Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Epoxy Resin
2.1.2. Kaolin Clay
2.1.3. ZnO-Nanoparticles
2.2. Samples Preparation
2.3. Attenuation Factors Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeed, A.; Abolaban, F. Spectroscopic study of the effect of low dose fast neutrons on the hemoglobin structure. Spectrochim. Acta Part A 2021, 261, 120082. [Google Scholar] [CrossRef] [PubMed]
- Akman, F.; Kaçal, M.R.; Polat, H.; Aktas, G.; Gultekin, A.; Agar, O. A comparative study on the nuclear shielding properties of BiBr3 and PbSO4 incorporated composites. J. Phys. Chem. Solids 2021, 152, 109978. [Google Scholar] [CrossRef]
- Křesálek, V.; Mikuličová, M. Luminescence spectroscopy as a tool for testing of cure kinetics of epoxy resins. Polym. Test. 2020, 86, 106496. [Google Scholar] [CrossRef]
- Canel, A.; Korkut, H.; Korkut, T. Improving neutron and gamma flexible shielding by adding medium-heavy metal powder to epoxy based composite materials. Radiat. Phys. Chem. 2019, 158, 13–16. [Google Scholar] [CrossRef]
- Karabul, Y.; İçelli, O. The assessment of usage of epoxy-based micro and nano-structured composites enriched with Bi2O3 and WO3 particles for radiation shielding. Results Phys. 2021, 26, 104423. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Li, X.; Zhang, Z. Preparation of mesoporous zinc ferrite flame retardant with different scales and its performance in epoxy resin. Polym. Test. 2022, 110, 107549. [Google Scholar] [CrossRef]
- Rybak, A. Functional polymer composite with core-shell ceramic filler: II. Rheology, thermal, mechanical, and dielectric properties. Polymers 2021, 13, 2161. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Korkut, T.; Umaç, Z.I.; Aygün, B.; Karabulut, A.; Yapıcı, S.; Şahin, R. Neutron equivalent dose rate measurements of gypsum-waste tire rubber layered structures. Int. J. Polym. Anal. Charact. 2013, 18, 423–429. [Google Scholar] [CrossRef]
- Haque, M.M.; Khan, A.; Umar, K.; Mir, N.A.; Muneer, M.; Harada, T.; Matsumura, M. Synthesis, Characterization and Photocatalytic Activity of Visible Light Induced Ni-Doped TiO2. Energy Environ. Focus 2013, 2, 73–78. [Google Scholar] [CrossRef]
- Alotaibi, K.M.; Almethen, A.A.; Beagan, A.M.; Al-Swaidan, H.M.; Ahmad, A.; Bhawani, S.A.; Alswieleh, A.M. Quaternization of Poly(2-diethyl aminoethyl methacrylate) Brush-Grafted Magnetic Mesoporous Nanoparticles Using 2-Iodoethanol for Removing Anionic Dyes. Appl. Sci. 2021, 11, 10451. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Soares, N.F.F.; Teófilo, R.F.; Coimbra, J.S.R.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; Andrade, N.J.; Medeiros, E.A.A. Medeiros, Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.A.; Sodano, H.A. Enhanced interfacial strength and UV shielding of aramid fiber composites through ZnO nanoparticle sizing. ACS Appl. Mater. Interface 2016, 8, 33963–33971. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Sarwar, N.; Ashraf1, M.; Mohsin, M.; Rehman, M.; Younus, A.; Javid, A.; Iqbal, K.; Riaz, S. Multifunctional formaldehyde free finishing of cotton by using metal oxide nanoparticles and ecofriendly cross-linkers. Fiber Polym. 2019, 20, 2326–2333. [Google Scholar] [CrossRef]
- Xu, W.; Xu, L.; Pan, H.; Wang, L.; Shen, Y. Superamphiphobic cotton fabric with photocatalysis and ultraviolet shielding property based on hierarchical ZnO/halloysite nanotubes hybrid particles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 129995. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace slag as binder. Mater. Res. 2011, 14, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, R.; Balakumar, C.; Ahammed, H.A.M.; Jayakumar, S.; Vaideki, K.; Rajesh, E.M. Use of zinc oxide nano particles for production of antimicrobial textiles. Int. J. Eng. Sci. 2010, 2, 202–208. [Google Scholar]
