Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zeolite-A Synthesis
2.2. Preparation of BSA-Loaded Hydrogels
2.3. Characterization of Hydrogel Films and BSA Adsorbtion and Release Behavior
2.3.1. Zeta Potential Measurement of Suspensions
2.3.2. Rheological Analysis
2.3.3. FT-IR Analysis
2.3.4. Morphological Analysis
2.3.5. Contact Angle Measurements
2.3.6. Swelling Degree
2.3.7. In Vitro Drug Release from Hydrogels
2.3.8. Statistical Analysis
2.3.9. Circular Dichroism (CD) Measurements
2.3.10. In Vitro Wound Healing Assay
2.3.11. Molecular Dynamics Simulations
3. Results and Discussion
3.1. Analysis of Interactions between Components at Molecular Level
3.1.1. Electrostatic Surface Properties of the Dynamic Serum Albumin
3.1.2. Zeta Potential Measurements
3.1.3. Rheological Analysis
3.2. Structural and Morphological Analysis of Hydrogels
3.2.1. FT-IR Analysis
3.2.2. AFM Analysis
3.2.3. Scanning Electron Microscopy Analysis
3.2.4. Water Contact Angle Measurements
3.3. BSA Loading
3.3.1. BSA Adsorption to Zeolite Particles
3.3.2. BSA Adsorption in Pectin–Zeolite Hydrogel Films
3.4. BSA Release
3.4.1. Swelling Behavior of BSA-Loaded Hydrogels
3.4.2. BSA Release from Zeolite Particles and Hydrogel Films
3.4.3. Circular Dichroism (CD) Measurement Analysis
3.5. In Vitro Wound Healing Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gatta, A.; Verardo, A.; Bolognesi, M. Hypoalbuminemia. Intern. Emerg. Med. 2012, 7, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Sindgikar, V.; Narasanagi, B.; Ragate, A.; Ahmed Patel, F. Effect of serum albumin in wound healing and its related complications in surgical patients. Al Ameen J. Med. Sci. 2017, 10, 132–135. [Google Scholar]
- Cutting, K.F. Wound exudate: Composition and functions. Br. J. Community Nurs. 2014, 8, S4–S9. [Google Scholar] [CrossRef]
- Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low Albumin Levels Are Associated with Mortality Risk in Hospitalized Patients. Am. J. Med. 2017, 130, 1465.e11–1465.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavassan, N.R.V.; Camargo, C.C.; de Pontes, L.G.; Barraviera, B.; Ferreira, R.S.; Miot, H.A.; Abbade, L.P.F.; dos Santos, L.D. Correlation between chronic venous ulcer exudate proteins and clinical profile: A cross-sectional study. J. Proteom. 2019, 192, 280–290. [Google Scholar] [CrossRef]
- Bagheri, M.; Validi, M.; Gholipour, A.; Makvandi, P.; Sharifi, E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng. Transl. Med. 2021, e10254. [Google Scholar] [CrossRef]
- Norouzi, M.A.; Montazer, M.; Harifi, T.; Karimi, P. Flower buds like PVA/ZnO composite nanofibers assembly: Antibacterial, in vivo wound healing, cytotoxicity and histological studies. Polym. Test. 2021, 93, 106914. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W.M. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 2021, 75, 893–907. [Google Scholar] [CrossRef]
- Soedjana, H.; Bowo, S.A.; Putri, N.M.; Davita, T.R. Serum albumin level difference in burn injury after tangential excision: A prospective cohort study. Ann. Med. Surg. 2020, 52, 1–4. [Google Scholar] [CrossRef]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current trends in advanced alginate-based wound dressings for chronic wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef]
- Nathasia, T.S.T. Albumin, Important Therapy & When to Use It in Ten Patients (Adult & Child): Case Report. J. Dermatol. Res. Ther. 2020, 6, 3–7. [Google Scholar] [CrossRef]
- Aguayo-Becerra, O.; Torres-Garibay, C.; Macías-Amezcua, M.; Fuentes-Orozco, C.; Chávez-Tostado, M.; Andalón-Dueñas, E.; Partida, A.; Álvarez-Villaseñor, A.; Cortés-Flores, A.; González-Ojeda, A. Serum albumin level as a risk factor for mortality in burn patients. Clinics 2013, 68, 940–945. [Google Scholar] [CrossRef]
