Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Membrane Fabrication
2.2.1. Fabrication of a Novel Hydrogel Support
2.2.2. Fabrication of PA TFC Membrane
2.2.3. Modified Hydrogel Support
2.3. Membrane Characterization
2.3.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX)
2.3.2. Atomic Force Microscopy (AFM)
2.3.3. Water Contact Angle (WCA)
2.4. Membrane Separation Performance Evaluation
2.5. Effect of Temperature on the Performance of the Novel PA TFC Membrane
3. Results and Discussions
3.1. Membrane Characterization
3.1.1. SEM, AFM, and EDX
3.1.2. Water Contact Angle
3.2. Membrane Separation Performance Evaluation
3.3. The Effect of Temperature on Membrane Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elimelech, M. The Global Challenge for Adequate and Safe Water. J. Water Supply Res. Technol. 2006, 55, 3–10. [Google Scholar] [CrossRef]
- Zuo, K.; Wang, K.; DuChanois, R.M.; Fang, Q.; Deemer, E.M.; Huang, X.; Xin, R.; Said, I.A.; He, Z.; Feng, Y.; et al. Selective Membranes in Water and Wastewater Treatment: Role of Advanced Materials. Mater. Today 2021, 50, 516–532. [Google Scholar] [CrossRef]
- Golgoli, M.; Khiadani, M.; Shafieian, A.; Sen, T.K.; Hartanto, Y.; Johns, M.L.; Zargar, M. Microplastics Fouling and Interaction with Polymeric Membranes: A Review. Chemosphere 2021, 283, 131185. [Google Scholar] [CrossRef] [PubMed]
- Mansourpanah, Y.; Madaeni, S.S.; Rahimpour, A.; Farhadian, A. The Effect of Non-Contact Heating (Microwave Irradiation) and Contact Heating (Annealing Process) on Properties and Performance of Polyethersulfone Nanofiltration Membranes. Appl. Surf. Sci. 2009, 255, 8395–8402. [Google Scholar] [CrossRef]
- Masjoudi, M.; Golgoli, M.; Ghobadi Nejad, Z.; Sadeghzadeh, S.; Borghei, S.M. Pharmaceuticals Removal by Immobilized Laccase on Polyvinylidene Fluoride Nanocomposite with Multi-Walled Carbon Nanotubes. Chemosphere 2021, 263, 128043. [Google Scholar] [CrossRef]
- Xu, D.; Zheng, J.; Zhang, X.; Lin, D.; Gao, Q.; Luo, X.; Zhu, X.; Li, G.; Liang, H.; Van der Bruggen, B. Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes. Environ. Sci. Technol. 2022, 56, 1927–1937. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Rahimpour, A.; Tabatabaei, M.; Bennett, L. Self-Antifouling Properties of Magnetic Fe2O3/SiO2-Modified Poly (Piperazine Amide) Active Layer for Desalting of Water: Characterization and Performance. Desalination 2017, 419, 79–87. [Google Scholar] [CrossRef]
- Zargar, M.; Jin, B.; Dai, S. An Integrated Statistic and Systematic Approach to Study Correlation of Synthesis Condition and Desalination Performance of Thin Film Composite Membranes. Desalination 2016, 394, 138–147. [Google Scholar] [CrossRef]
- Li, Y.; Su, Y.; Li, J.; Zhao, X.; Zhang, R.; Fan, X.; Zhu, J.; Ma, Y.; Liu, Y.; Jiang, Z. Preparation of Thin Film Composite Nanofiltration Membrane with Improved Structural Stability through the Mediation of Polydopamine. J. Memb. Sci. 2015, 476, 10–19. [Google Scholar] [CrossRef]
- Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure. J. Memb. Sci. 2011, 367, 340–352. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Li, D.; Liu, Q.; Deng, B. A Review: The Effect of the Microporous Support during Interfacial Polymerization on the Morphology and Performances of a Thin Film Composite Membrane for Liquid Purification. RSC Adv. 2019, 9, 35417–35428. [Google Scholar] [CrossRef]
