Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems
Abstract
:1. Introduction
2. Materials
3. Polymerization
4. Characterization
5. Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vittoria, A.; Busico, V.; Cannavacciuolo, F.D.; Cipullo, R. Molecular kinetic study of “chain shuttling” olefin copolymerization. ACS Catal. 2018, 8, 5051–5061. [Google Scholar] [CrossRef]
- Collins, S.; Linnolahti, M.; Zamora, M.G.; Zijlstra, H.S.; Rodríguez Hernández, M.T.; Perez-Camacho, O. Activation of Cp2ZrX2 (X = Me, Cl) by methylaluminoxane as studied by electrospray ionization mass spectrometry: Relationship to polymerization catalysis. Macromolecules 2017, 50, 8871–8884. [Google Scholar] [CrossRef]
- Cueny, E.S.; Sita, L.R.; Landis, C.R. Quantitative validation of the living coordinative chain-transfer polymerization of 1-Hexene using chromophore quench labeling. Macromolecules 2020, 53, 5816–5825. [Google Scholar] [CrossRef]
- Cueny, E.S.; Landis, C.R. The hafnium-pyridyl amido-catalyzed copolymerization of ethene and 1-octene: How small amounts of ethene impact catalysis. ACS Catal. 2019, 9, 3338–3348. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, B.; Guo, Y.; Ali, A.; Guo, W.; Fu, Z.; Fan, Z. Effects of titanium dispersion state on distribution and reactivity of active centers in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts: A kinetic study based on active center counting. ChemCatChem 2020, 12, 5140–5148. [Google Scholar] [CrossRef]
- Shahzeb Khan, M.; Asif, M.; Hussain, S.; Shan, E.Z.S.; Hassan, M.; Aslam, M.; Tufail, M.; Nii Okai Amudarko, J.; Ali, A. Photonic Crystals: A Review as Promising Tool for the Selective Detection of Toxic Gases. Mater. Innov. 2022, 2, 139–152. [Google Scholar]
- Aziz, T.; Ullah, A.; Ali, A.; Shabeer, M.; Shah, M.N.; Haq, F.; Iqbal, M.; Ullah, R.; Khan, F.U. Manufactures of bio-degradable and bio-based polymers for bio-materials in the pharmaceutical field. J. Appl. Polym. Sci. 2022, 139, e52624. [Google Scholar] [CrossRef]
- Ali, A.; Naveed, A.; Shehzad, K.; Aziz, T.; Rasheed, T.; Moradian, J.M.; Hassan, M.; Rahman, A.; Zhiqiang, F.; Guo, L. Polymerization kinetics of bicyclic olefins and mechanism with symmetrical ansa-metallocene catalysts associated with active center count: Relationship between their activities and structure and activation path. RSC Adv. 2022, 12, 15284–15295. [Google Scholar] [CrossRef]
- Ali, A.; Naveed, A.; Rasheed, T.; Aziz, T.; Imran, M.; Zhang, Z.-K.; Ullah, M.W.; Kubar, A.A.; Rehman, A.U.; Fan, Z. Methods for Predicting Ethylene/Cyclic Olefin Copolymerization Rates Promoted by Single-Site Metallocene: Kinetics Is the Key. Polymers 2022, 14, 459. [Google Scholar] [CrossRef]
- Akram, M.A.; Liu, X.; Jiang, B.; Zhang, B.; Ali, A.; Fu, Z.; Fan, Z. Effect of alkylaluminum cocatalyst on ethylene/1-hexene copolymerization and active center distribution of MgCl2-supported Ziegler-Natta catalyst. J. Macromol. Sci. Part A 2021, 58, 539–549. [Google Scholar] [CrossRef]
