Preparation and Performance of Water-Active Polyurethane Grouting Material in Engineering: A Review
Abstract
:1. Introduction
2. Water Content Effect on the Properties of Polyurethane Foams
2.1. Effect of Water Content on the Density of Polyurethane Foams
2.2. Effect of Water Content on the Mechanical Properties of Polyurethane Foams
2.3. Effect of Water Content on Gelation Time, Cell Morphology, and Stability of Polyurethane Foams
3. The Diffusion of Polyurethane Grout in Water Environment
3.1. Experimental Studies of Polyurethane Grout Diffusion
3.2. Diffusion Mechanism of Polyurethane Grout
4. Effect of Water Environment on the Polyurethane Foams Material’s Properties
4.1. Effect of Water Environment on Moisture Absorption Rate and Volume Shrinkage of Polyurethane Foams
4.2. Effect of Water Environment on Mechanical Properties of Polyurethane Foams
4.3. Effect of Water Environment on Permeability of Polyurethane Foams
4.4. Moisture Absorption Mechanism of Polyurethane Foams
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Z.; Li, Q.T.; Yan, Z.; Liao, G.F.; Zhang, B.X.; Yu, Y.M.; Yi, C.F.; Xu, Z.S. Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties. Prog. Org. Coat. 2019, 127, 194–201. [Google Scholar] [CrossRef]
- Wu, G.M.; Di, L.; Jian, C.; Liu, G.F.; Kong, Z.W. Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog. Org. Coat. 2019, 127, 80–87. [Google Scholar] [CrossRef]
- Mwema, M.F.; Njuguna, J.; Muchiri, P.; Karuri, N.; Herzog, T.M.; Dimitrov, K. Determination of Thermo-Mechanical Properties of Recycled Polyurethane from Glycolysis Polyol. Int. J. Manuf. Mater. Mech. Eng. IJMMME 2021, 11, 75–87. [Google Scholar] [CrossRef]
- Naudts, A. Irreversible changes in the grouting industry caused by polyurethane grouting: An overview of 30 years of polyurethane grouting. Geotech. Spec. Publ. 2003, 120, 1266–1280. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J.L.; Ashby, F.M. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997; p. 510. [Google Scholar]
- Han, Q.; Zhang, P.; Wu, J.; Jing, Y.; Zhang, D.; Zhang, T. Comprehensive review of the properties of fly ash-based geopolymer with additive of nano-SiO2. Nanotechnol. Rev. 2022, 11, 1478–1498. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Wang, T. Influencing factors analysis and optimized prediction model for rheology and flowability of nano-SiO2 and PVA fiber reinforced alkali-activated composites. J. Clean Prod. 2022, 366, 132988. [Google Scholar] [CrossRef]
- Zhang, P.; Kang, L.; Zheng, Y.; Zhang, T.; Zhang, B. Influence of SiO2 /Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J. Mater. Res. Technol. 2022, 18, 3553–3563. [Google Scholar] [CrossRef]
- Shi, M.S. Research on the Characteristics of Polymer Injection Paddle Material and The Mechanism of Directional Splitting Paddle Injection for Dyke. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2011. [Google Scholar]
- Shi, M.; Yu, D.; Wang, F. Bending properties of a polymer grout. J. Mater. Sci. Eng. 2010, 28, 514–517. [Google Scholar] [CrossRef]
- Wang, F.; Shi, M.; Guo, C.; Chen, H. Polymers Anchor Grouting Method. CN Patent 103215952A, 24 July 2013. [Google Scholar]
- Bian, X.; Chen, C.; Wang, F. Experimental Study on Dynamic Performance and Long-Term Durability of High-Speed Railway Subgrade Rehabilitated by Polymer Injection Technology Polymers Anchor Grouting Method. Chin. J. Geotech. Eng. 2014, 36, 562–568. [Google Scholar] [CrossRef]
- Xu, J.; Hu, H.; Zhong, Y.H. Numerical Analysis on Underground Pipe Settlement and Vacancy R Epairing with Polymer Injection. Chin. J. Undergr. Space Eng. 2017, 13, 1165–1172. [Google Scholar]