- Huang, L.; McCutcheon, J.R. Impact of Support Layer Pore Size on Performance of Thin Film Composite Membranes for Forward Osmosis. J. Memb. Sci. 2015, 483, 25–33. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M.V. Impacts of Support Membrane Structure and Chemistry on Polyamide–Polysulfone Interfacial Composite Membranes. J. Memb. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Yu, C.; Li, H.; Zhang, X.; Lü, Z.; Yu, S.; Liu, M.; Gao, C. Polyamide Thin-Film Composite Membrane Fabricated through Interfacial Polymerization Coupled with Surface Amidation for Improved Reverse Osmosis Performance. J. Memb. Sci. 2018, 566, 87–95. [Google Scholar] [CrossRef]
- Choi, W.; Jeon, S.; Kwon, S.J.; Park, H.; Park, Y.I.; Nam, S.E.; Lee, P.S.; Lee, J.S.; Choi, J.; Hong, S.; et al. Thin Film Composite Reverse Osmosis Membranes Prepared via Layered Interfacial Polymerization. J. Memb. Sci. 2017, 527, 121–128. [Google Scholar] [CrossRef]
- Li, D.; Wang, H. Recent Developments in Reverse Osmosis Desalination Membranes. J. Mater. Chem. 2010, 20, 4551–4566. [Google Scholar] [CrossRef]
- Wang, L.; Kahrizi, M.; Lu, P.; Wei, Y.; Yang, H.; Yu, Y.; Wang, L.; Li, Y.; Zhao, S. Enhancing Water Permeability and Antifouling Performance of Thin–Film Composite Membrane by Tailoring the Support Layer. Desalination 2021, 516, 115193. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, Z.; Fane, A.; Li, J.; Tang, C.; Zheng, C.; Lin, J.; Kong, L. Engineering Antifouling Reverse Osmosis Membranes: A Review. Desalination 2021, 499, 114857. [Google Scholar] [CrossRef]
- Lian, Y.; Zhang, G.; Wang, X.; Yang, J. Impacts of Surface Hydrophilicity of Carboxylated Polyethersulfone Supports on the Characteristics and Permselectivity of PA-TFC Nanofiltration Membranes. Nanomaterials 2021, 11, 2470. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, S.S. Plasma Treatment of Polypropylene and Polysulfone Supports for Thin Film Composite Reverse Osmosis Membrane. J. Memb. Sci. 2006, 286, 193–201. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, S.; Hong, Z.; Ma, H.; Zeng, B.; Gong, X.; Shao, W.; Wang, Q. A Novel Double-Modified Strategy to Enhance the Performance of Thin-Film Nanocomposite Nanofiltration Membranes: Incorporating Functionalized Graphenes into Supporting and Selective Layers. Chem. Eng. J. 2019, 368, 186–201. [Google Scholar] [CrossRef]
- Frost, S.; Ulbricht, M. Thermoresponsive Ultrafiltration Membranes for the Switchable Permeation and Fractionation of Nanoparticles. J. Memb. Sci. 2013, 448, 1–11. [Google Scholar] [CrossRef]
- Mansourpanah, Y.; Samimi, M. Preparation and Characterization of a Low-Pressure Efficient Polyamide Multi-Layer Membrane for Water Treatment and Dye Removal. J. Ind. Eng. Chem. 2017, 53, 93–104. [Google Scholar] [CrossRef]