- Ali, A.; Muhammad, N.; Hussain, S.; Jamil, M.I.; Uddin, A.; Aziz, T.; Tufail, M.K.; Guo, Y.; Wei, T.; Rasool, G. Kinetic and thermal study of ethylene and propylene homo polymerization catalyzed by ansa-zirconocene activated with alkylaluminum/borate: Effects of alkylaluminum on polymerization kinetics and polymer structure. Polymers 2021, 13, 268. [Google Scholar] [CrossRef] [PubMed]
- Brezny, A.C.; Landis, C.R. Development of a Comprehensive Microkinetic Model for Rh (bis (diazaphospholane))-Catalyzed Hydroformylation. ACS Catal. 2019, 9, 2501–2513. [Google Scholar] [CrossRef]
- Muhammad, N.; Hussian, I.; Ali, A.; Hussain, T.; Intisar, A.; Haq, I.U.; Subhani, Q.; Hedar, M.; Zhong, J.-L.; Asif, M. A comprehensive review of liquid chromatography hyphenated to post-column photoinduced fluorescence detection system for determination of analytes. Arab. J. Chem. 2022, 104091. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Landis, C.R. Selective quench-labeling of the hafnium-pyridyl amido-catalyzed polymerization of 1-octene in the presence of trialkyl-aluminum chain-transfer reagents. ACS Catal. 2018, 8, 11605–11614. [Google Scholar] [CrossRef]
- Ali, A.; Akram, M.A.; Guo, Y.; Wu, H.; Liu, W.; Khan, A.; Liu, X.; Fu, Z.; Fan, Z. Ethylene–propylene copolymerization and their terpolymerization with dienes using ansa-Zirconocene catalysts activated by borate/alkylaluminum. J. Macromol. Sci. Part A 2020, 57, 156–164. [Google Scholar] [CrossRef]
- Khan, A.; Guo, Y.; Zhang, Z.; Ali, A.; Fu, Z.; Fan, Z. Kinetics of short-duration ethylene–propylene copolymerization with MgCl2-supported Ziegler–Natta catalyst: Differentiation of active centers on the external and internal surfaces of the catalyst particles. J. Appl. Polym. Sci. 2018, 135, 46030. [Google Scholar] [CrossRef]
- Maouche, C.; Wang, Y.; Cheng, C.; Wang, W.; Li, Y.; Qureshi, W.A.; Huang, P.; Amjad, A.; Zhou, Y.; Yang, J. Sulfur doped FeNC catalysts derived from Dual-Ligand zeolitic imidazolate framework for the oxygen reduction reaction. J. Colloid Interface Sci. 2022, 623, 146–154. [Google Scholar] [CrossRef]
- Liu, Z.; Somsook, E.; White, C.B.; Rosaaen, K.A.; Landis, C.R. Kinetics of initiation, propagation, and termination for the [rac-(C2H4(1-indenyl)2)ZrMe][MeB (C6F5)3]-catalyzed polymerization of 1-hexene. J. Am. Chem. Soc. 2001, 123, 11193–11207. [Google Scholar] [CrossRef]
- Brezny, A.C.; Landis, C.R. Recent developments in the scope, practicality, and mechanistic understanding of enantioselective hydroformylation. Acc. Chem. Res. 2018, 51, 2344–2354. [Google Scholar] [CrossRef]
- Cueny, E.S.; Johnson, H.C.; Anding, B.J.; Landis, C.R. Mechanistic studies of hafnium-pyridyl amido-catalyzed 1-octene polymerization and chain transfer using quench-labeling methods. J. Am. Chem. Soc. 2017, 139, 11903–11912. [Google Scholar] [CrossRef]
- Dunn, A.L.; Landis, C.R. Progress toward reaction monitoring at variable temperatures: A new stopped-flow NMR probe design. Magn. Reson. Chem. 2017, 55, 329–336. [Google Scholar] [CrossRef]
- Ali, A.; Nadeem Ahmad, M.; Hussain, T.; Naveed, A.; Aziz, T.; Hassan, M.; Guo, L. Materials Innovations in 2D-filler Reinforced Dielectric Polymer Composites. Mater. Innov. 2022, 2, 47–66. [Google Scholar] [CrossRef]