- Guo, C.; Wang, F. Research on Polymer Injection Technology for Quick Tunnel Repairment. In Proceedings of the GeoHunan International Conference, Changsha, China, 3–6 August 2009; pp. 110–117. [Google Scholar] [CrossRef]
- Kuang, R.; Zang, F.Y.; Zhang, A.Q.; Xie, H. Synthetic routes to flame retardant isocyanurate of rigid polyurethane foams. IOP Conf. Ser. Mater. Sci. Eng. 2019, 479, 012105. [Google Scholar] [CrossRef]
- Song, B.; Wei, Y.X.; Xie, Y.; Tong, J. Preparation of water-blown rigid polyurethane foams. Polyurethane Ind. 2002, 17, 32–34. [Google Scholar]
- Han, H.J.; Ding, X.J.; Zhang, L.J.; Zhang, D.Q. Research on the effect of H2O on the properties of the rigid polyurethane foam. Eng. Plast. Appl. 2011, 39, 18–20. [Google Scholar] [CrossRef]
- Li, X.B.; Cao, H.B.; Zhang, Y. Structures and physical properties of rigid polyurethane foams with water as the sole blowing agent. Sci. China Ser. B Chem. 2006, 49, 363–370. [Google Scholar] [CrossRef]
- Du, F.; Xiang, S.L.; Zhou, T.; Zhou, W.W.; Zhang, W.G.; Duan, J.W. Effects of chemical foaming agent on properties of oil-absorbing polyurethane foam. Plastics 2014, 43, 71–74. [Google Scholar]
- Song, W.S.; Li, H.; Zheng, Z.; Zheng, Y.L.; Li, P. Effects of water content on the process, properties and microstructure of polyurethane microcellular elastomers. China Elastomer. 2009, 19, 1–4. [Google Scholar] [CrossRef]
- Han, J.; Ren, H.T.; Li, T.T.; Liu, B.B.; Lou, J.W. Influence of water content on the properties of sandwich polyurethane foam. China Plast. 2018, 32, 20–25. [Google Scholar] [CrossRef]
- Wang, Z.J.; Ma, C.Y.; Zhang, C.Y.; Li, X.H.; Duan, S.L.; Chen, M.J. Study on all water foaming of rigid polyurethane foam and design of high-performance formula. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 22082. [Google Scholar] [CrossRef]
- An, M.; Chen, X.G.; Hou, G.X.; Sang, X.M. Effect of water on cellular structure and properties of rigid polyurethane-imide foams. J. Mater. Eng. 2013, 3, 39–44. [Google Scholar] [CrossRef]
- Li, X.; Cao, H.; Zhang, Y. Progress of Research on Rigid Polyurethane Foams with Water as the Sole Foaming Agent. China Plast. 2004, 18, 1–4. [Google Scholar] [CrossRef]
- Chen, T.; Du, H.J.; Mi, Y.; Gao, Z.H. Effect of water levels on morphologies and mechanical properties of water-blown polyurethane. Polym. Mater. Sci. Eng. 2012, 28, 67–71. [Google Scholar] [CrossRef]
- Liang, J.C.; Lin, L.; Li, Y.; Ma, Y.; Yang, F.; Song, P. Effect of dosage of water on the characteristics of water blown polyurethane foam. Polym. Mater. Sci. Eng. 2010, 26, 40–43. [Google Scholar] [CrossRef]
- Ye, H.M.; Hou, K.; Zhou, Q. Improve the Thermal and Mechanical Properties of Poly(L-lactide) by Forming Nanocomposites with Pristine Vermiculite. Chin. J. Polym. Sci. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Zhao, X. Study on A Kind of Polyether Polyol and Polyurethane Waterproof Grouting Material Prepared with It. Chem. Propellants Polym. Mater. 2021, 19, 46–51. [Google Scholar] [CrossRef]
- Li, C.L.; Jiang, D.Y.; Jiang, X.X. Preparation and properties of solvent–free polyurethane grouting material. China Elastomer. 2021, 31, 55–58. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.L.; Han, J.L. Discussion of the gel time of water-soluble polyurethane grouting material. Mod. Plast. Process. Appl. 2017, 29, 27–29. [Google Scholar] [CrossRef]
- Ioannis, T.; Georgia, S.; Eleni, P.; Costas, P. Foaming of polymers with supercritical fluids: A thermodynamic investigation. J. Supercrit. Fluids 2016, 110, 240–250. [Google Scholar] [CrossRef]
