Evaluation of Marker Materials and Spectroscopic Methods for Tracer-Based Sorting of Plastic Wastes
Abstract
:1. Introduction
2. Methodological Approach for Tracer Selection
2.1. Literature Research and Data Collection
2.2. Selection Criteria for Polymer Tracers
3. Detection Techniques for Sensor-Based Sorting
3.1. Infrared Spectroscopy
3.2. Up Conversion Fluorescence Spectroscopy
3.3. X-ray Fluorescence (XRF)
3.4. UV-Vis and Fluorescence Spectroscopy
3.5. Time-Gated Fluorescence Spectroscopy
3.6. Raman-Spectroscopy
3.7. Laser-Induced Breakdown Spectroscopy
Method | Principle | Qualitative vs. Quantitative | Detection Wavelength (nm) | TRL | Pros | Cons | Example of Use for TBS | References |
---|---|---|---|---|---|---|---|---|
Near infrared (NIR) spectroscopy | Vibration of atomic bonds due to change in the dipole moment, mainly overtones and combination bands | Qualitative | 900–1700 | 9 | Fast, low cost (most sorting facilities would not need to buy new equipment), almost no preparation of samples needed | Dark polymers cannot be reliably identified, troubles with polymer mixtures and additives | NIR without the use of up-converting materials has not been researched for tracer-based sorting in part because of its limitations with dark colored polymers | [50,53,70,82,83] |
Mid-infrared (MIR) spectroscopy | Vibration of atomic bonds due to change in the dipole moment, mainly deformation, stretching, etc. | Qualitative | 2500–16,000 | 9 | Compared to NIR peaks in resulting spectra are more intense, less problems with black polymers | Additional sample preparation needed, high detection time, tight contact to sample needed, not yet suitable for high throughput sorting | Not yet usable for TBS because of limitations through sample preparation, detection time, and contact to sample | [52,84,85,86] |
Visual (UV-Vis) spectroscopy | Reflectance or absorption of visible radiation depending on color of samples | Qualitative | 500–700 | 9 | Fast identification of different colored polymers | Cannot sort for polymer type if they display the same color or different additives | No research of visual spectroscopy for TBS found | [62,63,87] |
X-ray fluorescence spectroscopy (XRF) | Disturbance of electron equilibrium using high energy radiation and detection of fluorescence emitted during restoration of electron equilibrium | Qualitative and quantitative | 0.062–0.248 | 9 | Fast, cheap, very suitable for “heavy” tracers (mostly inorganic), can identify presence of brominated flame retardants | Can only differ between PVC and PVDC and other plastics but not between all plastic families without tracer substances | Nd2O3, Gd2O3, Er2O3, Yb2O3 | [10,31,32,33] |
Fluorescence spectroscopy | Energy absorbance of ground state electrons of elements/energy emittance of excited state electrons in dependence on excitation wavelength and intensity | Quantitative and qualitative | 400–700 | 7 | Fast, suitable for tracer-based sorting using organic as well as inorganic tracers | No characteristic spectra for different polymers, high energy radiation may influence material properties | Rare earths doped with rare earth or metallic oxides doped with rare earths (e.g., Al2Ba2Mg2O7:Eu2+; Y2O2S:Eu3+) | [33,61,62,65] |
RAMAN spectroscopy | Vibration of atomic bonds due to change in polarizability | Qualitative | 2800–20,000 | 7 | Fast, supplementary to many spectroscopy techniques like NIR or LIBS | Weak intensity, much noise from colored plastics | No research on RAMAN for TBS found | [19,47,70,79] |
Laser-induced breakdown spectroscopy (LIBS) | Element analysis via plasma radiation | Qualitative and quantitative | 200–975 | 5 | Almost no preparation of samples needed, allows identification of additives | May damage surface through high powered laser; online speed not enough | Not specifically mentioned for TBs but since detection of single elements is the principle of the method and used for identification of additives in polymers, detection of specified markers should be feasible | [75,77,78,88] |
