Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Complex Formations
3.2. Photoinduced Electron Transfer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Suresh, L.; Liang, Q.J.; Zhang, Y.X.; Yang, L.; Paul, N.; Tan, S.C. Emerging Technologies for Green Energy Conversion and Storage. Adv. Sustain. Syst. 2021, 5, 19. [Google Scholar] [CrossRef]
- Hussain, S.; Ulhassan, Z.; Brestic, M.; Zivcak, M.; Zhou, W.J.; Allakhverdiev, S.I.; Yang, X.H.; Safdar, M.E.; Yang, W.Y.; Liu, W.G. Photosynthesis research under climate change. Photosyn. Res. 2021, 150, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.L.; Yu, J.Y.; Liu, X.Y.; Zhang, X.L.; Liu, H.; Zhou, W.J. Water, Splitting: From Electrode to Green Energy System. Nanomicro Lett. 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Deisenhofer, J.; Michel, H. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Biosci. Rep. 2004, 24, 323–361. [Google Scholar] [CrossRef] [PubMed]
- McConnell, I.; Li, G.; Brudvig, G. Energy Conversion in Natural and Artificial Photosynthesis. Chem. Biol. 2010, 17, 434–447. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.O.; Suzuki, H.; Xie, J.J.; Tomita, O.; Martin, D.J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J.W. Mimicking Natural Photosynthesis: Solar to Renewable H-2 Fuel Synthesis by Z-Scheme Water Splitting Systems. Chem. Rev. 2018, 118, 5201–5241. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.B.; Sun, L.C. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48, 2216–2264. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Kalathil, S.; Reisner, E. Semi-biological approaches to solar-to-chemical conversion. Chem. Soc. Rev. 2020, 49, 4926–4952. [Google Scholar] [CrossRef]
- Pannwitz, A.; Klein, D.M.; Rodriguez-Jimenez, S.; Casadevall, C.; Song, H.W.; Reisner, E.; Hammarstrom, L.; Bonnet, S. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem. Soc. Rev. 2021, 50, 4833–4855. [Google Scholar] [CrossRef]
- Gust, D.; Moore, T.; Moore, A. Solar Fuels via Artificial Photosynthesis. Acc. Chem. Res. 2009, 42, 1890–1898. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Ohkubo, K.; Suenobu, T. Long-Lived Charge Separation and Applications in Artificial Photosynthesis. Acc. Chem. Res. 2014, 47, 1455–1464. [Google Scholar] [CrossRef] [PubMed]
- Urbani, M.; Gratzel, M.; Nazeeruddin, M.; Torres, T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chem. Rev. 2014, 114, 12330–12396. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Lee, Y.M.; Nam, W. Bioinspired artificial photosynthesis systems. Tetrahedron 2020, 76, 131024. [Google Scholar] [CrossRef]
- Pachfule, P.; Acharjya, A.; Roeser, J.; Sivasankaran, R.P.; Ye, M.Y.; Bruckner, A.; Schmidt, J.; Thomas, A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci. 2019, 10, 8316–8322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.F.; Zhu, D.Y.; Chen, Y.; Yan, Q.Q.; Liu, C.Y.; Ling, K.X.; Liu, Y.F.; Lee, D.J.; Wu, X.W.; Senftle, T.P.; et al. Porphyrin-based donor-acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chem. Sci. 2021, 12, 16092–16099. [Google Scholar] [CrossRef]
- Aoyama, Y.; Asakawa, M.; Matsui, Y.; Ogoshi, H. Molecular recognition. 16. Molecular recognition of quinones: Two-point hydrogen-bonding strategy for the construction of face-to-face porphyrin-quinone architectures. J. Am. Chem. Soc. 1991, 113, 6233–6240. [Google Scholar] [CrossRef]
- Sessler, J.L.; Sathiosatham, M.; Brown, C.T.; Rhodes, T.A.; Wiederrecht, G. Hydrogen-bond-mediated photoinduced electron-transfer: Novel dimethylaniline-anthracene ensembles formed via Watson-Crick base-pairing. J. Am. Chem. Soc. 2001, 123, 3655–3660. [Google Scholar] [CrossRef]
- Bottari, G.; de la Torre, G.; Guldi, D.M.; Torres, T. Covalent and Noncovalent Phthalocyanine-Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics. Chem. Rev. 2010, 110, 6768–6816. [Google Scholar] [CrossRef]
- Otsuki, J. Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A. 2018, 6, 6710–6753. [Google Scholar] [CrossRef]
- Zarrabi, N.; Poddutoori, P.K. Aluminum(III) porphyrin: A unique building block for artificial photosynthetic systems. Coord. Chem. Rev. 2021, 429, 213561. [Google Scholar] [CrossRef]
- Sadamoto, R.; Tomioka, N.; Aida, T. Photoinduced electron transfer reactions through dendrimer architecture. J. Am. Chem. Soc. 1996, 118, 3978–3979. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.Z.; Ma, R.J.; An, Y.L.; Shi, L.Q. Stability enhancement of ZnTPPS in acidic aqueous solutions by polymeric micelles. Chem. Commun. 2010, 46, 6560–6562. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.L.; Qu, R.; Jing, C.; Zhai, Y.; An, Y.L.; Shi, L.Q. Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Adv. 2017, 7, 10100–10107. [Google Scholar] [CrossRef] [Green Version]