- Nie, Y.N.; Yu, F.; Ye, S.J.; Gu, K.P.; Wang, C.Q. Preparation and application of two components polyurethane grouting for water plugging and reinforcement. Resin 2018, 33, 38–41. [Google Scholar] [CrossRef]
- Wei, H.L.; Li, H.L.; Han, J.L.; Zhang, T.; Wei, K. Preparation of one-component water-soluble polyurethane plugging grouting material. China Adhes. 2016, 25, 25–28. [Google Scholar]
- Luo, Z.; Tao, C.; Han, X.X.; Bao, J.J.; Cheng, Q.; Huang, Y.P.; Xu, G.W. Effect of water content on the aggregation and adhesion properties of waterborne polyurethane. J. Chem. Eng. Chin. 2017, 31, 641–649. [Google Scholar] [CrossRef]
- Zheng, X.G.; Liu, Y.X.; Zhang, J.Y.; Ren, L.; Wang, W.M. Effect of Cellular Structure on Mechanical Properties of Polyurethane Foam Curing Materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019, 34, 1371–1375. [Google Scholar] [CrossRef]
- Francesco, D.; Giorgio, B.; Francesco, B.; Sara, S.; Alessandra, R. Experimental assessment of the water content influence on thermo-acoustic performance of building insulation materials. Constr. Build. Mater. 2018, 158, 264–274. [Google Scholar] [CrossRef]
- Lu, H.; Wei, M.H.; Fu, Y.Q.; Leng, J. Quantitative separation of the influence of hydrogen bonding of ethanol/water mixture on the shape recovery behavior of polyurethane shape memory polymer. Smart Mater. Struct. 2014, 23, 311–320. [Google Scholar] [CrossRef]
- Wei, X.W.; Li, M.; Zhou, X.Y.; Wang, Y.; Li, J.M. Influence of humidity on viscoelastic behavior of glass reinforced rigid polyurethane syntactic foam. Acta Mater. Compos. Sin. 2013, 30, 218–222. [Google Scholar] [CrossRef]
- Yang, J.B.; Zhang, W.R. Study on the humidity expansion property of PURF. Polyurethane Ind. 2009, 24, 9–12. [Google Scholar] [CrossRef]
- Zhan, M.S.; Xu, X.Q.; Pan, L.Y. Effect of water blowing agent on structures and properties of polyimide foams. J. Aeronaut. Mater. 2010, 30, 55–60. [Google Scholar] [CrossRef]
- Jiang, Y.X.; Cheng, X.; Wu, Y.; Du, Z.L. Effects of trace water on the structure and dissolving capacity of polyurethane prepolymer. J. Funct. Mater. 2013, 44, 1538–1542. [Google Scholar] [CrossRef]
- Yuan, J.Q.; Chen, W.Z.; Tan, X.J.; Yang, D.S.; Zhang, Q.Y. New Method to Evaluate Antiwashout Performance of Grout for Preventing Water-Inrush Disasters. Int. J. Geomech. 2020, 20, 6019021. [Google Scholar] [CrossRef]
- Buzzi, O.; Fityus, S.; Sasaki, Y.; Sloan, S. Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mech. Mater. 2008, 40, 1012–1021. [Google Scholar] [CrossRef]
- Guo, C.; Hu, D.; Wang, F. Diffusion Behavior of Polymer Grouting Materials in Sand and Gravel. Soil Mech. Found. Eng. 2021, 57, 440–444. [Google Scholar] [CrossRef]
- Li, X.L.; Hao, M.M.; Zhong, Y.H.; Zhang, B.; Wang, F.M.; Wang, L.B. Experimental study on the diffusion characteristics of polyurethane grout in a fracture. Constr. Build. Mater. 2020, 273, 121711. [Google Scholar] [CrossRef]
- Hao, M.M.; Wang, F.M.; Li, X.L.; Zhang, B.; Zhong, Y.H. Numerical and Experimental Studies of Diffusion Law of Grouting with Expansible Polymer. J. Mater. Civ. Eng. 2018, 30, 4017290. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, H.L.; Gao, Y. Mechanism of grout diffusion in single flat fracture with dynamic water. J. Basic Sci. Eng. 2022, 30, 154–165. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, P.; Li, Z.; Wu, S.; Zhao, Z. Experimental-numerical investigation on grout diffusion and washout in rough rock fractures under flowing water. Comput. Geotech. 2020, 126, 103717. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, J.G.; Huang, K.; Li, F.Y. Experimental Study on Dynamic Water Grouting of Modified Water-Soluble Polyurethane. KSCE J. Civ. Eng. 2019, 23, 3897–3906. [Google Scholar] [CrossRef]