Time gated fluorescence spectroscopy (TGFS) | Decay time of fluorophores and autofluorescence of host material | Qualitative and quantitative | Dependent on spectroscopy method used | 4 | Improving Signal to Noise ratio, complementary technique to other spectrofluorometric methods | Expensive (additional hardware and software needed); may be limited in throughput speed | Supplementary to whatever main detection method is used; suitable for lanthanoids because they tend to display longer fluorescence decay time, than the polymer | [66,67,68,89] |
Up-conversion (UC) fluorescence spectroscopy | Combination of two or more low energy photons to obtain emission of a single higher energy photon | Qualitative and quantitative | 575–3600 | 4 | Enables usage of lower tracer concentrations as well as lower energy radiation, suitable for detection of black polymers | Production of tracer molecules; expensive and complex | Y2Ti2O7:2%Yb3+,1%Er3+, as well as other lanthanoid complexes | [52,57,58,90] |
4. Tracer-Based Sorting for Specific Polymer Types
4.1. Case Study—Polyoxymethylene (POM)
4.2. Selected Tracers (Three Promising Candidates)
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PlasticsEurope. Plastics—The Facts 2016. An Analysis of European Plastics Production, Demand and Waste Data; Association of Plastics Manufacturers: Brussels, Belgium, 2016. [Google Scholar]
- PlasticsEurope. Plastics—The Facts 2021—An Analysis of European Plastics Production, Demand and Waste Data; Association of Plastics Manufacturers: Brussels, Belgium, 2021. [Google Scholar]
- Geyer, R.; Jambeck Jenna, R.; Law Kara, L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Joos, L.; De Tender, C. Soil under stress: The importance of soil life and how it is influenced by (micro)plastic pollution. Comput. Struct. Biotechnol. J. 2022, 20, 1554–1566. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Van Eygen, E.; Laner, D.; Fellner, J. Circular economy of plastic packaging: Current practice and perspectives in Austria. Waste Manag. 2018, 72, 55–64. [Google Scholar] [CrossRef]
- EuroStat. Packaging Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Packaging_waste_statistics (accessed on 4 July 2022).
- Lase, I.S.; Ragaert, K.; Dewulf, J.; De Meester, S. Multivariate input-output and material flow analysis of current and future plastic recycling rates from waste electrical and electronic equipment: The case of small household appliances. Res. Conserv. Recycl. 2021, 174, 105772. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament; The Council. The European Economic and Social Committee and the Committee of the Regions: A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; European Commission, Directorate-General for Environment: Brussels, Belgium, 2020; pp. 1–20.
- Jandric, A.; Part, F.; Fink, N.; Cocco, V.; Mouillard, F.; Huber-Humer, M.; Salhofer, S.; Zafiu, C. Investigation of the heterogeneity of bromine in plastic components as an indicator for brominated flame retardants in waste electrical and electronic equipment with regard to recyclability. J. Hazard. Mater. 2020, 390, 121899. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Fomin, P.; Kargel, C. Automated sorting of polymer flakes: Fluorescence labeling and development of a measurement system prototype. Waste Manag. 2015, 38, 49–60. [Google Scholar] [CrossRef]
- Neubauer, C.; Stoifl, B.; Tesar, M.; Thaler, P. Sortierung und Recycling von Kunststoffabfällen in Österreich Status 2019; Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie: Vienna, Austria, 2020; p. 158. [Google Scholar]
- Morici, E.; Carroccio, S.C.; Bruno, E.; Scarfato, P.; Filippone, G.; Dintcheva, N.T. Recycled (bio)plastics and (bio)plastic composites: A trade opportunity in a green future. Polymers 2022, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- VDI. Recycling of Electrical and Electronic Equipment—Material and Thermal Recycling and Removal; Verein Deutscher Ingenieure (VDI): Düsseldorf, Germany, 2014; p. 44. [Google Scholar]