- Sullivan, S.A.; Van Le, L.; Liberty, A.L.; Soper, J.T.; Barber, E.L. Association between hypoalbuminemia and surgical site infection in vulvar cancers. Gynecol. Oncol. 2016, 142, 435–439. [Google Scholar] [CrossRef]
- Mendez, C.M.; McClain, C.J.; Marsano, L.S. Albumin therapy in clinical practice. Nutr. Clin. Pract. 2005, 20, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, H.; Yang, X.; Zhang, W.; Jiang, M.; Wen, T.; Wang, J.; Guo, R.; Liu, H. Preparation and application of quaternized chitosan-and agnps-base synergistic antibacterial hydrogel for burn wound healing. Molecules 2021, 26, 4037. [Google Scholar] [CrossRef] [PubMed]
- Utariani, A.; Rahardjo, E.; Perdanakusuma, D.S. Effects of Albumin Infusion on Serum Levels of Albumin, Proinflammatory Cytokines (TNF-α, IL-1, and IL-6), CRP, and MMP-8; Tissue Expression of EGRF, ERK1, ERK2, TGF-β, Collagen, and MMP-8; and Wound Healing in Sprague Dawley Rats. Int. J. Inflamm. 2020, 2020, 3254017. [Google Scholar] [CrossRef] [PubMed]
- Inan, T.; Dalgakiran, D.; Kurkcuoglu, O.; Güner, F.S. Elucidating doxycycline loading and release performance of imprinted hydrogels with different cross-linker concentrations: A computational and experimental study. J. Polym. Res. 2021, 28, 408. [Google Scholar] [CrossRef]
- Eroglu, B.; Dalgakiran, D.; Inan, T.; Kurkcuoglu, O.; Güner, F.S. A computational and experimental approach to develop minocycline-imprinted hydrogels and determination of their drug delivery performances. J. Polym. Res. 2018, 25, 258. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X.; Han, X.; Fu, Y. A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks. Int. J. Biol. Macromol. 2020, 163, 1291–1300. [Google Scholar] [CrossRef]
- Soriano-Ruiz, J.L.; Gálvez-Martín, P.; López-Ruiz, E.; Suñer-Carbó, J.; Calpena-Campmany, A.C.; Marchal, J.A.; Clares-Naveros, B. Design and evaluation of mesenchymal stem cells seeded chitosan/glycosaminoglycans quaternary hydrogel scaffolds for wound healing applications. Int. J. Pharm. 2019, 570, 118632. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Doosti, A. Effect of the cagW-based gene vaccine on the immunologic properties of BALB/c mouse: An efficient candidate for Helicobacter pylori DNA vaccine. J. Nanobiotechnol. 2020, 18, 63. [Google Scholar] [CrossRef] [Green Version]
- Ngece, K.; Aderibigbe, B.A.; Ndinteh, D.T.; Fonkui, Y.T.; Kumar, P. Alginate-gum acacia based sponges as potential wound dressings for exuding and bleeding wounds. Int. J. Biol. Macromol. 2021, 172, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Alborzi, Z.; Izadi-Vasafi, H.; Ghayoumi, F. Wound dressings based on chitosan and gelatin containing starch, sesame oil and banana peel powder for the treatment of skin burn wounds. J. Polym. Res. 2021, 28, 61. [Google Scholar] [CrossRef]
- Hasan, N.; Cao, J.; Lee, J.; Kim, H.; Yoo, J.W. Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. J. Pharm. Investig. 2021, 51, 597–610. [Google Scholar] [CrossRef]
- Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Batirel, S.; Guner, F.S. Low-methoxyl pectin–zeolite hydrogels controlling drug release promote in vitro wound healing. J. Appl. Polym. Sci. 2019, 136, 47640. [Google Scholar] [CrossRef]
- Güner, O.Z.; Cam, C.; Arabacioglu-Kocaaga, B.; Batirel, S.; Güner, F.S. Theophylline-loaded pectin-based hydrogels. I. Effect of medium pH and preparation conditions on drug release profile. J. Appl. Polym. Sci. 2018, 135, 46731. [Google Scholar] [CrossRef]
- Sarioglu, E.; Arabacioglu Kocaaga, B.; Turan, D.; Batirel, S.; Guner, F.S. Theophylline-loaded pectin-based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. J. Appl. Polym. Sci. 2019, 136, 48155. [Google Scholar] [CrossRef]
