Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Sample Preparation
2.2. Sample Testing
2.2.1. Measurement of Mechanical Properties
2.2.2. Measurement of Electrical Conductivity
2.2.3. X-ray Measurements
2.2.4. Optical Microscopy (OM)
2.2.5. Scanning Electron Microscope (SEM)
3. Results and Discussion
3.1. Sample Structure
3.1.1. CNTs Orientation
3.1.2. CNTs Dispersion
3.2. Effects of Orientation and Dispersion
3.2.1. Orientation Effect on Yield Properties
3.2.2. Orientation Effect on Electrical Conductivity
3.2.3. Combined Influence by Orientation and Dispersion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dasari, A.; Yu, Z.-Z.; Mai, Y.-W. Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 2009, 50, 4112–4121. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Balaji, K.; Yadav, R.; Zabihi, O.; Ahmadi, M.; Adetunji, P.; Naebe, M. Balancing the toughness and strength in polypropylene composites. Compos. Part B Eng. 2021, 223, 109121. [Google Scholar] [CrossRef]
- Gulrez, S.K.; Ali Mohsin, M.; Shaikh, H.; Anis, A.; Pulose, A.M.; Yadav, M.K.; Qua, E.H.P.; Al-Zahrani, S. A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 2014, 35, 900–914. [Google Scholar] [CrossRef]
- Deng, X.; Xie, S.; Wang, W.; Luo, C.; Luo, F. From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. Eur. Polym. J. 2022, 178, 111485. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, W.; Yang, Q.; Chen, X.; Chen, K.; Ding, Y.; Xue, P. Analysis of thermal-active bending and cyclic tensile shape memory mechanism of UHMWPE/CNT composite. Polym. Compos. 2022, 43, 9089–9099. [Google Scholar] [CrossRef]
- Zhang, Z.; Bellisario, D.; Quadrini, F.; Jestin, S.; Ravanelli, F.; Castello, M.; Li, X.; Dong, H.J. Nanoindentation of multifunctional smart composites. Polymers 2022, 14, 2945. [Google Scholar] [CrossRef]
- Behera, K.; Chen, J.-F.; Yang, J.-M.; Chang, Y.-H.; Chiu, F.-C. Evident improvement in burning anti-dripping performance, ductility and electrical conductivity of PLA/PVDF/PMMA ternary blend-based nanocomposites with additions of carbon nanotubes and organoclay. Compos. Part B Eng. 2023, 248, 110371. [Google Scholar] [CrossRef]
- Lin, H.-M.; Behera, K.; Yadav, M.; Chiu, F.-C. Polyamide 6/poly (vinylidene fluoride) blend-based nanocomposites with enhanced rigidity: Selective localization of carbon nanotube and organoclay. Polymers 2020, 12, 184. [Google Scholar] [CrossRef]
- Gubbels, F.; Jérôme, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater. 1998, 10, 1227–1235. [Google Scholar] [CrossRef]
- Skipa, T.; Lellinger, D.; Böhm, W.; Saphiannikova, M.; Alig, I. Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer 2010, 51, 201–210. [Google Scholar] [CrossRef]
- Pegel, S.; Pötschke, P.; Petzold, G.; Alig, I.; Dudkin, S.M.; Lellinger, D. Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 2008, 49, 974–984. [Google Scholar] [CrossRef]
- Pereira, E.C.L.; Soares, B.G.; Silva, A.A.; da Silva, J.M.F.; Barra, G.M.; Livi, S. Conductive heterogeneous blend composites of PP/PA12 filled with ionic liquids treated-CNT. Polym. Test. 2019, 74, 187–195. [Google Scholar] [CrossRef]
- Tanabi, H.; Erdal, M. Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys. 2019, 12, 486–503. [Google Scholar] [CrossRef]
- Burmistrov, I.; Gorshkov, N.; Ilinykh, I.; Muratov, D.; Kolesnikov, E.; Anshin, S.; Mazov, I.; Issi, J.-P.; Kusnezov, D. Technology, Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Compos. Sci. 2016, 129, 79–85. [Google Scholar] [CrossRef]