- Arvanitoyannis, I.S.; Bosnea, L.A. Recycling of polymeric materials used for food packaging: Current status and perspectives. Food Rev. Int. 2001, 17, 291–346. [Google Scholar] [CrossRef]
- Martens, H.; Goldmann, D. Recyclingtechnik. Fachbuch für Lehre und Praxis, 2nd ed.; Auflage, Ed.; Springer Vieweg: Wiesbaden, Germany, 2016. [Google Scholar]
- Lim, J.; Ahn, Y.; Cho, H.; Kim, J. Optimal strategy to sort plastic waste considering economic feasibility to increase recycling efficiency. Process Saf. Environ. Prot. 2022, 165, 420–430. [Google Scholar] [CrossRef]
- Gasde, J.; Woidasky, J.; Moesslein, J.; Lang-Koetz, C. Plastics recycling with tracer-based-sorting: Challenges of a potential radical technology. Sustainability 2020, 13, 258. [Google Scholar] [CrossRef]
- Kawazumi, H.; Tsuchida, A.; Yoshida, T.; Tsuchida, Y. High-performance recycling system for waste plastics using Raman identification. In Progress in Sustainable Energy Technologies; Dincer, I., Midilli, A., Kucuk, H., Eds.; Springer: Cham, Switzerland, 2014; Volume II, pp. 519–529. [Google Scholar]
- Roosen, M.; Mys, N.; Kleinhans, K.; Lase, I.S.; Huysveld, S.; Brouwer, M.; Thoden van Velzen, E.U.; Van Geem, K.M.; Dewulf, J.; Ragaert, K.; et al. Expanding the collection portfolio of plastic packaging: Impact on quantity and quality of sorted plastic waste fractions. Res. Conserv. Recycl. 2022, 178, 106025. [Google Scholar] [CrossRef]
- ASTM D7611/D7611M-21; Standard Practice for Coding Plastic Manufactured Articles for Resin Identification. WTO, ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ISO 1043-1:2011; Plastics—Symbols and Abbreviated Terms—Part 1: Basic Polymers and Their Special Characteristics. European Committee for Standardization: Brussels, Belgium, 2011; pp. 1–28.
- ISO 1042-3:2016; Plastics—Symbols and Abbreviated Terms—Part 3: Plasticizers. European. Committee for Standardization: Brussels, Belgium, 2016; pp. 1–22.
- ISO 11469:2016; Plastics—Generic Identification and Marking of Plastics Production. European Committee for Standardization: Brussels, Belgium, 2016; p. 4.
- ISO 1043-4:2021; Plastics—Symbols and Abbreviated Terms—Part 4: Flame Retardants. European Committee for Standardization: Brussels, Belgium, 2021; pp. 1–18.
- ISO 1043-2:2011; Plastics—Symbols and Abbreviated Terms—Part 2: Fillers and Reinforcing Materials. European Committee for Standardization: Brussels, Belgium, 2011; pp. 1–18.
- Kusch, A.; Gasde, J.; Deregowski, C.; Woidasky, J.; Lang-Koetz, C.; Viere, T. Sorting and recycling of lightweight packaging in Germany—Climate impacts and options for increasing circularity using tracer-based-sorting. Mater. Circ. Econ. 2021, 3, 10. [Google Scholar] [CrossRef]
- Woidasky, J.; Lang-Koetz, C.; Heyde, M.; Wiethoff, S.; Sander, I.; Schau, A.; Moesslein, J.; Fahr, M.; Richards, B.; Turshatov, A.; et al. Tracer based sorting—Innovative sorting options for post consumer products. In Proceedings of the Recy & DepoTech 2018: VORTRÄGE-Konferenzband zur 14, Leoben, Austria, 7–9 November 2018; pp. 105–110. [Google Scholar]
- Woidasky, J.; Sander, I.; Schau, A.; Moesslein, J.; Wendler, P.; Wacker, D.; Gao, G.; Kirchenbauer, D.; Kumar, V.; Busko, D.; et al. Inorganic fluorescent marker materials for identification of post-consumer plastic packaging. Res. Conserv. Recycl. 2020, 161, 104976. [Google Scholar] [CrossRef]
- Ahmad, S.R. Marking of products with fluorescent tracers in binary combinations for automatic identification and sorting. Assem. Autom. 2000, 20, 58–65. [Google Scholar] [CrossRef]
- Bezati, F.; Froelich, D.; Massardier, V.; Maris, E. Addition of X-ray fluorescent tracers into polymers, new technology for automatic sorting of plastics: Proposal for selecting some relevant tracers. Res. Conserv. Recycl. 2011, 55, 1214–1221. [Google Scholar] [CrossRef] [Green Version]