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-Responsive Hydrogels: Theory, Modern Advances, and Applications. Mater. Sci. Eng. R Rep. 2015, 93, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, L.; McClements, D.J.; Qiu, C.; Li, C.; Zhang, Z.; Miao, M.; Tian, Y.; Zhu, K.; Jin, Z. Stimulus-Responsive Hydrogels in Food Science: A Review. Food Hydrocoll. 2022, 124, 107218. [Google Scholar] [CrossRef]
- Hartanto, Y.; Zargar, M.; Cui, X.; Jin, B.; Dai, S. Non-Ionic Copolymer Microgels as High-Performance Draw Materials for Forward Osmosis Desalination. J. Memb. Sci. 2019, 572, 480–488. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Pei, T.; Mao, Y.; Li, G.; Zhao, Y.; Chen, L. Highly Hydrophilic Poly(Vinylidene Fluoride) Ultrafiltration Membranes Modified by Poly(N-Acryloyl Glycinamide) Hydrogel Based on Multi-Hydrogen Bond Self-Assembly for Reducing Protein Fouling. J. Memb. Sci. 2019, 572, 453–463. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Z.; Kaufman, Y.; Bernstein, R. Surface and Anti-Fouling Properties of a Polyampholyte Hydrogel Grafted onto a Polyethersulfone Membrane. J. Colloid Interface Sci. 2018, 517, 155–165. [Google Scholar] [CrossRef]
- Ebara, M.; Kotsuchibashi, Y.; Uto, K.; Aoyagi, T.; Kim, Y.-J.; Narain, R.; Idota, N.; Hoffman, J.M. Smart Hydrogels; Springer: Berlin/Heidelberg, Germany, 2014; pp. 9–65. [Google Scholar] [CrossRef]
- Yang, Q.; Adrus, N.; Tomicki, F.; Ulbricht, M. Composites of Functional Polymeric Hydrogels and Porous Membranes. J. Mater. Chem. 2011, 21, 2783–2811. [Google Scholar] [CrossRef]
- Marchetti, M.; Cussler, E.L. Hydrogels As Ultrafiltration Devices. Sep. Purif. Rev. 1989, 18, 177–192. [Google Scholar] [CrossRef]
- Li, J.J.; Zhou, Y.N.; Luo, Z.H. Smart Fiber Membrane for PH-Induced Oil/Water Separation. ACS Appl. Mater. Interfaces 2015, 7, 19643–19650. [Google Scholar] [CrossRef]
- Weidman, J.L.; Mulvenna, R.A.; Boudouris, B.W.; Phillip, W.A. Unusually Stable Hysteresis in the PH-Response of Poly (Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films. ACS Publ. 2016, 138, 7030–7039. [Google Scholar] [CrossRef]
- Gisbert Quilis, N.; van Dongen, M.; Venugopalan, P.; Kotlarek, D.; Petri, C.; Moreno Cencerrado, A.; Stanescu, S.; Toca Herrera, J.L.; Jonas, U.; Möller, M.; et al. Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane. Adv. Opt. Mater. 2019, 7, 1900342. [Google Scholar] [CrossRef]
- Tiwari, A.; Sancaktar, E. Poly (N-Isopropylacrylamide) Grafted Temperature Responsive PET Membranes: An Ultrafast Method for Membrane Processing Using KrF Excimer Laser at 248 nm. J. Memb. Sci. 2018, 552, 357–366. [Google Scholar] [CrossRef]
- Darvishmanesh, S.; Qian, X.; Wickramasinghe, S.R. Responsive Membranes for Advanced Separations. Curr. Opin. Chem. Eng. 2015, 8, 98–104. [Google Scholar] [CrossRef]
- Kapur, V.; Charkoudian, J.; Anderson, J.L. Transport of Proteins through Gel-Filled Porous Membranes. J. Memb. Sci. 1997, 131, 143–153. [Google Scholar] [CrossRef]
- Lin, X.; Huang, R.; Ulbricht, M. Novel Magneto-Responsive Membrane for Remote Control Switchable Molecular Sieving. J. Mater. Chem. B 2016, 4, 867–879. [Google Scholar] [CrossRef]
- Adrus, N.; Ulbricht, M. Novel Hydrogel Pore-Filled Composite Membranes with Tunable and Temperature-Responsive Size-Selectivity. J. Mater. Chem. 2012, 22, 3088–3098. [Google Scholar] [CrossRef]