- Sui, W.H.; Liu, J.Y.; Hu, W.; Qi, J.F.; Zhan, K.Y. Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water. Tunn. Undergr. Space Technol. 2015, 50, 239–249. [Google Scholar] [CrossRef]
- Hang, B.L.; Tae-Min, O.; Eui-Seob, P.; Jong-Won, L.; Hyung-Mok, K. Factors affecting waterproof efficiency of grouting in single rock fracture. Geomech. Eng. 2017, 12, 771–783. [Google Scholar] [CrossRef]
- Yu, W.S.; Li, P.; Zhang, X.; Wang, Q. Model test research on hydrodynamic grouting for single fracture with variable inclinations. Rock Soil Mech. 2014, 35, 2137–2143. [Google Scholar] [CrossRef]
- Li, X.L.; Zhong, Y.H.; Zhang, B.; Zhao, P.; Hao, M.M. Model Test Device and Test Method of Polymer Fissure Grouting under Hydrodynamic Pressure. CN Patent 109342274A, 15 February 2019. [Google Scholar]
- Zhang, X.J.; Wang, C.J.; Tian, H.; Shi, M.S. Interface Bonding Properties between Nonwater Reaction Polyurethane Polymer Materials and Concrete. Adv. Mater. Sci. Eng. 2021, 23, 3897–3906. [Google Scholar] [CrossRef]
- Hao, M.M.; Li, X.L.; Zhong, Y.H.; Bei, Z.; Wang, F.M. Experimental Study of Polyurethane Grout Diffusion in a Water-Bearing Fracture. J. Mater. Civ. Eng. 2021, 33, 4020485. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, Z.Q.; Yu, R.X.; Zhu, Y.Y. Penetration grouting mechanism of Binham fluid considering diffusion paths. Rock Soil Mech. 2022, 43, 385–394. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zhan, K.Y.; Gao, Y.; Wang, W.X. Comparative experimental investigation of chemical grouting into a fracture with flowing and static water. Min. Sci. Technol. 2010, 21, 201–205. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, J.Q.; He, X.R. Computerized simulation of crack grouting in rock mass. Chin. J. Geotech. Eng. 1999, 21, 727–730. [Google Scholar] [CrossRef]
- Huang, K. Experimental Study on the Mechanism of Water Plugging by Organic Grouting Material under the Condition of Engineering Water Burst. Master’s Thesis, Wuhan Light Industry University, Wuhan, China, 2018. [Google Scholar]
- Tetsuo, M.; Hiroyuki, H. Prediction of flow patterns in the polyurethane foaming process by numerical simulation considering foam expansion. Polym. Eng. Sci. 2003, 43, 1603–1612. [Google Scholar] [CrossRef]
- Hao, M.M.; Li, X.L.; Zhong, Y.H.; Zhang, B.; Jin, D.; Chen, G.G. Numerical simulation of polymer grout diffusion in a single fracture. AIP Adv. 2018, 8, 105329. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Wang, F.M.; Zhong, Y.H.; Guo, C.C.; Zhang, B. Simulation on flowing and diffusing of expansible grouting material of polymer in two-dimensional fractures. Chin. J. Rock Mech. Eng. 2015, 34, 1188–1197. [Google Scholar] [CrossRef]
- Gupta, N.; Woldesenbet, E. Hygrothermal studies on syntactic foams and compressive strength determination. Compos. Struct. 2003, 61, 311–320. [Google Scholar] [CrossRef]
- Tagliavia, G.; Porfiri, M.; Gupta, N. Influence of moisture absorption on flexural properties of syntactic foams. Compos. Part B 2012, 43, 115–123. [Google Scholar] [CrossRef]
- Gu, L.H.; Wang, Y.L.; Wan, X.F. Study on moisture absorption behavior of MC nylon/carbon fiber composites. Eng. Plast. Appl. 2005, 33, 45–48. [Google Scholar] [CrossRef]
- Sakdirat, K.; Chayut, N.; Mayorkinos, P.; Clive, R. Wet/dry influence on behaviors of closed-cell polymeric cross-linked foams under static, dynamic and impact loads. Constr. Build. Mater. 2018, 187, 1092–1102. [Google Scholar] [CrossRef]
- Sadler, R.L.; Sharpe, M.; Panduranga, R.; Shivakumar, K. Water immersion effect on swelling and compression properties of Eco-Core, PVC foam and balsa wood. Compos. Struct. 2009, 90, 330–336. [Google Scholar] [CrossRef]