- Bezati, F.; Froelich, D.; Massardier, V.; Maris, E. Addition of tracers into the polypropylene in view of automatic sorting of plastic wastes using X-ray fluorescence spectrometry. Waste Manag. 2010, 30, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maris, E.; Aoussat, A.; Naffrechoux, E.; Froelich, D. Polymer tracer detection systems with UV fluorescence spectrometry to improve product recyclability. Miner. Eng. 2012, 29, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Stenvall, E.; Tostar, S.; Boldizar, A.; Foreman, M.R.S.; Möller, K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Manag. 2013, 33, 915–922. [Google Scholar] [CrossRef]
- Buekens, A.; Yang, J. Recycling of WEEE plastics: A review. J. Mater. Cycles Waste Manag. 2014, 16, 415–434. [Google Scholar] [CrossRef]
- Lüftl, S.; Visakh, P.M.; Chandran, S. Polyoxymethylene Handbook; Scrivener Publishing LLC: Beverly, MA, USA, 2014. [Google Scholar]
- Beydoun, K.; Klankermayer, J. Efficient plastic waste recycling to value-added products by integrated biomass processing. ChemSusChem 2020, 13, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Wang, X.; Wu, D. Development of polyoxymethylene/polylactide blends for a potentially biodegradable material: Crystallization kinetics, lifespan prediction, and enzymatic degradation behavior. Polymers 2019, 11, 1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, C.; Farcal, R.; Moretti, C.; Mancini, L.; Rasmussen, K.; Rauscher, H.; Riego Sintes, J.; Sala, S. Safe and Sustainable by Design Chemicals and Materials—Review of Safety and Sustainability Dimensions, Aspects, Methods, Indicators, and Tools; EUR 30991 EN; Publications Office of the European Union: Luxembourg, 2022; ISBN 9789276475606. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering—EASE ‘14, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- European Commission. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing directives 67/548/EEC and 1999/45/EC, and amending regulation (EC) No 1907/2006. OJEU 2008, 20, 1–1355. [Google Scholar]
- Olechowski, A.L.; Eppinger, S.D.; Joglekar, N.; Tomaschek, K. Technology readiness levels: Shortcomings and improvement opportunities. Syst. Eng. 2020, 23, 395–408. [Google Scholar] [CrossRef]
- Frerking, M.; Beauchamp, P. JPL technology readiness assessment guideline. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 30 June 2016; pp. 1–10. [Google Scholar]
- GAO. Technology Readiness Assessment Guide—Best Practices for Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects; GAO-20-48G; U.S. Government Accountability Office: Washington, DC, USA, 2020; pp. 1–149. [Google Scholar]
- European Commission. Regulation (EC) No 1907/2006 of the European Parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending directive 1999/45/EC and repealing council regulation (EEC) No 793/93 and comission regulation (EC) No 1488/94 as well as council directive 76/796/EEC and commission directives 91/155/EEC, 93/67/EC and 2000/21/EC. OJEU 2006, 49, 1–849. [Google Scholar]
- Pavlicek, A.; Part, F.; Rose, G.; Praetorius, A.; Miernicki, M.; Gazso, A.; Huber-Humer, M. A European nano-registry as a reliable database for quantitative risk assessment of nanomaterials? A comparison of national approaches. NanoImpact 2021, 21, 100276. [Google Scholar] [CrossRef]
- Tsuchida, A.; Kawazumi, H.; Kazuyoshi, A.; Yasuo, T. Identification of shredded plastics in milliseconds using Raman spectroscopy for recycling. In Proceedings of the 2009 IEEE Sensors, Christchurch, New Zealand, 25–28 October 2009; pp. 1473–1476. [Google Scholar]
- Smith, B.C. Quantitative Spectroscopy: Theory and Practice; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Bassey, U.; Rojek, L.; Hartmann, M.; Creutzburg, R.; Volland, A. The potential of NIR spectroscopy in the separation of plastics for pyrolysis. Electron. Imaging 2021, 2021, 143. [Google Scholar] [CrossRef]
- ISO 20473:2007; Optics and Photonics—Spectral Bands. International Organization for Standardization: Geneva, Switzerland, 2007; pp. 1–3.