- Geismann, C.; Yaroshchuk, A.; Ulbricht, M. Permeability and Electrokinetic Characterization of Poly(Ethylene Terephthalate) Capillary Pore Membranes with Grafted Temperature-Responsive Polymers. Langmuir 2006, 23, 76–83. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Yang, Y.Y.; Chung, T.S.; Ma, K.X. Preparation and Characterization of Fast Response Macroporous Poly(N-Isopropylacrylamide) Hydrogels. Langmuir 2001, 17, 6094–6099. [Google Scholar] [CrossRef]
- Suradi, S.S.; Naemuddin, N.H.; Hashim, S.; Adrus, N. Impact of Carboxylation and Hydrolysis Functionalisations on the Anti-Oil Staining Behaviour of Textiles Grafted with Poly(N-Isopropylacrylamide) Hydrogel. RSC Adv. 2018, 8, 13423–13432. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; McCord, M.G. Grafting of Poly(N-Isopropylacrylamide) onto Nylon and Polystyrene Surfaces by Atmospheric Plasma Treatment Followed with Free Radical Graft Copolymerization. J. Appl. Polym. Sci. 2007, 104, 3614–3621. [Google Scholar] [CrossRef]
- Kurşun, F.; Işıklan, N. Development of Thermo-Responsive Poly(Vinyl Alcohol)-g-Poly(N-Isopropylacrylamide) Copolymeric Membranes for Separation of Isopropyl Alcohol/Water Mixtures via Pervaporation. J. Ind. Eng. Chem. 2016, 41, 91–104. [Google Scholar] [CrossRef]
- Zargar, M.; Hartanto, Y.; Jin, B.; Dai, S. Understanding Functionalized Silica Nanoparticles Incorporation in Thin Film Composite Membranes: Interactions and Desalination Performance. J. Memb. Sci. 2017, 521, 53–64. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Huang, D.; Ren, X.; Huang, T.S. Antibacterial Modification of PET with Quaternary Ammonium Salt and Silver Particles via Electron-Beam Irradiation. Mater. Sci. Eng. C 2018, 85, 123–129. [Google Scholar] [CrossRef]
- Modigunta, J.K.R.; Kim, J.M.; Cao, T.T.; Yabu, H.; Huh, D.S. Pore-Selective Modification of the Honeycomb-Patterned Porous Polystyrene Film with Poly(N-Isopropylacrylamide) and Application for Thermo-Responsive Smart Material. Polymer 2020, 201, 122630. [Google Scholar] [CrossRef]
- Karan, S.; Jiang, Z.; Livingston, A.G. Sub-10 Nm Polyamide Nanofilms with Ultrafast Solvent Transport for Molecular Separation. Science 2015, 348, 1347–1351. [Google Scholar] [CrossRef]
- Mansourpanah, Y. MXenes and Other 2D Nanosheets for Modification of Polyamide Thin Film Nanocomposite Membranes for Desalination. Sep. Purif. Technol. 2022, 289, 120777. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, N.; Zhang, Q.; Qu, R.; Liu, Y.; Li, X.; Wei, Y.; Feng, L.; Jiang, L. Thermo-Driven Controllable Emulsion Separation by a Polymer-Decorated Membrane with Switchable Wettability. Angew. Chemie 2018, 130, 5842–5847. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, W.N. Design of Poly(Vinylidene Fluoride)-g-p(Hydroxyethyl Methacrylate-Co-N-Isopropylacrylamide) Membrane via Surface Modification for Enhanced Fouling Resistance and Release Property. Appl. Surf. Sci. 2017, 398, 103–115. [Google Scholar] [CrossRef]
- Hartanto, Y.; Zargar, M.; Wang, H.; Jin, B.; Dai, S. Thermoresponsive Acidic Microgels as Functional Draw Agents for forward Osmosis Desalination. Environ. Sci. Technol. 2016, 50, 4221–4228. [Google Scholar] [CrossRef]