- Desert, X.; Carpentier, J.-F.; Kirillov, E. Quantification of active sites in single-site group 4 metal olefin polymerization catalysis. Coord. Chem. Rev. 2019, 386, 50–68. [Google Scholar] [CrossRef]
- Muhammad, N.; Ali, A.; Hussain, I.; Subhani, Q.; Guo, D.; Cui, H.; Zhu, Y. Determination of fluorine and chlorine in standard steel residues and zinc sulfide concentrates by ion chromatography-Matrix interference study. Chin. J. Anal. Chem. 2022, 100147. [Google Scholar] [CrossRef]
- Bochmann, M. Kinetic and mechanistic aspects of metallocene polymerisation catalysts. J. Organomet. Chem. 2004, 689, 3982–3998. [Google Scholar] [CrossRef]
- Bochmann, M. The chemistry of catalyst activation: The case of group 4 polymerization catalysts. Organometallics 2010, 29, 4711–4740. [Google Scholar] [CrossRef]
- Cueny, E.S.; Nieszala, M.R.; Froese, R.D.; Landis, C.R. Nature of the Active Catalyst in the Hafnium-Pyridyl Amido-Catalyzed Alkene Polymerization. ACS Catal. 2021, 11, 4301–4309. [Google Scholar] [CrossRef]
- Moscato, B.M.; Zhu, B.; Landis, C.R. Mechanistic investigations into the behavior of a labeled zirconocene polymerization catalyst. Organometallics 2012, 31, 2097–2107. [Google Scholar] [CrossRef]
- Liu, Z.; Somsook, E.; Landis, C.R. A 2H-labeling scheme for active-site counts in metallocene-catalyzed alkene polymerization. J. Am. Chem. Soc. 2001, 123, 2915–2916. [Google Scholar] [CrossRef]
- White, C.B.; Rosaaen, K.A.; Landis, C.R. A rapid quenched-flow device for the study of homogeneous polymerization kinetics. Rev. Sci. Instrum. 2002, 73, 411–415. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Z.; Guo, W.; Khan, A.; Fu, Z.; Xu, J.; Fan, Z. Kinetics and mechanism of metallocene-catalyzed olefin polymerization: Comparison of ethylene, propylene homopolymerizations, and their copolymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 867–875. [Google Scholar] [CrossRef]
- Christianson, M.D.; Tan, E.H.; Landis, C.R. Stopped-flow NMR: Determining the kinetics of [rac-(C2H4(1-indenyl)2) ZrMe][MeB(C6F5)3]-catalyzed polymerization of 1-hexene by direct observation. J. Am. Chem. Soc. 2010, 132, 11461–11463. [Google Scholar] [CrossRef] [PubMed]
- Sillars, D.R.; Landis, C.R. Catalytic propene polymerization: Determination of propagation, termination, and epimerization kinetics by direct NMR observation of the (EBI) Zr(MeB(C6F5)3) Propenyl catalyst species. J. Am. Chem. Soc. 2003, 125, 9894–9895. [Google Scholar] [CrossRef]
- Landis, C.R.; Rosaaen, K.A.; Sillars, D.R. Direct observation of insertion events at rac-(C2H4(1-indenyl)2) Zr (MeB(C6F5)3)-Polymeryl intermediates: Distinction between Continuous and Intermittent Propagation Modes. J. Am. Chem. Soc. 2003, 125, 1710–1711. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, D.L.; Anding, B.J.; Sawicki, J.L.; Christianson, M.D.; Arriola, D.J.; Landis, C.R. Chromophore quench-labeling: An approach to quantifying catalyst speciation as demonstrated for (EBI) ZrMe2/B(C6F5)3-catalyzed polymerization of 1-hexene. ACS Catal. 2016, 6, 7398–7408. [Google Scholar] [CrossRef]