- Becker, W.; Sachsenheimer, K.; Klemenz, M. Detection of black plastics in the middle infrared spectrum (MIR) using photon up-conversion technique for polymer recycling purposes. Polymers 2017, 9, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 2020, 246, 118732. [Google Scholar] [CrossRef]
- Herres, W.; Gronholz, J. Understanding FT-IR data processing. Comp. App. Lab. 1984, 2, 1–23. [Google Scholar]
- Bloembergen, N. Solid state infrared quantum counters. Phys. Rev. Lett. 1959, 2, 84–85. [Google Scholar] [CrossRef]
- Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936. [Google Scholar] [CrossRef]
- Gao, G.; Turshatov, A.; Howard, I.A.; Busko, D.; Joseph, R.; Hudry, D.; Richards, B.S. Up-conversion fluorescent labels for plastic recycling: A review. Adv. Sustain. Syst. 2017, 1, 1600033. [Google Scholar] [CrossRef] [Green Version]
- Mahata, M.K.; Hofsäss, H.C.; Vetter, U. Photon-upconverting materials: Advances and prospects for various emerging applications. In Luminescence—An Outlook on the Phenomena and Their Applications; IntechOpen: London, UK, 2016; Chapter 6; pp. 109–131. [Google Scholar] [CrossRef] [Green Version]
- Stark, G. X-ray. Available online: https://www.britannica.com/science/X-ray (accessed on 20 April 2022).
- IAEA. Radiation Safety in Industrial Radiography; International Atomic Energy Agency: Vienna, Austria, 2011; p. 128. [Google Scholar]
- Hinderer, F. UV/Vis-Absorptions- und Fluoreszenz-Spektroskopie: Einführung in Die Spektroskopische Analyse Mit UV- und Sichtbarer Strahlung; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany, 2020. [Google Scholar]
- Perkampus, H.-H. UV-VIS Spectroscopy and Its Applications: With 21 Tables; Springer: Berlin/Heidelberg, Germany, 1992; p. IX. [Google Scholar]
- Safavi, S.M.; Masoumi, H.; Mirian, S.S.; Tabrizchi, M. Sorting of polypropylene resins by color in MSW using visible reflectance spectroscopy. Waste Manag. 2010, 30, 2216–2222. [Google Scholar] [CrossRef] [PubMed]
- Langhals, H.; Zgela, D.; Schlücker, T. High performance recycling of polymers by means of their fluorescence lifetimes. Green Sustain. Chem. 2014, 4, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.R. A new technology for automatic identification and sorting of plastics for recycling. Environ. Technol. 2004, 25, 1143–1149. [Google Scholar] [CrossRef]
- Fomin, P.; Kargel, C. Performance evaluation of a time-gated fluorescence spectroscopy measurement system for the classification and recycling of plastics. Appl. Spectrosc. 2019, 73, 610–622. [Google Scholar] [CrossRef]
- Fomin, P.; Zhelondz, D.; Kargel, C. Optimized time-gated fluorescence spectroscopy for the classification and recycling of fluorescently labeled plastics. Appl. Spectrosc. 2017, 71, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Kögler, M.; Heilala, B. Time-gated Raman spectroscopy—A review. Measur. Sci. Technol. 2020, 32, 012002. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.-L. Time-gated fluorescence imaging: Advances in technology and biological applications. J. Innov. Opt. Health Sci. 2020, 13, 2030006. [Google Scholar] [CrossRef] [Green Version]
- Schrader, B.; Bougeard, D. Infrared and Raman Spectroscopy: Methods and Applications; VCH-Verl.-Ges.: Weinheim, Germany, 1995; p. 787. [Google Scholar]
- Sarkar, B.; Dissanayake, P.D.; Bolan, N.S.; Dar, J.Y.; Kumar, M.; Haque, M.N.; Mukhopadhyay, R.; Ramanayaka, S.; Biswas, J.K.; Tsang, D.C.W.; et al. Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environ. Res. 2022, 207, 112179. [Google Scholar] [CrossRef] [PubMed]
