Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. RPUF Manufacture
2.3. RPUF Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Członka, S.; Strąkowska, A.; Kairytė, A.; Kremensas, A. Nutmeg filler as a natural compound for the production of polyurethane composite foams with antibacterial and anti-aging properties. Polym. Test. 2020, 86, 106479. [Google Scholar] [CrossRef]
- Kairytė, A.; Kirpluks, M.; Ivdre, A.; Cabulis, U.; Vėjelis, S.; Balčiūnas, G. Paper waste sludge enhanced eco-efficient polyurethane foam composites: Physical-mechanical properties and microstructure. Polym. Compos. 2016, 39, 1852–1860. [Google Scholar] [CrossRef]
- Jonjaroen, V.; Ummartyotin, S.; Chittapun, S. Algal cellulose as a reinforcement in rigid polyurethane foam. Algal Res. 2020, 51, 102057. [Google Scholar] [CrossRef]
- Mahmood, N.; Yuan, Z.; Schmidt, J.; Xu, C. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review. Renew. Sustain. Energy Rev. 2016, 60, 317–329. [Google Scholar] [CrossRef]
- Akdogan, E.; Erdem, M. Improvement in physico-mechanical and structural properties of rigid polyurethane foam composites by the addition of sugar beet pulp as a reactive filler. J. Polym. Res. 2021, 28, 1–17. [Google Scholar] [CrossRef]
- Bryśkiewicz, A.; Zieleniewska, M.; Przyjemska, K.; Chojnacki, P.; Ryszkowska, J. Modification of flexible polyurethane foams by the addition of natural origin fillers. Polym. Degrad. Stab. 2016, 132, 32–40. [Google Scholar] [CrossRef]
- De Avila Delucis, R.; Magalhães, W.L.E.; Petzhold, C.L.; Amico, S.C. Forest-based resources as fillers in biobased polyurethane foams. J. Appl. Polym. Sci. 2018, 135, 45684. [Google Scholar] [CrossRef]
- Martins, L.; Zanini, N.; Pinheiro, L.; Mulinari, D. Valorization of Banana Peel Waste Used as Filler in Castor Oil Polyurethane Foam for Vegetal Oil Sorption. J. Nat. Fibers 2021, 18, 1–12. [Google Scholar] [CrossRef]
- de Luca Bossa, F.; Santillo, C.; Verdolotti, L.; Campaner, P.; Minigher, A.; Boggioni, L.; Losio, S.; Coccia, F.; Iannace, S.; Lama, G.C. Greener Nanocomposite Polyurethane Foam Based on Sustainable Polyol and Natural Fillers: Investigation of Chemico-Physical and Mechanical Properties. Materials 2020, 13, 211. [Google Scholar] [CrossRef]
- Gangoiti, M.V.; Peruzzo, P.J. Cellulose nanocrystal reinforced acylglycerol-based polyurethane foams. Express Polym. Lett. 2020, 14, 638–650. [Google Scholar] [CrossRef]
- Husainie, S.M.; Khattak, S.U.; Robinson, J.; Naguib, H.E. A Comparative Study on the Mechanical Properties of Different Natural Fiber Reinforced Free-Rise Polyurethane Foam Composites. Ind. Eng. Chem. Res. 2020, 59, 21745–21755. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, X.-M.; Wu, M.-Y.; Zhao, Y.-Y.; Yu, C. Effects of different catalysts on the structure and properties of polyurethane/water glass grouting materials. J. Appl. Polym. Sci. 2018, 135, 46460. [Google Scholar] [CrossRef]
- de Avila Delucis, E.R.; Kerche, E.F.; Gatto, D.A.; Magalhães Esteves, C.L.; Petzhold, C.L.; Campos Amico, S. Surface response and photodegradation performance of bio-based polyurethane-forest derivatives foam composites. Polym. Test. 2019, 80, 106102. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the USA. 2021. Available online: http://www.fao.org/faostat/en/#home (accessed on 4 June 2021).
- Pathak, P.; Mandavgane, S.; Kulkarni, B.D. Valorization of banana peel: A biorefinery approach. Rev. Chem. Eng. 2016, 32, 651–666. [Google Scholar] [CrossRef]
- Mandalari, G.; Bennett, R.N.; Bisignano, G.; Saija, A.; Dugo, G.; Curto, R.B.L.; Faulds, C.B.; Waldron, K.W. Characterization of Flavonoids and Pectins from Bergamot (Citrus bergamia Risso) Peel, a Major Byproduct of Essential Oil Extraction. J. Agric. Food Chem. 2006, 54, 197–203. [Google Scholar] [CrossRef]
- de Delucis, R.A.; Magalhães, W.L.E.; Petzhold, C.L.; Amico, S.C. Thermal and Combustion Features of Rigid Polyurethane Biofoams Filled with Four Forest-Based Wastes. Polym. Compos. 2018, 39, E1770–E1777. [Google Scholar] [CrossRef]
- ASTM D 1621; Standard Test Method for Compressive Properties of Rigid Cellular Plastics. American National Standards Institute: New York, NY, USA, 2000.
- ISO 2896—Rigid Cellular Plastics—Determination of Water Absorption. Available online: https://www.iso.org/standard/30408.html (accessed on 21 October 2022).
