Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era
Abstract
:1. Introduction
2. Antifungal Food Packaging
2.1. Fungal Spoilage in Food Products
2.2. Applications of Active Packaging to Control Fungal Spoilage
2.2.1. Effect on Yeast
2.2.2. Effect on Rhizopus, Penicillium and Aspergillus Species
2.2.3. Effect on Phytopathogenic Fungus
2.2.4. Effect on Aflatoxigenic Fungi
Classification | Antifungal Agents | Polymer Materials | Methods of Preparation | Types of Packaging | Packaged Foods/In Vitro Antimicrobial Test | Observations | References |
---|---|---|---|---|---|---|---|
Organic acids and acid salts | Sorbic acid | PP | Extrusion molding | Film |
|
| [34] |
Sorbic acid or benzoic acid | Argentine anchovy protein | Solvent casting | Film |
|
| [35] | |
Sodium benzoate and/or potassium sorbate | PBAT/TPS blends | Blown extrusion | Film |
|
| [38] | |
Essential oils and their constituent | Oregano, carvacrol, cinnamon bark or cinnamaldehyde | EVOH | Solvent casting | Film |
|
| [57] |
Oregano essential oil | Cellulose acetate | Solvent casting | Film |
|
| [45] | |
Eugenol and citral essential oils | Corn porous starch | Osmosis and diffusion | Microcapsules |
|
| [25] | |
Turmeric essential oil | Chitosan | Solvent casting | Film |
|
| [60] | |
Savory or oregano essential oil | Chia mucilage | Solvent casting | Edible film |
|
| [63] | |
Thymol or R-(−)-carvone | PLA | Cast extrusion | Film |
|
| [50] | |
Thymol nano-emulsions | Quinoa protein/chitosan | Solvent casting | Edible film and coating |
|
| [51] | |
Thyme, cinnamon or lemongrass essential oil | Chitosan | Solvent casting | Film and coating |
|
| [61] | |
Thymol | PLA/PBSA blends | Blown extrusion | Film |
|
| [46] | |
Thymol | Chitosan nanoparticles | Coating solution | Coating |
|
| [62] | |
Thyme essential oil | P(3HB-co-4HB) | Solvent casting | Film |
|
| [47] | |
Carvacrol with and without microencapsulated by β-cyclodextrin | Sodium alginate | Solvent casting | Film |
|
| [53] | |
Carvacrol | Polyvinyl alcohol/corn starch blends | Solvent casting | Film and coating |
|
| [52] | |
Carvacrol nano-emulsions | Corn starch/polyvinyl alcohol blends | Solvent casting | Film |
|
| [54] | |
Carvacrol | PLA/PBAT blends | Blown extrusion | Film |
|
| [26] | |
Cinnamaldehyde, eugenol or thymol nano-emulsions | Pullulan | Solvent casting | Film |
|
| [64] | |
Cinnamaldehyde | Pullulan | Solvent casting | Film |
|
| [65] | |
Trans-cinnamaldehyde | PLA/PBAT blends | Cast extrusion | Film |
|
| [9] | |
Natural extracts | Garlic extract and bread aroma (containing 2-acetyl-1-pyrroline) blends | PE, EVOH or zein | Film coating | Coated PE film |
|
| [48] |
Coffee parchment waste extracts | Gellan gum | Solvent casting | Film |
|
| [49] | |
Bacteriocins | Natamycin | PE | Surface modification by spraying | Coated PE film |
|
| [66] |
Natamycin | LDPE | Graft polymerization | Film |
|
| [15] | |
Natamycin | Zein or alginate | Solvent casting | Film |
|
| [39] | |
Natamycin | Carboxymethyl cellulose | Coating solution | Coating |
|
| [24] | |
Cationic peptide | ɛ-Poly-l-lysine | Corn starch | Solvent casting | Film |
|
| [56] |
Cationic polymer | Polyhexamethyleneguanidine (PHMG) derivatives with organic anions: sulfanilic acid salt, stearate and granular polyethylene wax | PLA, PHB or PCL | Extrusion | Flat film |
|
| [27] |
Antagonistic yeasts | Williopsis saturnus var. saturnus | Whey protein concentrate | Solvent casting | Edible film |
|
| [67] |
Quantum fillers | Carbon quantum dots | Chitosan/gelatin blends | Solvent casting | Film and coating |
|
| [43] |
Sulfur quantum dots, sulfur nanoparticles or elemental sulfur | Alginate | Solvent casting | Film |
|
| [44] | |
Fatty acid | Lauric acid | LDPE | Extrusion | Film |
|
| [10] |
Metals | ZnO nanoparticles and chitin nanoparticles blends | Bovine gelatin, gelatin nanocomposite, gelatin emulsion, two layers of gelatin nanocomposite and gelatin emulsion or polyethylene (PE) | Solvent casting | Film |
|
| [68] |
Blends | Potassium sorbate or grapefruit seed extract | Corn starch/chitosan/nano clay blends | Solvent casting | Film |
|
| [69] |
3. Antibacterial Food Packaging
3.1. Spoilage and Pathogenic Bacteria in Food Products
3.2. Applications of Active Packaging to Control Spoilage and Pathogenic Bacteria
3.2.1. Psychrotrophic Bacteria
3.2.2. Mesophilic Bacteria
Classification | Antibacterial Agents | Polymer Materials | Methods of Preparation | Types of Packaging | Packaged Foods/In Vitro Antimicrobial Test | Observations | References |
---|---|---|---|---|---|---|---|
Essential oils and their constituent | Oregano essential oil | PBAT | Hot melt extrusion | Film |
|
| [102] |
Oregano essential oil or allium extract | PP | Extrusion | Film |
|
| [105] | |
Fennel seed oil | Cellulose nanoparticles/polyvinyl alcohol blends | Solvent casting | Film |
|
| [104] | |
Ginger essential oil emulsion and nano-emulsions | Fish sarcoplasmic protein/chitosan blends | Solvent casting | Film |
|
| [110] | |
Lemongrass essential oil | Chitosan | Solvent casting | Film |
|
| [87] | |
Thymol or linalool | PE | Molding | Film sheet |
|
| [89] | |
Carvacrol, citral or α-terpineol essential oils | PBAT/PLA blends | Blown extrusion | Film |
|
| [103] | |
Carvacrol | Chitosan/pullulan blends | Solvent casting | Film |
