Oppenheimer, L.; Ramkumar, M.; Machado, I.; Scott, C.; Winroth, S.; Ishida, H.
Development of an Atomic-Oxygen-Erosion-Resistant, Alumina-Fiber-Reinforced, Fluorinated Polybenzoxazine Composite for Low-Earth Orbital Applications. Polymers 2023, 15, 112.
https://doi.org/10.3390/polym15010112
AMA Style
Oppenheimer L, Ramkumar M, Machado I, Scott C, Winroth S, Ishida H.
Development of an Atomic-Oxygen-Erosion-Resistant, Alumina-Fiber-Reinforced, Fluorinated Polybenzoxazine Composite for Low-Earth Orbital Applications. Polymers. 2023; 15(1):112.
https://doi.org/10.3390/polym15010112
Chicago/Turabian Style
Oppenheimer, Leah, Malavika Ramkumar, Irlaine Machado, Chris Scott, Scott Winroth, and Hatsuo Ishida.
2023. "Development of an Atomic-Oxygen-Erosion-Resistant, Alumina-Fiber-Reinforced, Fluorinated Polybenzoxazine Composite for Low-Earth Orbital Applications" Polymers 15, no. 1: 112.
https://doi.org/10.3390/polym15010112
APA Style
Oppenheimer, L., Ramkumar, M., Machado, I., Scott, C., Winroth, S., & Ishida, H.
(2023). Development of an Atomic-Oxygen-Erosion-Resistant, Alumina-Fiber-Reinforced, Fluorinated Polybenzoxazine Composite for Low-Earth Orbital Applications. Polymers, 15(1), 112.
https://doi.org/10.3390/polym15010112