- Al-Hadeethi, Y.; Sayyed, M.I.; Barasheed, A.Z.; Elsaf, M.A.M. Preparation and radiation attenuation properties of ceramic ball clay enhanced with micro and nano ZnO particles. J. Mater. Res. Technol. 2022, 17, 223–233. [Google Scholar] [CrossRef]
- Noor Azman, N.Z.; Siddiqui, S.A.; Hart, R.; Low, I.M. Effect of particle size, filler loadings and X-ray tube voltage on the transmitted X-ray transmission in tungsten oxide—Epoxy composites. Appl. Radiat. Isot. 2013, 71, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Adagunodo, T.A.; Hammed, O.S.; Usikalu, M.R.; Ayara, W.A.; Ravisankar, R. Data on the radiometric survey over a kaolinitic terrain in Dahomey basin, Nigeria. Data Brief 2018, 18, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Kacal, M.R.; Akman, F.; Sayyed, M.I. Investigation of Radiation Shielding Properties Forsome Ceramics. Radiochim. Acta 2018, 107, 179–191. [Google Scholar] [CrossRef]
- Echeweozo, E.O.; Asiegbu, A.D.; Efurumibe, E.L. Investigation of kaolin—Granite composite bricks for gamma radiation shielding. Int. J. Adv. Nucl. React. Des. Technol. 2021, 3, 194–199. [Google Scholar] [CrossRef]
- Echeweozo, E.O.; Igwesi, D.I. Investigation of gamma shielding and liquid permeability properties of kaolin for liquid radioactive waste management. Appl. Radiat. Isot. 2021, 176, 109908. [Google Scholar] [CrossRef] [PubMed]
- Almatari, M.; Koraim, Y.; Saleh, I.H.; Sayyed, M.I.; Khandaker, M.U.; Elsafi, M. Investigation of the photon shielding capability of kaolin clay added with micro and nanoparticles of Bi2O3. Radiat. Phys. Chem. 2022, 200, 110191. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Sayyed, M.I.; Mahmoud, K.A.; Almuqrin, A.A.H.; Kumar, A.; Khandaker, M.U.; Elsafi, M. Evaluation of radiation shielding characteristics of B2O3–K2O–Li2O–HMO (HMO = TeO2/SrO/PbO/Bi2O3) glass system: A simulation study using MCNP5 code. Radiat. Phys. Chem. 2022, 200, 110172. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Sayyed, M.I.; Al-Hadeethi, Y.; Kumar, A.; Elsafi, M.; Mahmoud, K.A.; Khandaker, M.U.; Bradley, A.D. A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiat. Phys. Chem. 2021, 188, 109645. [Google Scholar] [CrossRef]
- D’Souza, A.N.; Sayyed, M.I.; Karunakara, N.; Al-Ghamdi, H.; Almuqrin, A.H.; Elsafi, M.; Khandaker, M.U.; Kamath, S.D. TeO2 SiO2–B2O3 glasses doped with CeO2 for gamma radiation shielding and dosimetry application. Radiat. Phys. Chem. 2022, 200, 110233. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Alrashedi, M.F.; Almuqrin, A.H.; Elsafi, M. Recycling and optimizing waste lab glass with Bi2O3 nanoparticles to use as a transparent shield for photons. J. Mater. Res. Technol. 2022, 17, 2073–2083. [Google Scholar] [CrossRef]
- Elsafi, M.; Alzahrani, J.S.; Abbas, M.I.; Gouda, M.M.; Thabet, A.A.; Badawi, M.S.; El-Khatib, A.M. Geant4 Tracks of NaI Cubic Detector Peak Efficiency, Including Coincidence Summing Correction for Rectangular Sources. Nucl. Sci. Eng. 2021, 195, 1008–1016. [Google Scholar] [CrossRef]
- Hannachi, E.; Sayyed, M.I.; Slimani, Y.; Elsafi, M. Experimental investigation on the physical properties and radiation shielding efficiency of YBa2Cu3Oy/M@M3O4 (M= Co, Mn) ceramic composites. J. Alloy. Compd. 2022, 904, 164056. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I.; Barasheed, A.Z.; Ahmed, M.; Elsafi, M. Fabrication of Lead Free Borate Glasses Modified by Bismuth Oxide for Gamma Ray Protection Applications. Materials 2022, 15, 789. [Google Scholar] [CrossRef] [PubMed]