|
| [88] | |
Cinnamaldehyde or tea polyphenols | Corn starch/PBAT/PLA blends | Cast extrusion | Film |
|
| [92] | |
Natural extracts | Propolis ethanolic extract | Pullulan | Solvent casting | Film and coating |
|
| [98] |
Propolis ethanolic extract | PLA | Solvent casting | Film |
|
| [111] | |
Yucca baccata butanolic extract | LDPE | Blown extrusion | Film |
|
| [100] | |
Feijoa (Acca sellowiana (Berg) Burret) pulp or husk extract | Brazilian pine seeds starch/citric pectin blends | Solvent casting | Film and coating |
|
| [112] | |
Crude mulberry leaf extract, chlorogenic acid or deoxynojirimycin | Pectin | Solvent casting | Film and coating |
|
| [113] | |
Sea buckthorn pomace extract | Potato starch | Solvent casting | Film |
|
| [99] | |
Phenolic acids | Ferulic or cinnamic acids | PLA | Melt blending and compression molding | Film |
|
| [84] |
Bacteriocins and cationic peptide | Bacteriocin 7293 | PLA/sawdust particle blends | Blown extrusion and diffusion coating | Coated film |
|
| [81] |
Lauric arginate and/or Nisin Z | TPS/PBAT (film)gelatin or pullulan (coating solution) | Blown extrusion and coating solution | Film and coated film |
|
| [96] | |
Ethyl lauroyl arginate | Chitosan/polyvinyl alcohol blends | Solvent casting | Film |
|
| [97] | |
Enterocin A or ethyl lauroyl arginate | Polyvinyl alcohol | Solvent casting | Film |
|
| [80] | |
ε-polylysine | Levan/pullulan/chitosan blends | Solvent casting | Edible films and coating |
|
| [93] | |
ε-polylysine hydrochloride and/or nisin | Starch/PBAT blends | Blown extrusion | Film |
|
| [94] | |
Enzymes | Lysozyme | PLA | Cold plasma treatment | Coated film and pouch |
|
| [83] |
Metals | Silver (Ag) nanoparticles | LDPE | Corona air plasma treatment | Coated film and pouch |
|
| [114] |
Silver (Ag) nanoparticles | LDPE or PP | Extrusion | Film |
|
| [90] | |
Silver (Ag) nanoparticles | LDPE | Blown extrusion | Film |
|
| [115] | |
Zinc oxide (ZnO) nanoparticles | PBAT/TPS blends | Blown extrusion | Film |
|
| [101] | |
Glycolipid biosurfactant | Sophorolipid | PLA | Solvent casting | Film |
|
| [82] |
Blends | Silver (Ag) nanoparticles and/or ginger extract | Polyvinyl alcohol/montmorillonite K10 clay nanocomposite blends | Solvent casting | Film and pouch |
|
| [95] |
4. Antiviral Food Packaging
4.1. Foodborne Virus Pathogens
4.2. Applications of Active Packaging to Control Foodborne Viruses
Classification | Antiviral Agents | Polymer Materials | Methods of Preparation | Types of Packaging | Packaged Foods/In Vitro Antimicrobial Test | Observations | References |
---|---|---|---|---|---|---|---|
Essential oils and their constituents | Allyl isothiocyanate | Persian gum/gelatin blends | Solvent casting | Edible film and coating |
|
| [143] |
Natural extracts | Green tea extract or grape seed extract | Alginate/lipid blends | Solvent casting | Edible film |
|
| [137] |
Green tea extract | Alginate/oleic acid blends | Solvent casting | Edible film and coating |
|
| [138] | |
Green tea extract | κ-, ι -, λ-carrageenan | Solvent casting | Edible film and coating |
|
| [136] | |
Grape seed extract | Chitosan | Solvent casting | Film |
|
| [144] | |
Larrea nitida extract | Agar, alginate or agar/alginate blends | Solvent casting | Edible film and coating |
|
| [140] | |
Metals | Silver (Ag) nanoparticles | Poly (3-hydroxybutyrate-co-18 mol%-3-hydroxyvalerate) (PHBV18) | Electrospinning | Fiber mats and coated films |
|
| [145] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, S.; Sharma, K.; Gundabala, V. Antimicrobial bio-inspired active packaging materials for shelf life and safety development: A review. Food Biosci. 2022, 48, 101730. [Google Scholar] [CrossRef]
- Pires, S.M.; Devleesschauwer, B. Chapter 1-Estimates of global disease burden associated with foodborne pathogens. In Foodborne Infections and Intoxications, 5th ed.; Morris, J.G., Vugia, D.J., Eds.; Academic Press: London, UK, 2021; pp. 3–17. [Google Scholar]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Harnkarnsujarit, N.; Kawai, K.; Suzuki, T. Effects of Freezing Temperature and Water Activity on Microstructure, Color, and Protein Conformation of Freeze-Dried Bluefin Tuna (Thunnus orientalis). Food Bioprocess Technol. 2014, 8, 916–925. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability. In Innovative Technologies for Food Preservation; Academic Press: London, UK, 2018; pp. 53–107. [Google Scholar]
- Al-Mamun, M.; Chowdhury, T.; Biswas, B.; Absar, N. Food Poisoning and Intoxication: A Global Leading Concern for Human Health. In Food Safety and Preservation; Academic Press: London, UK, 2018; pp. 307–352. [Google Scholar]
- Sánchez, G.; Bosch, A. Survival of Enteric Viruses in the Environment and Food. In Viruses in Foods; Goyal, S.M., Cannon, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 367–392. [Google Scholar]
- Sair, A.I.; D’Souza, D.H.; Jaykus, L.A. Human Enteric Viruses as Causes of Foodborne Disease. Compr. Rev. Food Sci. Food Saf. 2002, 1, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Srisa, A.; Harnkarnsujarit, N. Antifungal films from trans-cinnamaldehyde incorporated poly(lactic acid) and poly(butylene adipate-co-terephthalate) for bread packaging. Food Chem. 2020, 333, 127537. [Google Scholar] [CrossRef] [PubMed]