- Ali, A.; Liu, X.; Guo, Y.; Akram, M.A.; Wu, H.; Liu, W.; Khan, A.; Jiang, B.; Fu, Z.; Fan, Z. Kinetics and mechanism of ethylene and propylene polymerizations catalyzed with ansa-zirconocene activated by borate/TIBA. J. Organomet. Chem. 2020, 922, 121366. [Google Scholar] [CrossRef]
- Ali, A.; Nadeem, M.; Lu, J.; Moradian, J.M.; Rasheed, T.; Aziz, T.; Maouche, C.; Guo, Y.; Awais, M.; Zhiqiang, F. Rapid kinetic evaluation of homogeneous single-site metallocene catalysts and cyclic diene: How do the catalytic activity, molecular weight, and diene incorporation rate of olefins affect each other? RSC Adv. 2021, 11, 31817–31826. [Google Scholar] [CrossRef]
- Ali, A.; Jamil, M.I.; Uddin, A.; Hussain, M.; Aziz, T.; Tufail, M.K.; Guo, Y.; Jiang, B.; Fan, Z.; Guo, L. Kinetic and thermal study of ethylene-propylene copolymerization catalyzed by ansa-zirconocene activated with Alkylaluminium/borate: Effects of linear and branched alkylaluminium compounds as cocatalyst. J. Polym. Res. 2021, 28, 186. [Google Scholar] [CrossRef]
- Ali, A.; Uddin, A.; Jamil, M.I.; Shen, X.; Abbas, M.; Aziz, T.; Hussain, M.; Hussain, S.; Fang, R.; Fan, Z. Kinetics and mechanistic investigations of ethylene-propylene copolymerizations catalyzed with symmetrical metallocene and activated by TIBA/borate. J. Organomet. Chem. 2021, 949, 121929. [Google Scholar] [CrossRef]
- Ali, A.; Tufail, M.K.; Jamil, M.I.; Yaseen, W.; Iqbal, N.; Hussain, M.; Ali, A.; Aziz, T.; Fan, Z.; Guo, L. Comparative Analysis of Ethylene/Diene Copolymerization and Ethylene/Propylene/Diene Terpolymerization Using Ansa-Zirconocene Catalyst with Alkylaluminum/Borate Activator: The Effect of Conjugated and Nonconjugated Dienes on Catalytic Behavior and Polymer Microstructure. Molecules 2021, 26, 2037. [Google Scholar]
- Ahmadjo, S.; Arabi, H.; Nekoomanesh, M.; Zohuri, G.H.; Mortazavi, M.M.; Naderi, G. Terpolymerization of Ethylene/Propylene/Diene Monomers Using (2-PhInd)2ZrCl2 Metallocene Catalysts. Macromol. React. Eng. 2010, 4, 707–714. [Google Scholar] [CrossRef]
- Chien, J.C.; He, D. Olefin copolymerization with metallocene catalysts. IV. Metallocene/methylaluminoxane catalyzed olefin teropolymerization. J. Polym. Sci. Part A Polym. Chem. 1991, 29, 1609–1613. [Google Scholar] [CrossRef]
- Mortazavi, M.; Arabi, H.; Ahmadjo, S.; Nekoomanesh, M.; Zohuri, G. Comparative study of copolymerization and terpolymerization of ethylene/propylene/diene monomers using metallocene catalyst. J. Appl. Polym. Sci. 2011, 122, 1838–1846. [Google Scholar] [CrossRef] [Green Version]
- Bae, G.; Kim, H.; Choi, H.; Jeong, P.; Kim, D.H.; Kwon, H.C.; Lee, K.-S.; Choi, M.; Oh, H.-S.; Jaouen, F. Quantification of active site density and turnover frequency: From single-atom metal to nanoparticle electrocatalysts. JACS Au 2021, 1, 586–597. [Google Scholar] [CrossRef]
Run | Dienes | Activity b | Ethylene c | Diene c | 1-Hexene c | Propylene c | [Zr]/[C*] d | Tm e | ΔHm e |
---|---|---|---|---|---|---|---|---|---|
×106 | mol% | mol% | mol% | mol% | (°C) | (J/g) | |||
1.1 | E | 3.00 | 100 | 43.6 | 132 | 202 | |||