- Rodoplu, S.; Celik, B.E.; Kocaaga, B.; Ozturk, C.; Batirel, S.; Turan, D.; Guner, F.S. Dual effect of procaine-loaded pectin hydrogels: Pain management and in vitro wound healing. Polym. Bull. 2021, 78, 2227–2250. [Google Scholar] [CrossRef]
- Güner, O.Z.; Kocaaga, B.; Batirel, S.; Kurkcuoglu, O.; Güner, F.S. 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. Int. J. Polym. Mater. Polym. Biomater. 2020, 70, 703–711. [Google Scholar] [CrossRef]
- Ninan, N.; Muthiah, M.; Nur, N.A.; Park, I.K.; Elain, A.; Wong, T.W.; Thomas, S.; Grohens, Y. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids Surf. B Biointerfaces 2014, 115, 244–252. [Google Scholar] [CrossRef]
- Majorek, K.A.; Porebski, P.J.; Dayal, A.; Zimmerman, M.D.; Jablonska, K.; Stewart, A.J.; Chruszcz, M.; Minor, W. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 2012, 52, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, H.; Lillerud, K.P. Verified Syntheses of Zeolitic Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 261–262. [Google Scholar]
- Demirci, S.; Ustaoǧlu, Z.; Yilmazer, G.A.; Sahin, F.; Baç, N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Romanini, D.; Javier, M.; Cecilia, M. Applications of Calorimetric Techniques in the Formation of Protein-Polyelectrolytes Complexes. In Applications of Calorimetry in a Wide Context—Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry; IntechOpen: London, UK, 2013. [Google Scholar]
- Sharifi, E.; Sattarahmady, N.; Habibi-Rezaei, M.; Farhadi, M.; Sheibani, N.; Ahmad, F.; Moosavi-Movahedi, A. Inhibitory Effects of β-Cyclodextrin and Trehalose on Nanofibril and AGE Formation During Glycation of Human Serum Albumin. Protein Pept. Lett. 2009, 16, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Mackerell, A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013, 34, 2135–2145. [Google Scholar] [CrossRef] [Green Version]
- Phillips, J.C.; Braun, R.; Wang, W.E.I.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Poincare, H. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Andersen, H.C. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 1983, 52, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Dolinsky, T.J.; Nielsen, J.E.; McCammon, J.A.; Baker, N.A. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004, 32, 665–667. [Google Scholar] [CrossRef]
- DeLano, W. PyMOL; DeLano Scientific: San Carlos, CA, USA, 2002; pp. 1–15. [Google Scholar]
- Yu, F.; Chen, Y.; Liang, X.; Xu, J.; Lee, C.; Liang, Q.; Tao, P.; Deng, T. Dispersion stability of thermal nanofluids. Prog. Nat. Sci. Mater. Int. 2017, 27, 531–542. [Google Scholar] [CrossRef]
- Bertrand, M.E.; Turgeon, S.L. Improved gelling properties of whey protein isolate by addition of xanthan gum. Food Hydrocoll. 2007, 21, 159–166. [Google Scholar] [CrossRef]
- Laos, K.; Brownsey, G.J.; Ring, S.G. Interactions between furcellaran and the globular proteins bovine serum albumin and β-lactoglobulin. Carbohydr. Polym. 2007, 67, 116–123. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites Published by: American Association for the Advancement of Science Linked references are available on JSTOR for this article: Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Rampino, A.; Borgogna, M.; Bellich, B.; Blasi, P.; Virgilio, F.; Cesàro, A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur. J. Pharm. Sci. 2016, 84, 37–45. [Google Scholar] [CrossRef]
- Ninan, N.; Muthiah, M.; Park, I.K.; Elain, A.; Wong, T.W.; Thomas, S.; Grohens, Y. Faujasites incorporated tissue engineering scaffolds for wound healing: In vitro and in vivo analysis. ACS Appl. Mater. Interfaces 2013, 5, 11194–11206. [Google Scholar] [CrossRef]
- Kurkcuoglu, S.S.; Kurkcuoglu, O.; Güner, F.S. A multiscale investigation on controlling bovine serum albumin adsorption onto polyurethane films. J. Appl. Polym. Sci. 2018, 135, 45669. [Google Scholar] [CrossRef]