- Solano, R.J.; Sierra, C.A.; Murillo, M. Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi. Food Packag. Shelf Life 2020, 24, 100495. [Google Scholar] [CrossRef]
- Panda, P.K.; Sadeghi, K.; Seo, J. Recent advances in poly (vinyl alcohol)/natural polymer based films for food packaging applications: A review. Food Packag. Shelf Life 2022, 33, 100904. [Google Scholar] [CrossRef]
- Chausali, N.; Saxena, J.; Prasad, R. Recent trends in nanotechnology applications of bio-based packaging. J. Agric. Food Res. 2022, 7, 100257. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Pawtowski, A.; Auhustsinava-Galerne, L.; Frotté, N.; Baroncelli, R.; Deniel, F.; Coton, E.; Mounier, J. Diversity of spoilage fungi associated with various French dairy products. Int. J. Food Microbiol. 2017, 241, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Deak, T. Spoilage yeasts. In Understanding and Measuring the Shelf-Life of Food; Woodhead Publishing: Shaston, UK, 2004; pp. 91–110. [Google Scholar]
- Naderi Bab Anari, H.; Majdinasab, M.; Shaghaghian, S.; Khalesi, M. Development of a natamycin-based non-migratory antimicrobial active packaging for extending shelf-life of yogurt drink (Doogh). Food Chem. 2022, 366, 130606. [Google Scholar] [CrossRef] [PubMed]
- Fleet, G.H. Yeast Spoilage of Foods and Beverages. In The Yeasts; Elsevier: Amsterdam, The Netherlands, 2011; pp. 53–63. [Google Scholar]
- Perricone, M.; Gallo, M.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Yeasts. In The Microbiological Quality of Food; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 121–131. [Google Scholar]
- Kurtzman, C.P. Detection, identification and enumeration methods for spoilage yeasts. In Food Spoilage Microorganisms; CRC Press LLC: Boca Raton, FL, USA, 2006; pp. 28–54. [Google Scholar]
- Martin, N.H.; Snyder, A.; Wiedmann, M. Spoilage Mold in Dairy Products. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 607–610. [Google Scholar]
- Petruzzi, L.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Microbial Spoilage of Foods. In The Microbiological Quality of Food; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 1–21. [Google Scholar]
- Cook, F.K.; Johnson, B.L. Microbiological Spoilage of Cereal Products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W.H., Doyle, M.P., Eds.; Springer: New York, NY, USA, 2009; pp. 223–244. [Google Scholar]
- Sperber, W.H. Introduction to the Microbiological Spoilage of Foods and Beverages. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W.H., Doyle, M.P., Eds.; Springer: New York, NY, USA, 2009; pp. 1–40. [Google Scholar]
- Singh, R.P.; Anderson, B.A. The major types of food spoilage: An overview. In Understanding and Measuring the Shelf-Life of Food; Woodhead Publishing: Shaston, UK, 2004; pp. 3–23. [Google Scholar]
- Azhdari, S.; Moradi, M. Application of antimicrobial coating based on carboxymethyl cellulose and natamycin in active packaging of cheese. Int. J. Biol. Macromol. 2022, 209, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. A novel method to prolong bread shelf life: Sachets containing essential oils components. LWT 2020, 131, 109744. [Google Scholar] [CrossRef]
- Klinmalai, P.; Srisa, A.; Laorenza, Y.; Katekhong, W.; Harnkarnsujarit, N. Antifungal and plasticization effects of carvacrol in biodegradable poly(lactic acid) and poly(butylene adipate terephthalate) blend films for bakery packaging. LWT 2021, 152, 112356. [Google Scholar] [CrossRef]
- Brzezinska, M.S.; Walczak, M.; Burkowska-But, A.; Chylińska, M.; Kalwasińska, A.; Świątczak, J. Antifungal Activity of Polyhexamethyleneguanidine Derivatives Introduced into Biodegradable Polymers. J. Polym. Environ. 2019, 27, 1760–1769. [Google Scholar] [CrossRef]
- Bahmid, N.A.; Dekker, M.; Fogliano, V.; Heising, J. Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packag. Shelf Life 2021, 30, 100753. [Google Scholar] [CrossRef]
- Milanović, V.; Sabbatini, R.; Garofalo, C.; Cardinali, F.; Pasquini, M.; Aquilanti, L.; Osimani, A. Evaluation of the inhibitory activity of essential oils against spoilage yeasts and their potential application in yogurt. Int. J. Food Microbiol. 2021, 341, 109048. [Google Scholar] [CrossRef]
- Afzali, S.; Edalatian Dovom, M.R.; Habibi Najafi, M.B.; Mazaheri Tehrani, M. Determination of the anti-yeast activity of Lactobacillus spp. isolated from traditional Iranian cheeses in vitro and in yogurt drink (Doogh). Sci. Rep. 2020, 10, 6291. [Google Scholar] [CrossRef]
- Meena, M.; Prajapati, P.; Ravichandran, C.; Sehrawat, R. Natamycin: A natural preservative for food applications—A review. Food Sci. Biotechnol. 2021, 30, 1481–1496. [Google Scholar] [CrossRef]
- Te Welscher, Y.M.; ten Napel, H.H.; Balagué, M.M.; Souza, C.M.; Riezman, H.; de Kruijff, B.; Breukink, E. Natamycin Blocks Fungal Growth by Binding Specifically to Ergosterol without Permeabilizing the Membrane. J. Biol. Chem. 2008, 283, 6393–6401. [Google Scholar] [CrossRef]
- Mogavero, S.; Sauer, F.M.; Brunke, S.; Allert, S.; Schulz, D.; Wisgott, S.; Jablonowski, N.; Elshafee, O.; Krüger, T.; Kniemeyer, O.; et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell. Microbiol. 2021, 23, e13378. [Google Scholar] [CrossRef] [PubMed]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A. Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packag. Shelf Life 2018, 18, 87–94. [Google Scholar] [CrossRef]