- Abbasi Moud, A.; Javadi, A.; Nazockdast, H.; Fathi, A.; Altstaedt, V. Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA 6), Polypropylene (PP), and PA 6/PP nanocomposites. J. Polym. Sci. Part B Polym. 2015, 53, 368–378. [Google Scholar] [CrossRef]
- Mei, J.; Lei, X.; Liang, M.; Wu, H.; Zhou, S.; Zou, H.; Chen, Y. Comparative study on the electrical, thermal, and mechanical properties of multiwalled carbon nanotubes filled polypropylene and polyamide 6 micromoldings. J. Appl. Polym. Sci. 2021, 138, 49984. [Google Scholar] [CrossRef]
- Ferreira, T.; Paiva, M.C.; Pontes, A. Dispersion of carbon nanotubes in polyamide 6 for microinjection moulding. J. Polym. Res. 2013, 20, 1–9. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Li, Y.-Q.; Huang, P.; Wang, H.; Hu, N.; Fu, S.-Y. Comprehensive evaluation of the piezoresistive behavior of carbon nanotube-based composite strain sensors. Compos. Sci. Technol. 2021, 208, 108761. [Google Scholar] [CrossRef]
- Li, S.; Feng, Y.; Li, Y.; Feng, W.; Yoshino, K. Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 2016, 109, 131–140. [Google Scholar] [CrossRef]
- Zhou, S.; Hrymak, A.N.; Kamal, M.R. Microinjection molding of polypropylene/multi-walled carbon nanotube nanocomposites: The influence of process parameters. Polym. Eng. 2018, 58, E226–E234. [Google Scholar] [CrossRef]
- Monti, M.; Zaccone, M.; Frache, A.; Torre, L.; Armentano, I. Dielectric spectroscopy of PP/MWCNT nanocomposites: Relationship with crystalline structure and injection molding condition. Nanomaterials 2021, 11, 550. [Google Scholar] [CrossRef] [PubMed]
- Turner-Jones, A.; Cobbold, A. The β crystalline form of isotactic polypropylene. J. Polym. Sci. Part B Polym. Lett. 1968, 6, 539–546. [Google Scholar] [CrossRef]
- Somani, R.H.; Yang, L.; Hsiao, B.S.; Sun, T.; Pogodina, N.V.; Lustiger, A. Shear-induced molecular orientation and crystallization in isotactic polypropylene: Effects of the deformation rate and strain. Macromolecules 2005, 38, 1244–1255. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, Y.; Zhou, S.; Zou, H.; Liang, M. Highly Thermally Conductive Yet Electrically Insulative Polycarbonate Composites with Oriented Hybrid Networks Assisted by High Shear Injection Molding. Macromol. Mater. Eng. 2022, 307, 2100632. [Google Scholar] [CrossRef]
- Liu, T.; Ju, J.; Chen, F.; Wu, B.; Yang, J.; Zhong, M.; Peng, X.; Kuang, T. Superior mechanical performance of in-situ nanofibrillar HDPE/PTFE composites with highly oriented and compacted nanohybrid shish-kebab structure. Compos. Sci. Technol. 2021, 207, 108715. [Google Scholar] [CrossRef]
- Hong, R.; Jiang, Y.-X.; Leng, J.; Liu, M.-J.; Shen, K.-Z.; Fu, Q.; Zhang, J. Synergic Enhancement of High-density Polyethylene through Ultrahigh Molecular Weight Polyethylene and Multi-flow Vibration Injection Molding: A Facile Fabrication with Potential Industrial Prospects. Chin. J. Polym. Sci. 2021, 39, 756–769. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Wang, K.; Zhang, Q.; Chen, F.; Du, R.; Fu, Q. Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 2009, 42, 7016–7023. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, H. High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 2007, 48, 2203–2207. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Abolhasani, M.M.; Polisetti, B.; Naebe, M. Periodical patterning of a fully tailored nanocarbon on CNT for fabrication of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 304–314. [Google Scholar] [CrossRef]
