 |
b* | 61.47 ± 0.18 | 64.17 ± 2.04 | 65.55 ± 0.31 |
Formula | Viscosity (cPs) | ||||
---|---|---|---|---|---|
Day 0 | 6 Cycles | 4 °C 1 Month | 30 °C 1 Month | 45 °C 1 Month | |
M.oleifera oil microemulsion | 257.43 ± 12.07 | 259.25 ± 1.33 | 231.95 ± 1.96 | 250.21 ± 6.68 | 213.41 ± 21.81 |
P. frutescens oil microemulsion | 233.23 ± 38.89 | 251.46 ± 18.59 | 252.58 ± 1.66 | 240.81 ± 3.18 | 252.99 ± 5.42 ** |
Mix seed oil microemulsion | 227.75 ± 15.07 | 238.17 ± 3.47 | 244.74 ± 10.69 | 225.69 ± 7.47 | 233.55 ± 2.70 |
Parameter | Before Test | After Test | Units | p-Value |
---|---|---|---|---|
Glucose | 86.6 ± 7.17 | 88.9 ± 3.14 | mg/dL | 0.3037 |
Fasting blood sugar | ||||
Complete Blood Count | ||||
Red blood cell (RBC) | 4.86 ± 0.76 | 4.94 ± 0.95 | 106/cumm. | 0.4288 |
White blood cell (WBC) | 5.79 ± 1.33 | 5.38 ± 1.55 | 106/cumm. | 0.4689 |
Neutrophils | 54.38 ± 8.71 | 58.34 ± 10.27 | % | 0.2608 |
Lymphocytes | 37.25 ± 10.56 | 34.83 ± 8.15 | % | 0.436 |
Monocytes | 3.41 ± 1.81 | 3.91 ± 2.00 | % | 0.5701 |
Basophils | 0.54 ± 0.22 | 0.54 ± 0.46 | % | 0.1864 |
Eosinophils | 3.24 ± 1.48 | 2.37 ± 1.48 | % | 0.1223 |
Hemoglobin (Hb) | 13.39 ± 1.52 | 13.35 ± 1.79 | mg/dL | 0.899 |
Hematocrit (HCT) | 41.77 ± 4.96 | 40.18 ± 4.09 | % | 0.0876 |
Platelet | 268.4 ± 46.60 | 275.5 ± 49.15 | K/cumm. | 0.3017 |
Liver Function | ||||
Total protein | 7.91 ± 0.39 | 7.69 ± 0.40 | g/dL | 0.0955 |
Albumin | 4.31 ± 0.29 | 4.33 ± 0.26 | g/dL | 0.764 |
Globulin | 3.47 ± 0.28 | 3.39 ± 0.28 | g/dL | 0.0528 |
Alkaline phosphate | 59.8 ± 13.43 | 59.1 ± 15.50 | U/L | 0.7886 |
Total bilirubin | 0.47 ± 0.27 | 0.53 ± 0.35 | mg/dL | 0.4826 |
Conjugate bilirubin | 0.14 ± 0.05 | 0.15 ± 0.07 | mg/dL | 0.5911 |
Serum glutamic oxaloacetic transaminase (SGOT) | 17.1 ± 7.51 | 15.2 ± 3.49 | U/L | 0.3036 |
Serum Glutamic Pyruvate Transaminase (SGPT) | 26.1 ± 4.31 | 26.6 ± 3.89 | U/L | 0.0522 |
Renal Function | ||||
Blood urea nitrogen (BUN) | 12.34 ± 1.95 | 11.55 ± 3.38 | mg/dL | 0.348 |
Creatinine | 0.838 ± 0.23 | 0.863 ± 0.22 | mg/dL | 0.1636 |
HDL | 62.9 ± 17.64 | 58.5 ± 9.65 | mg/dL | 0.3881 |
Cholesterol | 209.2 ± 42.49 | 189.5 ± 29.55 | mg/dL | 0.2328 |
LDL | 119.3 ± 27.37 | 114.3 ± 30.24 | mg/dL | 0.5782 |
Triglycerides | 57.9 ± 24.70 | 59.3 ± 15.90 | mg/dL | 0.8806 |
Urine Analysis | ||||
pH | 6.0 ± 0.75 | 6.35 ± 0.71 | 0.0886 | |
Specific gravity | 1.03 ± 0.003 | 1.027 ± 0.003 | 0.0811 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunit, P.; Chittasupho, C.; Sriyakul, K.; Tungsuruthai, P.; Chakkavittumrong, P.; Na-Bangchang, K.; Kietinun, S. Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. Polymers 2022, 14, 2348. https://doi.org/10.3390/polym14122348
Tunit P, Chittasupho C, Sriyakul K, Tungsuruthai P, Chakkavittumrong P, Na-Bangchang K, Kietinun S. Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. Polymers. 2022; 14(12):2348. https://doi.org/10.3390/polym14122348
Chicago/Turabian StyleTunit, Prakairat, Chuda Chittasupho, Kusuma Sriyakul, Parunkul Tungsuruthai, Panlop Chakkavittumrong, Kesara Na-Bangchang, and Somboon Kietinun. 2022. "Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment" Polymers 14, no. 12: 2348. https://doi.org/10.3390/polym14122348
APA StyleTunit, P., Chittasupho, C., Sriyakul, K., Tungsuruthai, P., Chakkavittumrong, P., Na-Bangchang, K., & Kietinun, S. (2022). Emulgels Containing Perilla frutescens Seed Oil, Moringa oleifera Seed Oil, and Mixed Seed Oil: Microemulsion and Safety Assessment. Polymers, 14(12), 2348. https://doi.org/10.3390/polym14122348