- da Rocha, M.; Prietto, L.; de Souza, M.M.; Furlong, E.B.; Prentice, C. Effect of Organic Acids on Physical-Mechanical and Antifungicidal Properties of Anchovy Protein Films. J. Aquat. Food Prod. Technol. 2018, 27, 316–326. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Ding, W.; Zhang, D.; Reed, K.; Zhang, B. Alternatives to carcinogenic preservatives in Chinese Sausage-Sorbic acid-loaded chitosan/tripolyphosphate nanoparticles. Int. J. Biol. Macromol. 2018, 120, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Nemes, D.; Kovács, R.; Nagy, F.; Tóth, Z.; Herczegh, P.; Borbás, A.; Kelemen, V.; Pfliegler, W.P.; Rebenku, I.; Hajdu, P.B.; et al. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates. Eur. J. Pharm. Sci. 2020, 143, 105162. [Google Scholar] [CrossRef]
- Wangprasertkul, J.; Siriwattanapong, R.; Harnkarnsujarit, N. Antifungal packaging of sorbate and benzoate incorporated biodegradable films for fresh noodles. Food Control 2021, 123, 107763. [Google Scholar] [CrossRef]
- Küçük, G.S.; Çelik, Ö.F.; Mazi, B.G.; Türe, H. Evaluation of alginate and zein films as a carrier of natamycin to increase the shelf life of kashar cheese. Packag. Technol. Sci. 2020, 33, 39–48. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Harnkarnsujarit, N. Migration, aggregations and thermal degradation behaviors of TiO2 and ZnO incorporated PBAT/TPS nanocomposite blown films. Food Packag. Shelf Life 2022, 33, 100901. [Google Scholar] [CrossRef]
- Wadaugsorn, K.; Panrong, T.; Wongphan, P.; Harnkarnsujarit, N. Plasticized hydroxypropyl cassava starch blended PBAT for improved clarity blown films: Morphology and properties. Ind. Crop. Prod. 2022, 176, 114311. [Google Scholar] [CrossRef]
- Wongphan, P.; Khowthong, M.; Supatrawiporn, T.; Harnkarnsujarit, N. Novel edible starch films incorporating papain for meat tenderization. Food Packag. Shelf Life 2022, 31, 100787. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W.; Molaei, R.; Rezaei, Z. Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packag. Shelf Life 2022, 33, 100878. [Google Scholar] [CrossRef]
- Riahi, Z.; Priyadarshi, R.; Rhim, J.-W.; Lotfali, E.; Bagheri, R.; Pircheraghi, G. Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications. Colloids Surf. B Biointerfaces 2022, 215, 112519. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.G.; Grisi, C.V.B.; Costa Araújo, R.; Botrel, D.A.; Sousa, S. Active cellulose acetate-oregano essential oil films to conservation of hamburger buns: Antifungal, analysed sensorial and mechanical properties. Packag. Technol. Sci. 2021, 35, 175–182. [Google Scholar] [CrossRef]
- Suwanamornlert, P.; Kerddonfag, N.; Sane, A.; Chinsirikul, W.; Zhou, W.; Chonhenchob, V. Poly(lactic acid)/poly(butylene-succinate-co-adipate) (PLA/PBSA) blend films containing thymol as alternative to synthetic preservatives for active packaging of bread. Food Packag. Shelf Life 2020, 25, 100515. [Google Scholar] [CrossRef]
- Sharma, P.; Ahuja, A.; Dilsad Izrayeel, A.M.; Samyn, P.; Rastogi, V.K. Physicochemical and thermal characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) films incorporating thyme essential oil for active packaging of white bread. Food Control 2022, 133, 108688. [Google Scholar] [CrossRef]
- Heras-Mozos, R.; Muriel-Galet, V.; López-Carballo, G.; Catalá, R.; Hernandez-Munoz, P.; Gavara, R. Development and optimization of antifungal packaging for sliced pan loaf based on garlic as active agent and bread aroma as aroma corrector. Int. J. Food Microbiol. 2019, 290, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Barragán Huerta, B.E. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Boonruang, K.; Kerddonfag, N.; Chinsirikul, W.; Mitcham, E.J.; Chonhenchob, V. Antifungal effect of poly(lactic acid) films containing thymol and R-(-)-carvone against anthracnose pathogens isolated from avocado and citrus. Food Control 2017, 78, 85–93. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef]
- Sapper, M.; Martin-Esparza, M.E.; Chiralt, A.; Gonzalez Martinez, C. Antifungal Polyvinyl Alcohol Coatings Incorporating Carvacrol for the Postharvest Preservation of Golden Delicious Apple. Coatings 2020, 10, 1027. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, J.; Zhang, R.; Kong, R.; Lu, W.; Wang, X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 2019, 141, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kong, R.; Wang, J.; Cheng, M.; Lu, W.; Chen, M.; Zhang, R.; Wang, X. Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Int. J. Biol. Macromol. 2020, 164, 1631–1639. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Xia, Z.; An, M.; Wu, Y. Effects of ε-poly-l-lysine on vegetative growth, pathogenicity and gene expression of Alternaria alternata infecting Nicotiana tabacum. Pestic. Biochem. Physiol. 2020, 163, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Calpe, J.; Saladino, F.; Luciano, F.B.; Fernandez-Franzón, M.; Mañes, J.; Meca, G. Antimicrobial packaging based on ε-polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. J. Food Process. Preserv. 2018, 42, e13370. [Google Scholar] [CrossRef] [PubMed]