- Yang, Y.; Song, C.; Wang, P.; Fan, X.; Xu, Y.; Dong, G.; Liu, Z.; Pan, Z.; Song, Y.; Song, C. Insights into the Impact of Polydopamine Modification on Permeability and Anti-Fouling Performance of Forward Osmosis Membrane. Chemosphere 2022, 291, 132744. [Google Scholar] [CrossRef]
- Balcıoğlu, G.; Yilmaz, G.; Gönder, Z.B. Evaluation of Anaerobic Membrane Bioreactor (AnMBR) Treating Confectionery Wastewater at Long-Term Operation under Different Organic Loading Rates: Performance and Membrane Fouling. Chem. Eng. J. 2021, 404, 126261. [Google Scholar] [CrossRef]
- McGaughey, A.L.; Gustafson, R.D.; Childress, A.E. Effect of Long-Term Operation on Membrane Surface Characteristics and Performance in Membrane Distillation. J. Memb. Sci. 2017, 543, 143–150. [Google Scholar] [CrossRef]
- Feil, H.; Bae, Y.H.; Feijen, J.; Kim, S.W. Effect of Comonomer Hydrophilicity and Ionization on the Lower Critical Solution Temperature of N-Isopropylacrylamide Copolymers. Macromolecules 1993, 26, 2496–2500. [Google Scholar] [CrossRef]
- Taylor, L.D.; Cerankowski, L.D. Preparation of Films Exhibiting a Balanced Temperature Dependence to Permeation by Aqueous Solutions—A Study of Lower Consolute Behavior. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 2551–2570. [Google Scholar] [CrossRef]
- Tanaka, T.; Ohmine, I.; Hirokawa, Y.; Fujishige, S.; Kubota, K.; Ando, I.; Otake, K.; Inomata, H.; Konno, M.; Saito, S.; et al. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1990; Volume 23, p. 761. [Google Scholar]
- Bokias, G.; Hourdet, D.; Iliopoulos, I.; Staikos, G.; Audebert, R. Hydrophobic Interactions of Poly(N-Isopropylacrylamide) with Hydrophobically Modified Poly(Sodium Acrylate) in Aqueous Solution. Macromolecules 1997, 30, 8293–8297. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Fänger, C.; Wack, H.; Ulbricht, M. Macroporous Poly(N-Isopropylacrylamide) Hydrogels with Adjustable Size “Cut-off” for the Efficient and Reversible Immobilization of Biomacromolecules. Macromol. Biosci. 2006, 6, 393–402. [Google Scholar] [CrossRef]
- Jimenez-Solomon, M.F.; Gorgojo, P.; Munoz-Ibanez, M.; Livingston, A.G. Beneath the Surface: Influence of Supports on Thin Film Composite Membranes by Interfacial Polymerization for Organic Solvent Nanofiltration. J. Memb. Sci. 2013, 448, 102–113. [Google Scholar] [CrossRef]
- Mokarizadeh, H.; Moayedfard, S.; Maleh, M.S.; Mohamed, S.I.G.P.; Nejati, S.; Esfahani, M.R. The Role of Support Layer Properties on the Fabrication and Performance of Thin-Film Composite Membranes: The Significance of Selective Layer-Support Layer Connectivity. Sep. Purif. Technol. 2021, 278, 119451. [Google Scholar] [CrossRef]
- Wang, N.; Ji, S.; Zhang, G.; Li, J.; Wang, L. Self-Assembly of Graphene Oxide and Polyelectrolyte Complex Nanohybrid Membranes for Nanofiltration and Pervaporation. Chem. Eng. J. 2012, 213, 318–329. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Ulbricht, M.; Naseri, S.; Susanto, H. Effect of Hydrophilic and Hydrophobic Organic Matter on Amoxicillin and Cephalexin Residuals Rejection from Water by Nanofiltration. J. Environ. Health Sci. Eng. 2010, 7, 15–24. [Google Scholar]