- Martins, J.G.; Camargo, S.E.A.; Bishop, T.T.; Popat, K.C.; Kipper, M.J.; Martins, A.F. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydr. Polym. 2018, 197, 47–56. [Google Scholar] [CrossRef]
- Kubiak-Ossowska, K.; Tokarczyk, K.; Jachimska, B.; Mulheran, P.A. Bovine Serum Albumin Adsorption at a Silica Surface Explored by Simulation and Experiment. J. Phys. Chem. B 2017, 121, 3975–3986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jachimska, B.; Pajor, A. Physico-chemical characterization of bovine serum albumin in solution and as deposited on surfaces. Bioelectrochemistry 2012, 87, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Potaś, J.; Szymańska, E.; Wróblewska, M.; Kurowska, I.; Maciejczyk, M.; Basa, A.; Wolska, E.; Wilczewska, A.Z.; Winnicka, K. Multilayer films based on chitosan/pectin polyelectrolyte complexes as novel platforms for buccal administration of clotrimazole. Pharmaceutics 2021, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.A.; Andryukov, B.G.; Besednova, N.N.; Zaporozhets, T.S.; Kalinin, A.V. Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: A review. J. Mar. Sci. Eng. 2020, 8, 481. [Google Scholar] [CrossRef]
- Kirdeciler, S.K.; Ozen, C.; Akata, B. Fabrication of nano- to micron-sized patterns using zeolites: Its application in BSA adsorption. Microporous Mesoporous Mater. 2014, 191, 59–66. [Google Scholar] [CrossRef]
- Rezaei, F.S.; Sharifianjazi, F.; Esmaeilkhanian, A.; Salehi, E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr. Polym. 2021, 273, 118631. [Google Scholar] [CrossRef] [PubMed]
- Samari, F.; Hemmateenejad, B.; Shamsipur, M.; Rashidi, M.; Samouei, H. Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorg. Chem. 2012, 51, 3454–3464. [Google Scholar] [CrossRef] [PubMed]
Code | Method | Zeolite-Na Amount (mg/g film) | Initial BSA Concentration (mg BSA/g film) | pH of BSA Solution | Contact Angle (°) | Swelling Degree | Amount of Adsorbed BSA (mg/g film) | Amount of BSA Release (mg BSA/g film) |
---|---|---|---|---|---|---|---|---|
PZ-50 | - | 50 | 0 | - | 77 | - | - | - |
PZ-30 | - | 30 | 0 | - | 76 | - | - | - |
A6.4-10 | Adsorption | 30 | 10 | 6.4 | - | - | 10 | 0 |
A6.4-25 | Adsorption | 30 | 25 | 6.4 | - | 79.2 | 16 | 0 |
A6.4-50 | Adsorption | 30 | 50 | 6.4 | - | 49.2 | 37 | 35 |
A6.4-100 | Adsorption | 30 | 100 | 6.4 | 88 | 24.9 | 88 | 77 |
M6.4-25 | Mixing | 30 | 10 | 6.4 | - | 10 | 0 | |
M6.4-25 | Mixing | 30 | 25 | 6.4 | 105 | - | 25 | 0 |
M6.4-50 | Mixing | 30 | 50 | 6.4 | 107 | 29.9 | 50 | 5 |
M6.4-75 | Mixing | 30 | 75 | 6.4 | - | 27.3 | 75 | 23 |
M6.4-100 | Mixing | 30 | 100 | 6.4 | 100 | 19.4 | 100 | 41 |
A4.7-50 | Adsorption | 30 | 50 | 4.7 | - | 8.2 | 20 | 17 |
A4.7-100 | Adsorption | 30 | 100 | 4.7 | 99 | - | 50 | - |
A4.3-50 | Adsorption | 30 | 50 | 4.3 | - | - | 0 | 0 |
P-A4.3-50 | Adsorption | - | 50 | 4.3 | - | - | 21 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocaaga, B.; Kurkcuoglu, O.; Tatlier, M.; Dinler-Doganay, G.; Batirel, S.; Güner, F.S. Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers 2022, 14, 460. https://doi.org/10.3390/polym14030460
Kocaaga B, Kurkcuoglu O, Tatlier M, Dinler-Doganay G, Batirel S, Güner FS. Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers. 2022; 14(3):460. https://doi.org/10.3390/polym14030460
Chicago/Turabian StyleKocaaga, Banu, Ozge Kurkcuoglu, Melkon Tatlier, Gizem Dinler-Doganay, Saime Batirel, and Fatma Seniha Güner. 2022. "Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release" Polymers 14, no. 3: 460. https://doi.org/10.3390/polym14030460
APA StyleKocaaga, B., Kurkcuoglu, O., Tatlier, M., Dinler-Doganay, G., Batirel, S., & Güner, F. S. (2022). Pectin–Zeolite-Based Wound Dressings with Controlled Albumin Release. Polymers, 14(3), 460. https://doi.org/10.3390/polym14030460