- Mateo, E.M.; Gómez, J.V.; Domínguez, I.; Gimeno-Adelantado, J.V.; Mateo-Castro, R.; Gavara, R.; Jiménez, M. Impact of bioactive packaging systems based on EVOH films and essential oils in the control of aflatoxigenic fungi and aflatoxin production in maize. Int. J. Food Microbiol. 2017, 254, 36–46. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Pyrogallol loaded thermoplastic cassava starch based films as bio-based oxygen scavengers. Ind. Crop. Prod. 2022, 186, 115226. [Google Scholar] [CrossRef]
- Promsorn, J.; Harnkarnsujarit, N. Oxygen absorbing food packaging made by extrusion compounding of thermoplastic cassava starch with gallic acid. Food Control 2022, 142, 109273. [Google Scholar] [CrossRef]
- Li, Z.; Lin, S.; An, S.; Liu, L.; Hu, Y.; Wan, L. Preparation, characterization and anti-aflatoxigenic activity of chitosan packaging films incorporated with turmeric essential oil. Int. J. Biol. Macromol. 2019, 131, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Chein, S.H.; Sadiq, M.B.; Anal, A.K. Antifungal effects of chitosan films incorporated with essential oils and control of fungal contamination in peanut kernels. J. Food Process. Preserv. 2019, 43, e14235. [Google Scholar] [CrossRef]
- Guo, X.; Chu, L.; Gu, T.; Purohit, S.; Kou, L.; Zhang, B. Long-term quality retention and decay inhibition of chestnut using thymol loaded chitosan nanoparticle. Food Chem. 2022, 374, 131781. [Google Scholar] [CrossRef]
- Muñoz-Tébar, N.; Carmona, M.; de Elguea-Culebras, G.O.; Molina, A.; Berruga, M.I. Chia Seed Mucilage Edible Films with Origanum vulgare and Satureja montana Essential Oils: Characterization and Antifungal Properties. Membranes 2022, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, A.; Tonyali, B.; Yucel, U.; Trinetta, V. Formulation and development of lipid nanoparticle antifungal packaging films to control postharvest disease. J. Agric. Food Res. 2019, 1, 100013. [Google Scholar] [CrossRef]
- Trinetta, V.; McDaniel, A.; Batziakas, K.G.; Yucel, U.; Nwadike, L.; Pliakoni, E. Antifungal Packaging Film to Maintain Quality and Control Postharvest Diseases in Strawberries. Antibiotics 2020, 9, 618. [Google Scholar] [CrossRef] [PubMed]
- Grafia, A.L.; Vazquez, M.B.; Bianchinotti, M.V.; Barbosa, S.E. Development of an antifungal film by polyethylene surface modification with natamycin. Food Packag. Shelf Life 2018, 18, 191–200. [Google Scholar] [CrossRef]
- Karabulut, G.; Cagri-Mehmetoglu, A. Antifungal, Mechanical, and Physical Properties of Edible Film Containing Williopsis saturnus var. Saturnus Antagonistic Yeast. J. Food Sci. 2018, 83, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Sahraee, S.; Milani, J.M.; Ghanbarzadeh, B.; Hamishehkar, H. Development of emulsion films based on bovine gelatin-nano chitin-nano ZnO for cake packaging. Food Sci. Nutr. 2020, 8, 1303–1312. [Google Scholar] [CrossRef]
- Jha, P. Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starch-chitosan for food packaging applications. Int. J. Biol. Macromol. 2020, 160, 571–582. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Types of Microorganisms in Foods. In Food Microbiology: Principles into Practice; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 35–80. [Google Scholar]
- Russell, N.J.; Fukunaga, N. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Lett. 1990, 75, 171–182. [Google Scholar] [CrossRef]
- Marianski, S.; Mariański, A. The Art of Making Fermented Sausages; Bookmagic: Andhra Pradesh, India, 2009. [Google Scholar]
- Gould, G.W.; Russell, N.J. Major, new, and emerging food-poisoning and food-spoilage microorganisms. In Food Preservatives; Russell, N.J., Gould, G.W., Eds.; Springer: Boston, MA, USA, 2003; pp. 1–13. [Google Scholar]
- Pongsetkul, J.; Benjakul, S. Development of modified atmosphere packaging (MAP) on shelf-life extension of pla-duk-ra (dried fermented catfish) stored at room temperature. Food Control 2021, 124, 107882. [Google Scholar] [CrossRef]
- Jakobsen, A.N.; Shumilina, E.; Lied, H.; Hoel, S. Growth and spoilage metabolites production of a mesophilic Aeromonas salmonicida strain in Atlantic salmon (Salmo salar L.) during cold storage in modified atmosphere. J. Appl. Microbiol. 2020, 129, 935–946. [Google Scholar] [CrossRef]
- Bassey, A.P.; Chen, Y.; Zhu, Z.; Odeyemi, O.A.; Gao, T.; Olusola, O.O.; Ye, K.; Li, C.; Zhou, G. Evaluation of spoilage indexes and bacterial community dynamics of modified atmosphere packaged super-chilled pork loins. Food Control 2021, 130, 108383. [Google Scholar] [CrossRef]
- Chan, S.S.; Skare, M.; Rotabakk, B.T.; Sivertsvik, M.; Lerfall, J.; Løvdal, T.; Roth, B. Evaluation of physical and instrumentally determined sensory attributes of Atlantic salmon portions packaged in modified atmosphere and vacuum skin. LWT 2021, 146, 111404. [Google Scholar] [CrossRef]
- Hilgarth, M.; Lehner, E.M.; Behr, J.; Vogel, R.F. Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J. Appl. Microbiol. 2019, 127, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.S.; Biduski, B.; dos Santos, L.R. Listeria monocytogenes: Health risk and a challenge for food processing establishments. Arch. Microbiol. 2021, 203, 5907–5919. [Google Scholar] [CrossRef] [PubMed]