- Hannachi, E.; Sayyed, M.I.; Slimani, Y.; Almessiere, M.A.; Baykal, A.; Elsafi, M. Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. J. Alloy. Compd. 2022, 899, 163173. [Google Scholar] [CrossRef]
- El-Khatib, A.M.; Elsafi, M.; Almutiri, M.N.; Mahmoud, R.M.M.; Alzahrani, J.S.; Sayyed, M.I.; Abbas, M.I. Enhancement of Bentonite Materials with Cement for Gamma-Ray Shielding Capability. Materials 2021, 14, 4697. [Google Scholar] [CrossRef]
- Abbas, M.I.; El-Khatib, A.M.; Dib, M.F.; Mustafa, H.E.; Sayyed, M.I.; Elsafi, M. The Influence of Bi2O3 Nanoparticle Content on the γ-ray Interaction Parameters of Silicon Rubber. Polymers 2022, 14, 1048. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Yasmin, S.; Almousa, N.; Elsafi, M. Shielding Properties of Epoxy Matrix Composites Reinforced with MgO Micro- and Nanoparticles. Materials 2022, 15, 6201. [Google Scholar] [CrossRef]
- El-Nahal, M.A.; Elsafi, M.; Sayyed, M.I.; Khandaker, M.U.; Osman, H.; Elesawy, B.H.; Saleh, I.H.; Abbas, M.I. Understanding the Effect of Introducing Micro- and Nanoparticle Bismuth Oxide (Bi2O3) on the Gamma Ray Shielding Performance of Novel Concrete. Materials 2021, 14, 6487. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.; Hemily, H.M.; Saleh, I.H.; Ghataas, Z.F.; Abdel-Halim, A.A.; Sayyed, M.I.; Yasmin, S.; Almuqrin, A.H.; Elsafi, M. Impact of WO3-Nanoparticles on Silicone Rubber for Radiation Protection Efficiency. Materials 2022, 15, 5706. [Google Scholar] [CrossRef]
- Almuqrin, A.H.; Sayyed, M.I.; Elsafi, M.; Khandaker, M.U. Comparison of radiation shielding ability of Bi2O3 micro and nanoparticles for radiation shields. Radiat. Phys. Chem. 2022, 200, 110170. [Google Scholar] [CrossRef]
Density | 1.05 (g/cm3) |
Compressive Strength | 93 (N/mm2) |
Tensile Strength | 26 (N/mm2) |
Flexural Strength | 63 (N/mm2) |
Oxide | Percentages (%) |
---|---|
MgO | 2.99 |
Al2O3 | 35.53 |
SiO2 | 55.26 |
CaO | 1.24 |
TiO2 | 2.76 |
Fe2O3 | 2.22 |
Codes | Compositions (wt, %) | Density (g/cm3) | ||
---|---|---|---|---|
Epoxy | Kaolin Clay | ZnO-Nanoparticles | ||
EKZ-0 | 90 | 10 | 0 | 1.237 |
EKZ-5 | 80 | 15 | 5 | 1.325 |
EKZ-10 | 70 | 20 | 10 | 1.425 |
EKZ-20 | 60 | 20 | 20 | 1.577 |
EKZ-25 | 50 | 25 | 25 | 1.721 |
EKZ-35 | 40 | 25 | 35 | 1.947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.I.; Alahmadi, A.H.; Elsafi, M.; Alqahtani, S.A.; Yasmin, S.; Sayyed, M.I.; Gouda, M.M.; El-Khatib, A.M. Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites. Polymers 2022, 14, 4801. https://doi.org/10.3390/polym14224801
Abbas MI, Alahmadi AH, Elsafi M, Alqahtani SA, Yasmin S, Sayyed MI, Gouda MM, El-Khatib AM. Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites. Polymers. 2022; 14(22):4801. https://doi.org/10.3390/polym14224801
Chicago/Turabian StyleAbbas, Mahmoud I., Abdullah H. Alahmadi, Mohamed Elsafi, Sultan A. Alqahtani, Sabina Yasmin, M. I. Sayyed, Mona M. Gouda, and Ahmed M. El-Khatib. 2022. "Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites" Polymers 14, no. 22: 4801. https://doi.org/10.3390/polym14224801
APA StyleAbbas, M. I., Alahmadi, A. H., Elsafi, M., Alqahtani, S. A., Yasmin, S., Sayyed, M. I., Gouda, M. M., & El-Khatib, A. M. (2022). Effect of Kaolin Clay and ZnO-Nanoparticles on the Radiation Shielding Properties of Epoxy Resin Composites. Polymers, 14(22), 4801. https://doi.org/10.3390/polym14224801