- Siriruk, A.; Penumadu, D.; Sharma, A. Effects of Seawater and Low Temperatures on Polymeric Foam Core Material. Exp. Mech. 2012, 52, 25–36. [Google Scholar] [CrossRef]
- May-Pat, A.; Avilés, F. Long term water uptake of a low density polyvinyl chloride foam and its effect on the foam microstructure and mechanical properties. Mater. Des. 2014, 57, 728–735. [Google Scholar] [CrossRef]
- Mei, Q.L.; Du, M.; Huang, Z.X.; Wang, F.L. Research on the Behavior of Reinforced PolyurethaneFoam Composite Under Deep water. J. Wuhan Univ. Technol. 2007, 29, 12–15. [Google Scholar] [CrossRef]
- Opreni, A.; Mariani, S.; Dossi, M.; Brennan, M. Combined effects of temperature and humidity on the mechanical properties of polyurethane foams. J. Rheol. 2020, 64, 161–176. [Google Scholar] [CrossRef]
- Launay, A.; Marco, Y.; Maitournam, M.H.; Raoult, I. Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech. Mater. 2013, 56, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Y.F.; Zou, H.L. The preparation and property of two-component water swelling polyurethane grouting materials. Polyurethane Ind. 2010, 25, 17–20. [Google Scholar] [CrossRef]
- Sabbahi, A.; Vergnaud, J.M. Absorption of water at 100°C by polyurethane foam. Eur. Polym. J. 1991, 27, 845–850. [Google Scholar] [CrossRef]
- Sabbahi, A.; Vergnaud, J.M. Absorption of water by polyurethane foam. modelling and experiments. Eur. Polym. J. 1993, 29, 1243–1246. [Google Scholar] [CrossRef]
- Sabbahi, A.; Bouzon, J.; Vergnaud, J.M. Absorption-desorption history of water at 100° by polyurethane foam. Eur. Polym. J. 1994, 30, 657–660. [Google Scholar] [CrossRef]
- Sabbahi, A.; Bouzon, J.; Vergnaud, J.M. Modelling of the drying process of polyurethane foam. Eur. Polym. J. 1992, 28, 305–309. [Google Scholar] [CrossRef]
- Li, J.M.; Zhou, X.Y.; Yan, X.L. Moisture absorption effect study of reinforced rigid polyurethane foams. China Plast. Ind. 2009, 37, 54–56. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Du, M.R.; Fang, H.Y.; Zhang, C.; Li, M.J.; Shi, M.S. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression. Constr. Build. Mater. 2021, 301, 124092. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Zhong, Y.H.; Li, X.L.; Hao, M.M.; Sang, X.W.; Wang, X.L.; Liu, J.Y. Research on Fatigue Model of Semi-Rigid Base Asphalt Pavement before and after Polymer Grouting. Adv. Civ. Eng. 2021, 2021, 6658943. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, H.; Yang, L.; Su, S.Q. Study on Water Absorption and Thermal Conductivity of Tunnel Insulation Materials in a Cold Region under Freeze-Thaw Conditions. Adv. Mater. Sci. Eng. 2020, 2020, 5301968. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.L.; Zhong, Y.H.; Li, X.L.; Zhang, Y.; Li, S.T. Damage characteristics and microstructures of low-exothermic polymer grouting materials under F–T cycles. Constr. Build. Mater. 2021, 294, 123390. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.; Zhong, Y.H.; Li, X.L.; Hao, M.M.; Liu, J.B. Dynamic Inversion Analysis of Structural Layer Modulus of Semirigid Base Pavement considering the Influence of Temperature and Humidity. Adv. Civ. Eng. 2020, 2020, 8899888. [Google Scholar] [CrossRef]
- Yu, W.; Xue, H.L. Effect of Soaking Corrosion on Flexural Properties of Foam Aluminum-Epoxy Composites. Mater. Rev. 2017, 31, 111–115. [Google Scholar] [CrossRef]
- Shi, M.S.; Luo, J.; Zhang, B. Experimental study on water absorption characteristics of polymer grouting materials and the effect of temperature change on volume. J. China Foreign Highw. 2010, 30, 289–291. [Google Scholar] [CrossRef]