- Aymerich, T.; Jofré, A.; Bover-Cid, S. Enterocin A-based antimicrobial film exerted strong antilisterial activity in sliced dry-cured ham immediately and after 6 months at 8 °C. Food Microbiol. 2022, 105, 104005. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Pumpuang, L.; Tosukhowong, A.; Zendo, T.; Sonomoto, K.; Benjakul, S.; Visessanguan, W. Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT 2018, 89, 427–433. [Google Scholar] [CrossRef]
- Silveira, V.A.I.; Marim, B.M.; Hipólito, A.; Gonçalves, M.C.; Mali, S.; Kobayashi, R.K.T.; Celligoi, M.A.P.C. Characterization and antimicrobial properties of bioactive packaging films based on polylactic acid-sophorolipid for the control of foodborne pathogens. Food Packag. Shelf Life 2020, 26, 100591. [Google Scholar] [CrossRef]
- Glicerina, V.; Siroli, L.; Canali, G.; Chinnici, F.; Capelli, F.; Lanciotti, R.; Colombo, V.; Romani, S. Efficacy of biodegradable, antimicrobial packaging on safety and quality parameters maintenance of a pear juice and rice milk-based smoothie product. Food Control 2021, 128, 108170. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Effect of ferulic and cinnamic acids on the functional and antimicrobial properties in thermo-processed PLA films. Food Packag. Shelf Life 2022, 33, 100882. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Wongphan, P.; Promhuad, K.; Promsorn, J.; Harnkarnsujarit, N. Biodegradable Poly(Butylene Adipate-Co-Terephthalate) and Thermoplastic Starch-Blended TiO2 Nanocomposite Blown Films as Functional Active Packaging of Fresh Fruit. Polymers 2021, 13, 4192. [Google Scholar] [CrossRef]
- Wongphan, P.; Panrong, T.; Harnkarnsujarit, N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packag. Shelf Life 2022, 32, 100844. [Google Scholar] [CrossRef]
- Contini, L.R.F.; Zerlotini, T.D.S.; Brazolin, I.F.; dos Santos, J.W.S.; Silva, M.F.; Lopes, P.S.; Sampaio, K.A.; Carvalho, R.A.; Venturini, A.C.; Yoshida, C.M.P. Antioxidant chitosan film containing lemongrass essential oil as active packaging for chicken patties. J. Food Process. Preserv. 2021, 46, e16136. [Google Scholar] [CrossRef]
- Xiao, L.; Kang, S.; Lapu, M.; Jiang, P.; Wang, X.; Liu, D.; Li, J.; Liu, M. Preparation and characterization of chitosan/pullulan film loading carvacrol for targeted antibacterial packaging of chilled meat. Int. J. Biol. Macromol. 2022, 211, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Mohammadi Nafchi, A.; Baghaie, H. Development of an active packaging based on polyethylene containing linalool or thymol for mozzarella cheese. Food Sci. Nutr. 2021, 9, 3732–3739. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Garcia, C.V.; Ko, S.; Lee, W.; Shin, G.H.; Choi, J.C.; Park, S.-J.; Kim, J.T. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications. Food Biosci. 2018, 23, 83–90. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, G.H.; Yoon, K.S.; Shankar, S.; Rhim, J.-W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathog. 2020, 144, 104178. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Zhang, M.; Zheng, H.; Li, L. Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chem. 2022, 380, 132022. [Google Scholar] [CrossRef]
- Gan, L.; Jiang, G.; Yang, Y.; Zheng, B.; Zhang, S.; Li, X.; Tian, Y.; Peng, B. Development and characterization of levan/pullulan/chitosan edible films enriched with ε-polylysine for active food packaging. Food Chem. 2022, 388, 132989. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhai, X.; Cheng, Y.; Zhang, R.; Wang, W.; Hou, H. Starch/PBAT blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int. J. Biol. Macromol. 2022, 204, 457–465. [Google Scholar] [CrossRef]
- Mathew, S.; Snigdha, S.; Jyothis, M.; Radhakrishnan, E.K. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Pattanayaiying, R.; Sane, A.; Photjanataree, P.; Cutter, C.N. Thermoplastic starch/polybutylene adipate terephthalate film coated with gelatin containing nisin Z and lauric arginate for control of foodborne pathogens associated with chilled and frozen seafood. Int. J. Food Microbiol. 2019, 290, 59–67. [Google Scholar] [CrossRef]
- Haghighi, H.; Leugoue, S.K.; Pfeifer, F.; Siesler, H.W.; Licciardello, F.; Fava, P.; Pulvirenti, A. Development of antimicrobial films based on chitosan-polyvinyl alcohol blend enriched with ethyl lauroyl arginate (LAE) for food packaging applications. Food Hydrocoll. 2020, 100, 105419. [Google Scholar] [CrossRef]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the Shelf Life of Cherry Tomatoes by Pullulan Coating with Ethanol Extract of Propolis During Refrigerated Storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Guo, Z.; Ge, X.; Gou, Q.; Yang, L.; Han, M.; Han, G.; Yu, Q.-L.; Han, L. Changes in chilled beef packaged in starch film containing sea buckthorn pomace extract and quality changes in the film during super-chilled storage. Meat Sci. 2021, 182, 108620. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-García, G.J.; Quintana-Romero, L.A.; Morales-Figueroa, G.G.; Esparza-Romero, J.; Pérez-Morales, R.; López-Mata, M.A.; Juárez, J.; Sánchez-Escalante, J.J.; Peralta, E.; Quihui-Cota, L.; et al. Effect of Yucca baccata butanolic extract on the shelf life of chicken and development of an antimicrobial packaging for beef. Food Control 2021, 127, 108142. [Google Scholar] [CrossRef]