1.2 | VCH | 0.42 | 99.14 | 0.86 | 66.17 | 131.7 | 112.7 | ||
1.3 | VNB | 0.87 | 92.78 | 7.22 | 26.17 | 118.8 | 8.9 | ||
1.4 | BD | 2.26 | 100 | 0.00 | 43.79 | 131.7 | 214.9 | ||
1.5 | IP | 2.78 | 99.59 | 0.41 | 45.61 | 128.2 | 168.0 | ||
1.6 | ENB | 3.80 | 97.02 | 2.98 | 79.2 | 126.6 | 74.7 | ||
1.7 | VCH | 1.49 | 93.2 | 0.16 | 6.0 | 74.1 | 92.6 | 58.8 | |
1.8 | VNB | 0.51 | 90.9 | 1.00 | 8.1 | 28.3 | 83.6 | 17.5 | |
1.9 | BD | 4.31 | 100 | 00 | Cyclization | 73.42 | 118.1 | 29.9 | |
1.10 | IP | 3.81 | 97.3 | 00 | 2.7 | 72.58 | 111.4 | 34.1 | |
1.11 | ENB | 3.80 | 97.02 | 0.00 | 9.5 | 93.44 | 64.6 | 6.1 | |
1.12 | VCH | 3.14 | 81.9 | 0.18 | 17.93 | 56.16 | 92.5 | 58.8 | |
1.13 | VNB | 0.96 | 77.6 | 4.43 | 17.97 | 16.76 | 105.6 | 25.5 | |
1.14 | BD | 3.05 | 82.2 | N/A | 17.8 | 73.56 | 101.3 | 7.2 | |
1.15 | IP | 3.22 | 83.9 | N/A | 17.1 | 78.99 | 103.1 | 3.8 | |
1.16 | ENB | 3.55 | 79.5 | 2.30 | 18.2 | 71.23 | 108.4 | 22.0 |
Run | Dienes | [Zr]/[C*] b | kpEc | kpdienesd | kp1-He | kpPf | Mw g | Ɖ |
---|---|---|---|---|---|---|---|---|
% | L mol−1·s−1 | L mol−1·s−1 | L mol−1·s−1 | L mol−1·s−1 | Kg/mole | |||
1.1 | E | 43.6 | 450 | 88 | 44 | |||
1.2 | VCH | 66.17 | 708 | 5.228 | 82 | 4.77 | ||
1.3 | VNB | 26.17 | 674 | 23.395 | 25 | 3.51 | ||
1.4 | BD | 43.79 | 731 | 80 | 4.12 | |||
1.5 | IP | 45.61 | 596 | 65 | 3.52 | |||
1.6 | ENB | 79.2 | 301 | 0.987 | 89 | 3.82 | ||
1.7 | VCH | 74.1 | 464 | 40 | 56.30 | 2.66 | ||
1.8 | VNB | 28.3 | 379 | 30 | 52311 | 2.20 | ||
1.9 | BD | 73.42 | 468 | |||||
1.10 | IP | 72.58 | 632 | 15.8 | ||||
1.11 | ENB | 93.44 | 390 | 162.9 | 42414 | 1.93 | ||
1.12 | VCH | 56.16 | 722 | 10.7 | 14.3 | 51.0 | 2.79 | |
1.13 | VNB | 16.76 | 528 | 18.4 | 104.2 | 23.5 | 3.50 | |
1.14 | BD | 73.56 | 451 | 89.2 | ||||
1.15 | IP | 78.99 | 450 | 83.3 | 39.8 | 2.38 | ||
1.16 | ENB | 71.23 | 456 | 13.5 | 112.5 | 35.3 | 2.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Moradian, J.M.; Naveed, A.; Aziz, T.; Muhammad, N.; Maouche, C.; Guo, Y.; Yaseen, W.; Yassen, M.; Haq, F.; et al. Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems. Polymers 2022, 14, 3239. https://doi.org/10.3390/polym14163239
Ali A, Moradian JM, Naveed A, Aziz T, Muhammad N, Maouche C, Guo Y, Yaseen W, Yassen M, Haq F, et al. Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems. Polymers. 2022; 14(16):3239. https://doi.org/10.3390/polym14163239
Chicago/Turabian StyleAli, Amjad, Jamile Mohammadi Moradian, Ahmad Naveed, Tariq Aziz, Nadeem Muhammad, Chanez Maouche, Yintian Guo, Waleed Yaseen, Maria Yassen, Fazal Haq, and et al. 2022. "Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems" Polymers 14, no. 16: 3239. https://doi.org/10.3390/polym14163239
APA StyleAli, A., Moradian, J. M., Naveed, A., Aziz, T., Muhammad, N., Maouche, C., Guo, Y., Yaseen, W., Yassen, M., Haq, F., Hassan, M., Fan, Z., & Guo, L. (2022). Progress toward Polymerization Reaction Monitoring with Different Dienes: How Small Amounts of Dienes Affect ansa-Zirconocenes/Borate/Triisobutylaluminium Catalyst Systems. Polymers, 14(16), 3239. https://doi.org/10.3390/polym14163239