- Lu, L. Research on the Structure and Performance of Polymers and Their Composite Mixes. Master’s Thesis, Hefei University of Technology, Hefei, China, 2017. [Google Scholar]
- Liu, Z.Y. Experimental Study of Engineering Properties of Polymer Grouting Materials. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2007. [Google Scholar]
- Baschek, G.; Hartwig, G.; Zahradnik, F. Effect of water absorption in polymers at low and high temperatures. Polymer 1999, 40, 3433–3441. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, T.W.; Jiang, R.F.; Zhou, D.H. Water absorption-desorption and microstructure of three types of foam materials. Plastics 2003, 32, 37–40. [Google Scholar] [CrossRef]
- Dai, W.Y.; Zou, Y.C.; Wang, H.G.; Zhang, Q.; Cao, X.C.; Li, G.D. Effect of Regulation of specific surface area and pore diameter on adsorption kinetics of lysozyme on SBA-15. J. Jilin Univ. Sci. Ed. 2011, 49, 139–144. [Google Scholar]
- Mourad, A.-H.I.; Abdel-Magid, B.M.; El-Maaddawy, T.; Grami, M.E. Effect of Seawater and Warm Environment on Glass/Epoxy and Glass/Polyurethane Composites. Appl. Compos. Mater. 2010, 17, 557–573. [Google Scholar] [CrossRef]
- Chou, P.; Ding, D. Characterization of Moisture Absorption and Its Influence on Composite Structures. J. Thermoplast. Compos. Mater. 2000, 13, 207–225. [Google Scholar] [CrossRef]
- Huo, Z.; Mohamed, M.; Nicholas, J.R.; Anandan, S.; Chandrashekhara, K. Effect of salt water exposure on foam-cored polyurethane sandwich composites. J. Sandw. Struct. Mater. 2020, 22, 1256–1273. [Google Scholar] [CrossRef]
- Yang, D.Y. Study on the Application of Polymer Grouting in the Rapid Repair of Asphalt Pavement Internal Damage of Highway. Master’s Thesis, Wuhan Engineering University, Wuhan, China, 2015. [Google Scholar]
- Liang, W. Research on the Mechanical Properties of Polymers and Their Liquid-Containing Foams. Master’s Thesis, Hefei University of Technology, Hefei, China, 2019. [Google Scholar]
- Gibson, I.J.; Ashby, M.F. The Mechanics of Three-Dimensional Cellular Materials. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1982, 382, 43–59. [Google Scholar] [CrossRef]
- Ashby, M.F.; Medalist, R.F. The mechanical properties of cellular solids. Metall. Trans. A 1983, 14, 1755–1769. [Google Scholar] [CrossRef]
- Ya-Jen, Y.; Keith, H.; Thomas, S.W.; Duncan, J.M. The effect of moisture absorption on the physical properties of polyurethane shape memorypolymer foams. Smart Mater. Struct. 2011, 20, 1571–1574. [Google Scholar] [CrossRef] [Green Version]
- Akihiko, G. Modeling of Cell Structure in Polyurethane Foam. J. Cell. Plast. 2004, 40, 481–488. [Google Scholar] [CrossRef]
- Lu, Z.X.; Li, H.X.; Tian, C.J. Determination of structural properties of polyurethane foam cells. Polym. Mater. Sci. Eng. 1995, 11, 86–91. [Google Scholar] [CrossRef]
- Liang, S.E. Study on the Relationship between Polyurethane Foam Bubble Structure and Mechanical Properties. Master’s Thesis, China Academy of Engineering Physics, Mianyang, China, 2005. [Google Scholar]
- Yunming, O.; Zhao, Z.W.; Zhu, H.Y.; Zhang, T.T. Polymer Experimental Study on Crack Repair of Asphalt Pavement. Henan Sci. 2018, 36, 893–897. [Google Scholar] [CrossRef]
- Gent, A.N. Permeability of Open-cell Foamed Materials. J. Cell. Plast. 1966, 2, 46–51. [Google Scholar] [CrossRef]
- Rong, X.; Zhang, L.; Zhang, X.; Liang, Z.; Wei, J. Preparation of hydrophilic reactive polyurethane and its application of anti-water erodibility in ecological restoration. J. Polym. Eng. 2019, 39, 736–743. [Google Scholar] [CrossRef]
- Mondal, P.; Khakhar, D.V. Simulation of the percolation of water into rigid polyurethane foams at applied hydraulic pressures. Polym. Eng. Sci. 2006, 46, 970–983. [Google Scholar] [CrossRef]