- Phothisarattana, D.; Wongphan, P.; Promhuad, K.; Promsorn, J.; Harnkarnsujarit, N. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids Surf. B Biointerfaces 2022, 214, 112472. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Pereira Santos, J.C.; Camilloto, G.P.; Miranda, A.L.; Druzian, J.I.; Guimarães, A.G. Development of active films poly (butylene adipate co-terephthalate)–PBAT incorporated with oregano essential oil and application in fish fillet preservation. Ind. Crop. Prod. 2017, 108, 388–397. [Google Scholar] [CrossRef]
- Laorenza, Y.; Harnkarnsujarit, N. Carvacrol, citral and α-terpineol essential oil incorporated biodegradable films for functional active packaging of Pacific white shrimp. Food Chem. 2021, 363, 130252. [Google Scholar] [CrossRef] [PubMed]
- Shruthy, R.; Jancy, S.; Preetha, R.; Ramesh, S.; Stephen, J.; Radhakrishnan, P. Cellulose nanoparticles synthesised from potato peel for the development of active packaging film for enhancement of shelf life of raw prawns (Penaeus monodon) during frozen storage. Int. J. Food Sci. Technol. 2020, 56, 3991–3999. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Pichardo, S.; Bermudez, J.M.; Baños, A.; Ariza, J.J.; Guillamón, E.; Aucejo, S.; Cameán, A.M. Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2018, 35, 783–792. [Google Scholar] [CrossRef]
- Jaballah, S.; Fhoula, I.; Boumaiza, M.; Najjari, A.; Mhajbi, N.; Boudabous, A.; Klibi, N.; Ouzari, H. Prevalence and risk factors of potential pathogenic Yersinia enterocolitica in Tunisian frozen ground beef through a shelf-life monitoring protocol validation. J. Food Process. Preserv. 2022, 46, e16360. [Google Scholar] [CrossRef]
- Reichel, J.; Kehrenberg, C.; Krischek, C. Inactivation of Yersinia enterocolitica and Brochothrix thermosphacta on pork by UV-C irradiation. Meat Sci. 2019, 158, 107909. [Google Scholar] [CrossRef]
- Abel, N.; Rotabakk, B.T.; Lerfall, J. Effect of heat treatment and packaging technology on the microbial load of lightly processed seafood. LWT 2019, 101, 123–129. [Google Scholar] [CrossRef]
- Ukuku, D.O.; Bari, M.L. Yersinia enterocolitica. In Food Microbiology; American Society for Microbiology: Washington, DC, USA, 2019; pp. 437–450. [Google Scholar]
- Cai, L.; Wang, Y.; Cao, A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J. Food Process Eng. 2020, 43, e13495. [Google Scholar] [CrossRef]
- Safaei, M.; Azad, R.R. Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging. J. Food Sci. Technol. 2020, 57, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Sganzerla, W.G.; da Rosa, C.G.; da Silva, A.P.G.; Ferrareze, J.P.; Azevedo, M.S.; Forster-Carneiro, T.; Nunes, M.R.; de Lima Veeck, A.P. Application in situ of biodegradable films produced with starch, citric pectin and functionalized with feijoa (Acca sellowiana (Berg) Burret) extracts: An effective proposal for food conservation. Int. J. Biol. Macromol. 2021, 189, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Shivangi, S.; Dorairaj, D.; Negi, P.S.; Shetty, N.P. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll. 2021, 121, 107046. [Google Scholar] [CrossRef]
- Bayani Bandpey, N.; Aroujalian, A.; Raisi, A.; Fazel, S. Surface coating of silver nanoparticles on polyethylene for fabrication of antimicrobial milk packaging films. Int. J. Dairy Technol. 2017, 70, 204–211. [Google Scholar] [CrossRef]
- Valipour Motlagh, N.; Aghazamani, J.; Gholami, R. Investigating the Effect of Nano-silver Contained Packaging on the Olivier Salad Shelf-life. Bio. Nano. Sci. 2021, 11, 838–847. [Google Scholar] [CrossRef]
- Gourama, H. Foodborne Pathogens. In Food Safety Engineering; Demirci, A., Feng, H., Krishnamurthy, K., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 25–49. [Google Scholar]
- Appleton, H. VIRUSES. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 6004–6011. [Google Scholar]
- Vasickova, P.; Pavlik, I.; Verani, M.; Carducci, A. Issues Concerning Survival of Viruses on Surfaces. Food Environ. Virol. 2010, 2, 24–34. [Google Scholar] [CrossRef]
- Yeargin, T.; Gibson, K.E. Key characteristics of foods with an elevated risk for viral enteropathogen contamination. J. Appl. Microbiol. 2019, 126, 996–1010. [Google Scholar] [CrossRef]
- Di Cola, G.; Fantilli, A.C.; Pisano, M.B.; Ré, V.E. Foodborne transmission of hepatitis A and hepatitis E viruses: A literature review. Int. J. Food Microbiol. 2021, 338, 108986. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, W.; Sánchez, G. Hepatitis A infections from food. J. Appl. Microbiol. 2020, 129, 1120–1132. [Google Scholar] [CrossRef]
- Bozkurt, H.; Phan-Thien, K.-Y.; van Ogtrop, F.; Bell, T.; McConchie, R. Outbreaks, occurrence, and control of norovirus and hepatitis a virus contamination in berries: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 116–138. [Google Scholar] [CrossRef]
- Gyawali, P.; Fletcher, G.C.; McCoubrey, D.-J.; Hewitt, J. Norovirus in shellfish: An overview of post-harvest treatments and their challenges. Food Control 2019, 99, 171–179. [Google Scholar] [CrossRef]
- Thornton, A.C.; Jennings-Conklin, K.S.; McCormick, M.I. Noroviruses: Agents in outbreaks of acute gastroenteritis. Disaster Manag. Response 2004, 2, 4–9. [Google Scholar] [CrossRef]
- Lee, A.; Grove, S. Virus Inactivation During Food Processing. In Viruses in Foods; Goyal, S.M., Cannon, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 421–447. [Google Scholar]