- Gillibert, R.; Balakrishnan, G.; Deshoules, Q.; Tardivel, M.; Magazzu, A.; Donato, M.G.; Marago, O.M.; Lamy de La Chapelle, M.; Colas, F.; Lagarde, F.; et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 2019, 53, 9003–9013. [Google Scholar] [CrossRef]
- Bhatt, C.R.; Alfarraj, B.; Ayyalasomayajula, K.K.; Ghany, C.; Yueh, F.Y.; Singh, J.P. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS). Appl. Opt. 2015, 54, 10264–10271. [Google Scholar] [CrossRef]
- Wong, D.M.; Bol’shakov, A.A.; Russo, R.E. Laser induced breakdown spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Ed.; Academic Press: Oxford, UK, 2010; pp. 1281–1287. [Google Scholar]
- Gregoire, S.; Boudinet, M.; Pelascini, F.; Surma, F.; Detalle, V.; Holl, Y. Laser-induced breakdown spectroscopy for polymer identification. Anal. Bioanal. Chem. 2011, 400, 3331–3340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tang, H.; Li, H. Chemometrics in laser-induced breakdown spectroscopy. J. Chemometr. 2018, 32, e2983. [Google Scholar] [CrossRef]
- Araujo-Andrade, C.; Bugnicourt, E.; Philippet, L.; Rodriguez-Turienzo, L.; Nettleton, D.; Hoffmann, L.; Schlummer, M. Review on the photonic techniques suitable for automatic monitoring of the composition of multi-materials wastes in view of their posterior recycling. Waste Manag. Res. 2021, 39, 631–651. [Google Scholar] [CrossRef] [PubMed]
- Stefas, D.; Gyftokostas, N.; Bellou, E.; Couris, S. Laser-induced breakdown spectroscopy assisted by machine learning for plastics/polymers identification. Atoms 2019, 7, 79. [Google Scholar] [CrossRef] [Green Version]
- Shameem, K.M.M.; Choudhari, K.S.; Bankapur, A.; Kulkarni, S.D.; Unnikrishnan, V.K.; George, S.D.; Kartha, V.B.; Santhosh, C. A hybrid LIBS-Raman system combined with chemometrics: An efficient tool for plastic identification and sorting. Anal. Bioanal. Chem. 2017, 409, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Guo, Y.; Sun, Q.; Tang, S.; Li, J.; Guo, L.; Duan, J. Industrial polymers classification using laser-induced breakdown spectroscopy combined with self-organizing maps and K-means algorithm. Optik 2018, 165, 179–185. [Google Scholar] [CrossRef]
- Boueri, M.; Motto-Ros, V.; Lei, W.-Q.; Qain, L.; Zheng, L.-J.; Zeng, H.-P.; Yu, J. Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural networks. Appl. Spectrosc. 2011, 65, 307–314. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Marchesi, C.; Federici, S.; Rovelli, G.; Alessandri, I.; Vassalini, I.; Ducoli, S.; Borgese, L.; Zacco, A.; Bilo, F.; et al. Miniaturized near-infrared (MicroNIR) spectrometer in plastic waste sorting. Materials 2019, 12, 2740. [Google Scholar] [CrossRef] [Green Version]
- Rozenstein, O.; Puckrin, E.; Adamowski, J. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry. Waste Manag. 2017, 68, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Signoret, C.; Caro-Bretelle, A.S.; Lopez-Cuesta, J.M.; Ienny, P.; Perrin, D. MIR spectral characterization of plastic to enable discrimination in an industrial recycling context: II. Specific case of polyolefins. Waste Manag. 2019, 98, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, I. FT-IR and NIR Spectroscopy. Available online: https://resources.perkinelmer.com/lab-solutions/resources/docs/app_mid-ir_polymer-recycling-011780_01.pdf (accessed on 5 July 2022).