- Kabenge, I.; Omulo, G.; Banadda, N.; Seay, J.; Zziwa, A.; Kiggundu, N. Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. J. Sustain. Dev. 2018, 11, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Qu, L.; Rahimi, S.; Qian, J.; He, L.; He, Z.; Yi, S. Preparation and characterization of hydrophobic coatings on wood surfaces by a sol-gel method and post-aging heat treatment. Polym. Degrad. Stab. 2021, 183, 109429. [Google Scholar] [CrossRef]
- Domingos, I.; Ferreira, J.; Cruz-Lopes, L.; Esteves, B. Food and Bioproducts Processing.Polyurethane Foams from Liquefied Orange Peel Wastes. Food Bioprod. Process. 2019, 115, 223–229. [Google Scholar] [CrossRef]
- Oberoi, H.S.; Sandhu, S.K.; Vadlani, P.V. Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod. Process. 2011, 90, 257–265. [Google Scholar] [CrossRef]
- Stanzione, M.; Oliviero, M.; Cocca, M.; Errico, M.; Gentile, G.; Avella, M.; Lavorgna, M.; Buonocore, G.; Verdolotti, L. Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydr. Polym. 2020, 231, 115772. [Google Scholar] [CrossRef] [PubMed]
- Kerche, E.F.; Bock, D.N.; Delucis, R.D.A.; Magalhães, W.L.E.; Amico, S.C. Micro fibrillated cellulose reinforced bio-based rigid high-density polyurethane foams. Cellulose 2021, 28, 4313–4326. [Google Scholar] [CrossRef]
- Kairytė, A.; Członka, S.; Boris, R.; Vėjelis, S. Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles. Materials 2021, 14, 5475. [Google Scholar] [CrossRef] [PubMed]
- Septevani, A.A.; Evans, D.A.; Annamalai, P.K.; Martin, D.J. The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Ind. Crop. Prod. 2017, 107, 114–121. [Google Scholar] [CrossRef]
- Zieleniewska, M.; Leszczyński, M.K.; Szczepkowski, L.; Bryśkiewicz, A.; Krzyżowska, M.; Bień, K.; Ryszkowska, J. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym. Degrad. Stab. 2016, 132, 78–86. [Google Scholar] [CrossRef]
- Kerche, E.F.; Delucis, R.D.A.; Petzhold, C.L.; Amico, S.C. Rigid bio-based wood/polyurethane foam composites expanded under confinement. J. Cell. Plast. 2020, 57, 757–768. [Google Scholar] [CrossRef]
- Gu, R.; Sain, M.M.; Konar, S.K. A feasibility study of polyurethane composite foam with added hardwood pulp. Ind. Crop. Prod. 2013, 42, 273–279. [Google Scholar] [CrossRef]
Group | Cell Length (µm) | Cell Width (µm) | Anisotropy Index |
---|---|---|---|
RPUF | 630.12 (221.12 ab) | 615.16 (173.19 b) | 1.01 (0.095 a) |
RPUF/Banana peel (5%) | 569.14 (260.09 ab) | 516.98 (206.09 ab) | 1.09 (0.21 a) |
RPUF/Banana peel (10%) | 994.45 (238.90 bc) | 597.09 (201.89 ab) | 1.72 (0.28 b) |
RPUF/Banana peel (15%) | 956.87 (286.76 bc) | 637.98 (183.76 b) | 1.54 (0.40 b) |
RPUF/Bergamot peel (5%) | 340.10 (40.19 a) | 380.01 (59.67 ab) | 0.90 (0.11 a) |
RPUF/Bergamot peel (10%) | 653.01 (116.38 ab) | 297.92 (73.45 a) | 2.26 (0.44 c) |
RPUF/Bergamot peel (15%) | 1138.98 (339.83 c) | 527.56 (137.01 ab) | 2.14 (0.10 c) |
Group | T2% | T5% | T50% |
---|---|---|---|
RPUF | 70.12 | 88.14 | 237.41 |
Banana peel | 72.01 | 91.21 | 318.12 |
RPUF/Banana peel (5%) | 100.25 | 232.11 | 492.37 |
RPUF/Banana peel (10%) | 86.93 | 226.81 | 497.67 |
RPUF/Banana peel (15%) | 87.10 | 197.74 | 508.10 |
Bergamot peel | 70.86 | 93.94 | 295.21 |
RPUF/Bergamot peel (5%) | 80.09 | 109.16 | 312.48 |
RPUF/Bergamot peel (10%) | 73.25 | 95.76 | 302.56 |
PU/Bergamot peel (15%) | 87.45 | 217.20 | 393.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, A.P.; Otoni, C.G.; Missio, A.L.; Amico, S.C.; Delucis, R.d.A. Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels. Polymers 2022, 14, 4526. https://doi.org/10.3390/polym14214526
Acosta AP, Otoni CG, Missio AL, Amico SC, Delucis RdA. Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels. Polymers. 2022; 14(21):4526. https://doi.org/10.3390/polym14214526
Chicago/Turabian StyleAcosta, Andrey Pereira, Caio Gomide Otoni, André Luiz Missio, Sandro Campos Amico, and Rafael de Avila Delucis. 2022. "Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels" Polymers 14, no. 21: 4526. https://doi.org/10.3390/polym14214526
APA StyleAcosta, A. P., Otoni, C. G., Missio, A. L., Amico, S. C., & Delucis, R. d. A. (2022). Rigid Polyurethane Biofoams Filled with Chemically Compatible Fruit Peels. Polymers, 14(21), 4526. https://doi.org/10.3390/polym14214526