- Hirneisen, K.A.; Black, E.P.; Cascarino, J.L.; Fino, V.R.; Hoover, D.G.; Kniel, K.E. Viral Inactivation in Foods: A Review of Traditional and Novel Food-Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Azadi, E.; Hussain, C.M. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Curr. Opin. Colloid Interface Sci. 2021, 55, 101480. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Shahbaz, H.M.; Fatima, N.; Munir, S.; Holley, R.A. Food Safety during and after the Era of COVID-19 Pandemic. Front. Microbiol. 2020, 11, 1854. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Purohit, S.D.; Roy, S.; Ghosh, T.; Rhim, J.-W.; Han, S.S. Antiviral Biodegradable Food Packaging and Edible Coating Materials in the COVID-19 Era: A Mini-Review. Coatings 2022, 12, 577. [Google Scholar] [CrossRef]
- Oliveira, W.Q.; Azeredo, H.M.C.; Neri-Numa, I.A.; Pastore, G.M. Food packaging wastes amid the COVID-19 pandemic: Trends and challenges. Trends Food Sci. Technol. 2021, 116, 1195–1199. [Google Scholar] [CrossRef]
- Xue, X.; Ball, J.K.; Alexander, C.; Alexander, M.R. All Surfaces are not Equal in Contact Transmission of SARS-CoV-2. Matter 2020, 3, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021, 125, 108010. [Google Scholar] [CrossRef]
- Han, S.; Roy, P.K.; Hossain, I.; Byun, K.H.; Choi, C.; Ha, S.D. COVID-19 pandemic crisis and food safety: Implications and inactivation strategies. Trends Food Sci. Technol. 2021, 109, 25–36. [Google Scholar] [CrossRef]
- Baert, L.; Debevere, J.; Uyttendaele, M. The efficacy of preservation methods to inactivate foodborne viruses. Int. J. Food Microbiol. 2009, 131, 83–94. [Google Scholar] [CrossRef]
- Pogan, R.; Dülfer, J.; Uetrecht, C. Norovirus assembly and stability. Curr. Opin. Virol. 2018, 31, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll. 2019, 92, 74–85. [Google Scholar] [CrossRef]
- Fabra, M.J.; Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A. Antiviral and antioxidant properties of active alginate edible films containing phenolic extracts. Food Hydrocoll. 2018, 81, 96–103. [Google Scholar] [CrossRef]
- Falcó, I.; Flores-Meraz, P.L.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. Antiviral activity of alginate-oleic acid based coatings incorporating green tea extract on strawberries and raspberries. Food Hydrocoll. 2019, 87, 611–618. [Google Scholar] [CrossRef]
- Martínez-Abad, A.; Ocio, M.J.; Lagarón, J.M.; Sánchez, G. Evaluation of silver-infused polylactide films for inactivation of Salmonella and feline calicivirus in vitro and on fresh-cut vegetables. Int. J. Food Microbiol. 2013, 162, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102, 105595. [Google Scholar] [CrossRef]
- Park, K.; Sadeghi, K.; Panda, P.K.; Seo, J.; Seo, J. Ethylene vinyl acetate/low-density polyethylene/oyster shell powder composite films: Preparation, characterization, and antimicrobial properties for biomedical applications. J. Taiwan Inst. Chem. Eng. 2022, 134, 104301. [Google Scholar] [CrossRef]
- Kim, H.; Panda, P.K.; Sadeghi, K.; Lee, S.; Chung, C.; Park, Y.; Park, J.; Seo, J. Facile thermal and hydrolytic conversion of tannic acid: Enhancement of antimicrobial activity and biocompatibility for biomedical applications. Mater. Chem. Phys. 2022, 285, 126141. [Google Scholar] [CrossRef]
- Sharif, N.; Falcó, I.; Martínez-Abad, A.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. On the Use of Persian Gum for the Development of Antiviral Edible Coatings against Murine Norovirus of Interest in Blueberries. Polymers 2021, 13, 224. [Google Scholar] [CrossRef]
- Amankwaah, C.; Li, J.; Lee, J.; Pascall, M.A. Development of antiviral and bacteriostatic chitosan-based food packaging material with grape seed extract for murine norovirus, Escherichia coli and Listeria innocua control. Food Sci. Nutr. 2020, 8, 6174–6181. [Google Scholar] [CrossRef] [PubMed]
- Castro-Mayorga, J.L.; Randazzo, W.; Fabra, M.J.; Lagaron, J.M.; Aznar, R.; Sánchez, G. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT-Food Sci. Technol. 2017, 79, 503–510. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srisa, A.; Promhuad, K.; San, H.; Laorenza, Y.; Wongphan, P.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Tansin, K.; Harnkarnsujarit, N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers 2022, 14, 4042. https://doi.org/10.3390/polym14194042
Srisa A, Promhuad K, San H, Laorenza Y, Wongphan P, Wadaugsorn K, Sodsai J, Kaewpetch T, Tansin K, Harnkarnsujarit N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers. 2022; 14(19):4042. https://doi.org/10.3390/polym14194042
Chicago/Turabian StyleSrisa, Atcharawan, Khwanchat Promhuad, Horman San, Yeyen Laorenza, Phanwipa Wongphan, Kiattichai Wadaugsorn, Janenutch Sodsai, Thitiporn Kaewpetch, Kittichai Tansin, and Nathdanai Harnkarnsujarit. 2022. "Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era" Polymers 14, no. 19: 4042. https://doi.org/10.3390/polym14194042
APA StyleSrisa, A., Promhuad, K., San, H., Laorenza, Y., Wongphan, P., Wadaugsorn, K., Sodsai, J., Kaewpetch, T., Tansin, K., & Harnkarnsujarit, N. (2022). Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers, 14(19), 4042. https://doi.org/10.3390/polym14194042