- Hu, D.; Xu, Z.L.; Chen, C. Polypiperazine-Amide Nanofiltration Membrane Containing Silica Nanoparticles Prepared by Interfacial Polymerization. Desalination 2012, 301, 75–81. [Google Scholar] [CrossRef]
- Sun, Z.; Dong, F.; Wu, Q.; Tang, Y.; Zhu, Y.; Gao, C.; Xue, L. High Water Permeating Thin Film Composite Polyamide Nanofiltration Membranes Showing Thermal Responsive Gating Properties. J. Water Process. Eng. 2020, 36, 101355. [Google Scholar] [CrossRef]
- Wang, W.; Tian, X.; Feng, Y.; Cao, B.; Yang, W.; Zhang, L. Thermally On–Off Switching Membranes Prepared by Pore-Filling Poly(N-Isopropylacrylamide) Hydrogels. Ind. Eng. Chem. Res. 2009, 49, 1684–1690. [Google Scholar] [CrossRef]
- Guo, J.W.; Wang, C.F.; Lai, J.Y.; Lu, C.H.; Chen, J.K. Poly(N-Isopropylacrylamide)-Gelatin Hydrogel Membranes with Thermo-Tunable Pores for Water Flux Gating and Protein Separation. J. Memb. Sci. 2021, 618, 118732. [Google Scholar] [CrossRef]
Membrane | Ra (nm) | Rz (nm) | Rq (nm) |
---|---|---|---|
PET | 3.5 | 23.3 | 24.2 |
PET-PNIPAAm | 2.3 | 9.6 | 15.9 |
PET-PNIPAAm-PA | 2.7 | 11.8 | 16.4 |
Element | PET | PET-PNIPAAm | PET-PEG-PNIPAAm-PA | |||
---|---|---|---|---|---|---|
A % | W % | A % | W % | A % | W % | |
C | 71.3 | 65.2 | 68.5 | 63.2 | 67.2 | 61.8 |
O | 28.7 | 34.8 | 18.7 | 23 | 19.7 | 24.1 |
N | 0 | 0 | 12.8 | 13.8 | 13.1 | 24.1 |
Membrane | Water Permeability (L/m2 h bar) | NaCl Rejection (%) |
---|---|---|
PET | 16,920 | 0 |
PET-PNIPAAm | 1.5 | 0 |
PET-PEG-PNIPAAm | 37.4 | 0 |
PET-PNIPAAm-PA | 1.0 | 33.8 |
PET-PEG-PNIPAAm-PA | 1.0 | 47.0 |
Membrane | Water Permeability (L/m2 h bar) | NaCl Rejection (%) (bar) | Ref. |
---|---|---|---|
PA TFC/modified polyacrylonitrile | 0.84 | 37.8 (5) | [65] |
Commercial TFC-SR3 | 2.1 | 38 (10) | [66] |
Commercial TFC-SR2 | 7.5 | 24 (10) | [66] |
Modified PA TFC/PES | 7.8 | 25.6 (6) | [67] |
PA TFC/modified PES | 11.4 | 31 (2) | [9] |
PET-PNIPAAm-PA | 1 | 33.8 (1) | This work |
PET-PEG-PNIPAAm-PA | 1 | 47.0 (1) | This work |
Membrane | Temperature | Water Permeability (L/m2 h bar) | NaCl Rejection (%) |
---|---|---|---|
PET-PNIPAAm-PA | Room temperature | 1 | 33.8 |
PET-hydrophobic PNIPAAm-PA | Room temperature | 0.3 | 32.4 |
PET-hydrophobic PNIPAAm-PA | 45 °C | 1.8 | 27.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drikvand, H.N.; Golgoli, M.; Zargar, M.; Ulbricht, M.; Nejati, S.; Mansourpanah, Y. Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance. Polymers 2022, 14, 3376. https://doi.org/10.3390/polym14163376
Drikvand HN, Golgoli M, Zargar M, Ulbricht M, Nejati S, Mansourpanah Y. Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance. Polymers. 2022; 14(16):3376. https://doi.org/10.3390/polym14163376
Chicago/Turabian StyleDrikvand, Haniyeh Najafvand, Mitra Golgoli, Masoumeh Zargar, Mathias Ulbricht, Siamak Nejati, and Yaghoub Mansourpanah. 2022. "Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance" Polymers 14, no. 16: 3376. https://doi.org/10.3390/polym14163376
APA StyleDrikvand, H. N., Golgoli, M., Zargar, M., Ulbricht, M., Nejati, S., & Mansourpanah, Y. (2022). Thermo-Responsive Hydrophilic Support for Polyamide Thin-Film Composite Membranes with Competitive Nanofiltration Performance. Polymers, 14(16), 3376. https://doi.org/10.3390/polym14163376