- Harada, A.; Yamaguchi, H.; Okamoto, K.; Fukushima, H.; Shiotsuki, K.; Kamachi, M. Control of photoinduced electron transfer from zinc-porphyrin to methyl viologen by supramolecular formation between monoclonal antibody and zinc-porphyrin. Photochem. Photobiol. 1999, 70, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Kamachi, M.; Harada, A. Photoinduced electron transfer from a porphyrin to an electron acceptor in an antibody-combining site. Angew. Chem. Int. Ed. 2000, 39, 3829–3831. [Google Scholar] [CrossRef]
- Onji, T.; Ohara, H.; Yamaguchi, H.; Ikeda, N.; Harada, A. Enhancement of photoinduced electron transfer from porphyrin to methyl viologen by binding of an antibody for porphyrin. Chem. Lett. 2006, 35, 1126–1127. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Onji, T.; Ohara, H.; Ikeda, N.; Harada, A. Photoinduced Hydrogen-Evolution System with an Antibody-Porphyrin Complex as a Photosensitizer. Bull. Chem. Soc. Jpn. 2009, 82, 1341–1346. [Google Scholar] [CrossRef]
- Flamigni, L.; Talarico, A.M.; Ventura, B.; Rein, R.; Solladie, N. A versatile bis-porphyrin tweezer host for the assembly of noncovalent photoactive architectures: A photophysical characterization of the tweezers and their association with porphyrins and other guests. Chem. Eur. J. 2006, 12, 701–712. [Google Scholar] [CrossRef]
- Huo, D.Q.; Yang, L.M.; Hou, C.J.; Fa, H.B.; Luo, X.G.; Lu, Y.; Zheng, X.L.; Yang, J.; Yang, L. Molecular interactions of monosulfonate tetraphenylporphyrin (TPPS1) and meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) with dimethyl methylphosphonate (DMMP). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 74, 336–343. [Google Scholar] [CrossRef]
- Nappa, M.; Valentine, J.S. The influence of axial ligands on metalloporphyrin visible absorption spectra. Complexes of tetraphenylporphinatozinc. J. Am. Chem. Soc. 1978, 100, 5075–5080. [Google Scholar] [CrossRef]
- Lin, C.L.; Fang, M.Y.; Cheng, S.H. Substituent and axial ligand effects on the electrochemistry of zinc porphyrins. J. Electroanal. Chem. 2002, 531, 155–162. [Google Scholar] [CrossRef]
- Soury, R.; Jabli, M.; Saleh, T.A.; Abdul-Hassan, W.S.; Saint-Aman, E.; Loiseau, F.; Philouze, C.; Nasri, H. Tetrakis(ethyl-4(4-butyryl) oxyphenyl) porphyrinato zinc complexes with 4,4′-bpyridin: Synthesis, characterization, and its catalytic degradation of Calmagite. RSC Adv. 2018, 8, 20143–20156. [Google Scholar] [CrossRef] [Green Version]
- Maiti, N.; Mazumdar, S.; Periasamy, N. J- and H-aggregates of porphyrin-surfactant complexes: Time-resolved fluorescence and other spectroscopic studies. J. Phys. Chem. B 1998, 102, 1528–1538. [Google Scholar] [CrossRef]
- Logunov, S.; Rodgers, M. Charge recombination reactions in self-assembled porphyrin-based ion-pair complexes. J. Photochem. Photobiol. A 1997, 105, 55–63. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Photochemistry and sensitized evolution of hydrogen from water using water-soluble cationic porphyrins. Tetrakis(trimethylaminophenyl)porphyrinatozinc and its free base. J. Chem. Soc. Faraday Trans. Mol. Chem. Phys. 1983, 79, 1365–1374. [Google Scholar] [CrossRef]
- Osuka, A.; Shin, J.Y.; Yoneshima, R.; Shiratori, H.; Ohno, T.; Nozaki, K.; Nishimura, Y.; Yamazaki, I.; Taniguchi, S.; Shimizu, T.; et al. Orientation effects on excited state dynamics of zinc porphyrin-free base porphyrin-pyromellitimide triads. J. Porphyr. Phthalocyanines 1999, 3, 729–741. [Google Scholar] [CrossRef]
- Watanabe, T.; Honda, K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem. 1982, 86, 2617–2619. [Google Scholar] [CrossRef]
- Ikeyama, S.; Amao, Y. A novel electron carrier molecule based on a viologen derivative for visible light-driven CO2 reduction to formic acid with the system of zinc porphyrin and formate dehydrogenase. Sustain. Energy Fuels 2017, 1, 1730–1733. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Takasaki, T.; Yamashita, S.; Mizutani, Y.; Harada, A.; Yamaguchi, H. Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone. Polymers 2022, 14, 1191. https://doi.org/10.3390/polym14061191
Cao Y, Takasaki T, Yamashita S, Mizutani Y, Harada A, Yamaguchi H. Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone. Polymers. 2022; 14(6):1191. https://doi.org/10.3390/polym14061191
Chicago/Turabian StyleCao, Yilin, Tomoe Takasaki, Satoshi Yamashita, Yasuhisa Mizutani, Akira Harada, and Hiroyasu Yamaguchi. 2022. "Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone" Polymers 14, no. 6: 1191. https://doi.org/10.3390/polym14061191
APA StyleCao, Y., Takasaki, T., Yamashita, S., Mizutani, Y., Harada, A., & Yamaguchi, H. (2022). Control of Photoinduced Electron Transfer Using Complex Formation of Water-Soluble Porphyrin and Polyvinylpyrrolidone. Polymers, 14(6), 1191. https://doi.org/10.3390/polym14061191