- Wang, F.M.; Li, J.; Shi, M.S.; Guo, C.C. New seepage-proof and reinforcing technologies for dikes and dams and their applications. J. Hydroelectr. Eng. 2016, 35, 1–11. [Google Scholar] [CrossRef]
- Yi, Y.H.; Chen, W.B. Effect factors of acid and alkali resistance of polyurethane elastomer. China Elastomer. 2010, 20, 64–67. [Google Scholar] [CrossRef]
- Olurin, O.B.; Fleck, N.A.; Ashby, M.F. Tensile and Compressive Failure of Notched Cellular Foams. Adv. Eng. Mater. 2001, 3, 55–58. [Google Scholar] [CrossRef]
- Gibson, L.J. Mechanical Behavior of Metallic Foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227. [Google Scholar] [CrossRef]
- Braun, J.; Klein, M.O.; Bernarding, J.; Leitner, M.B.; Mika, H.D. Non-destructive, three-dimensional monitoring of water absorption in polyurethane foams using magnetic resonance imaging. Polym. Test 2003, 22, 761–767. [Google Scholar] [CrossRef]
- Cnudde, V.; Dierick, M.; Vlassenbroeck, J.; Masschaele, B. High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials. Nucl. Instrum. Methods Phys. Research. Sect. B Beam Interact. Mater. At. 2008, 266, 155–163. [Google Scholar] [CrossRef]
- Pilli, S.P.; Simmons, K.L.; Holbery, J.D.; Shutthanandan, V.; Stickler, P.B.; Smith, L.V. A novel accelerated moisture absorption test and characterization. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1501–1505. [Google Scholar] [CrossRef]
- Idolor, O.; Berkowitz, K.; Guha, R.D.; Grace, L. Nondestructive examination of polymer composites by analysis of polymer-water interactions and damage-dependent hysteresis. Compos. Struct. 2022, 287, 115377. [Google Scholar] [CrossRef]
- Wang, W.Z.; Shen, A.Q.; Yang, X.L.; Guo, Y.C.; Zhao, T.Y. Surface free energy method for evaluating the effects of anti-stripping agents on the moisture damage to asphalt mixtures. J. Adhes. Sci. Technol. 2020, 34, 1947–1970. [Google Scholar] [CrossRef]
- Lachambre, J.; Maire, E.; Adrien, J.; Choqueuse, D. In situ observation of syntactic foams under hydrostatic pressure using X-ray tomography. Acta Mater. 2013, 61, 4035–4043. [Google Scholar] [CrossRef]
- Li, X.X.; Wan, J.C.; Zheng, D.; Fang, H.Y.; Wang, F.M.; Hu, S.W. Compressive mechanical properties of self-expanding grouting materials with different densities. Constr. Build. Mater. 2022, 332, 127308. [Google Scholar] [CrossRef]
- Hakala, K.; Vatanparast, R.; Vuorimaa, E.; Lemmetyinen, H. Monitoring water uptake of polyurethanes by in situ fluorescence technique. J. Appl. Polym. Sci. 2001, 82, 1593–1599. [Google Scholar] [CrossRef]
- Zhang, T.C. Study on the Diffusion Mechanism of Water in Rigid Polyurethane Foam and Water Repellent Structure Effect. Master’s Thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gao, S.; Zhang, C.; Deng, Y.; Zhang, P. Preparation and Performance of Water-Active Polyurethane Grouting Material in Engineering: A Review. Polymers 2022, 14, 5099. https://doi.org/10.3390/polym14235099
Wang J, Gao S, Zhang C, Deng Y, Zhang P. Preparation and Performance of Water-Active Polyurethane Grouting Material in Engineering: A Review. Polymers. 2022; 14(23):5099. https://doi.org/10.3390/polym14235099
Chicago/Turabian StyleWang, Juan, Shuang Gao, Chao Zhang, Yu Deng, and Peng Zhang. 2022. "Preparation and Performance of Water-Active Polyurethane Grouting Material in Engineering: A Review" Polymers 14, no. 23: 5099. https://doi.org/10.3390/polym14235099
APA StyleWang, J., Gao, S., Zhang, C., Deng, Y., & Zhang, P. (2022). Preparation and Performance of Water-Active Polyurethane Grouting Material in Engineering: A Review. Polymers, 14(23), 5099. https://doi.org/10.3390/polym14235099