- Peršak, T.; Viltužnik, B.; Hernavs, J.; Klančnik, S. Vision-based sorting systems for transparent plastic granulate. Appl. Sci. 2020, 10, 4269. [Google Scholar] [CrossRef]
- Stepputat, M.; Noll, R. On-line detection of heavy metals and brominated flame retardants in technical polymers with laser-induced breakdown spectrometry. Appl. Opt. 2003, 42, 6210–6220. [Google Scholar] [CrossRef] [PubMed]
- Werts, M.H.V. Making sense of lanthanide luminescence. Sci. Prog. 2005, 88, 101–131. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, R.D.L.; Mazali, I.O.; Sigoli, F.A. Particle size tailoring and luminescence of europium(III)-doped gadolinium oxide obtained by the modified homogeneous precipitation method: Dielectric constant and counter anion effects. Colloids Surf. A Physicochem. Eng. Asp. 2010, 367, 155–160. [Google Scholar] [CrossRef]
- Omnexus. Typical Applications of Acetal Resins. Available online: https://omnexus.specialchem.com/selection-guide/polyacetal-polyoxymethylene-pom-plastic/key-applications?flag=1 (accessed on 4 July 2022).
- Dubé, M.A.; Salehpour, S. Applying the principles of green chemistry to polymer production technology. Macromol. React. Eng. 2014, 8, 7–28. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, K.; Koinig, G.; Pomberger, R.; Vollprecht, D. Qualitative analysis of post-consumer and post-industrial waste via near-infrared, visual and induction identification with experimental sensor-based sorting setup. MethodsX 2022, 9, 101686. [Google Scholar] [CrossRef] [PubMed]
- Fleischer, M. Testing costs and testing capacity according to the REACH requirements—Results of a survey of independent and corporate GLP laboratories in the EU and Switzerland. J. Bus. Chem. 2007, 4, 14–96. [Google Scholar]
- Smoker, R.E.; Smith, S. System cost growth associated with technology-readiness level. J. Parametr. 2011, 26, 8–38. [Google Scholar] [CrossRef]
- Sirirojvisuth, N. Mapping cast and schedule to system readiness level (SRL) for major defense acquisition programs (MDAPs) through examinat. In Proceedings of the 2019 NASA Cost and Schedule Symposium, Houston, TX, USA, 15 August 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olscher, C.; Jandric, A.; Zafiu, C.; Part, F. Evaluation of Marker Materials and Spectroscopic Methods for Tracer-Based Sorting of Plastic Wastes. Polymers 2022, 14, 3074. https://doi.org/10.3390/polym14153074
Olscher C, Jandric A, Zafiu C, Part F. Evaluation of Marker Materials and Spectroscopic Methods for Tracer-Based Sorting of Plastic Wastes. Polymers. 2022; 14(15):3074. https://doi.org/10.3390/polym14153074
Chicago/Turabian StyleOlscher, Christoph, Aleksander Jandric, Christian Zafiu, and Florian Part. 2022. "Evaluation of Marker Materials and Spectroscopic Methods for Tracer-Based Sorting of Plastic Wastes" Polymers 14, no. 15: 3074. https://doi.org/10.3390/polym14153074
APA StyleOlscher, C., Jandric, A., Zafiu, C., & Part, F. (2022). Evaluation of Marker Materials and Spectroscopic Methods for Tracer-Based Sorting of Plastic Wastes. Polymers, 14(15), 3074. https://doi.org/10.3390/polym14153074