- Pollatos, E.; Logakis, E.; Chatzigeorgiou, P.; Peoglos, V.; Zuburtikudis, I.; Gjoka, M.; Viras, K.; Pissis, P. Morphological, thermal, and electrical characterization of syndiotactic polypropylene/multiwalled carbon nanotube composites. J. Macromol. Sci. Part B 2010, 49, 1044–1056. [Google Scholar] [CrossRef]
- Zhang, S.; Minus, M.L.; Zhu, L.; Wong, C.-P.; Kumar, S. Polymer transcrystallinity induced by carbon nanotubes. Polymer 2008, 49, 1356–1364. [Google Scholar] [CrossRef]
- Mi, D.; Zhao, Z.; Jia, S. Further improved mechanical properties of polypropylene by shish-kebab structure and high-temperature annealing. Polym. Eng. Sci. 2022, 62, 3349–3362. [Google Scholar] [CrossRef]
- Manchado, M.L.; Valentini, L.; Biagiotti, J.; Kenny, J. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 2005, 43, 1499–1505. [Google Scholar] [CrossRef]
- Behera, K.; Chang, Y.-H.; Yadav, M.; Chiu, F.-C. Enhanced thermal stability, toughness, and electrical conductivity of carbon nanotube-reinforced biodegradable poly (lactic acid)/poly (ethylene oxide) blend-based nanocomposites. Polymer 2020, 186, 122002. [Google Scholar] [CrossRef]
- Ameli, A.; Kazemi, Y.; Wang, S.; Park, C.; Pötschke, P. Manufacturing, Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos. Part A Appl. Sci. 2017, 96, 28–36. [Google Scholar] [CrossRef]
- Mi, D.; Li, X.; Zhao, Z.; Jia, Z.; Zhu, W. Effect of dispersion and orientation of dispersed phase on mechanical and electrical conductivity. Polym. Compos. 2021, 42, 4277–4288. [Google Scholar] [CrossRef]
- Zhao, K.; Li, S.; Huang, M.; Shi, X.; Zheng, G.; Liu, C.; Dai, K.; Shen, C.; Yin, R.; Guo, J.Z. Remarkably anisotropic conductive MWCNTs/polypropylene nanocomposites with alternating microlayers. Chem. Eng. J. 2019, 358, 924–935. [Google Scholar] [CrossRef]
- Ning, N.; Luo, F.; Pan, B.; Zhang, Q.; Wang, K.; Fu, Q. Observation of shear-induced hybrid shish kebab in the injection molded bars of linear polyethylene containing inorganic whiskers. Macromolecules 2007, 40, 8533–8536. [Google Scholar] [CrossRef]
- Zhou, S.; Hrymak, A.N.; Kamal, M.R. Electrical, morphological and thermal properties of microinjection molded polyamide 6/multi-walled carbon nanotubes nanocomposites. Compos. Part A Appl. Sci. Manuf. 2017, 103, 84–95. [Google Scholar] [CrossRef]
1CM-6CM | 1IM-5IM | 6IM | 1IntM-4IntM | 5IntM | |
---|---|---|---|---|---|
Melting temperature (℃) | 200 | 200 | 210 | 200 | 210 |
CNTs content (wt.%) | 1–6 | 1–5 | 6 | 1–4 | 5 |
First Injection pressure (bar) * | 5.5 | 5.5 | 2 | 2 | |
Second Injection pressure (bar) * | 5.5 | 5.5 |
CM (0~9 wt.%CNT) | IM (0~4 wt.%CNT) | IM (6~9 wt.%CNT) | IntM (0~6 wt.%CNT) | |
---|---|---|---|---|
Mori | 0~0.5 | 0.8~0.88 | 0.91~0.92 | 0.91~0.92 |
level-FD | LOW | MEDIUM (FD) | HIGH (FD) | HIGH (FD) |
level-TD | LOW | MEDIUM (TD) | HIGH (TD) | HIGH (TD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, D.; Zhao, Z.; Bai, H. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers 2023, 15, 2370. https://doi.org/10.3390/polym15102370
Mi D, Zhao Z, Bai H. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers. 2023; 15(10):2370. https://doi.org/10.3390/polym15102370
Chicago/Turabian StyleMi, Dashan, Zhongguo Zhao, and Haiqing Bai. 2023. "Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite" Polymers 15, no. 10: 2370. https://doi.org/10.3390/polym15102370
APA StyleMi, D., Zhao, Z., & Bai, H. (2023). Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Polymers, 15(10), 2370. https://doi.org/10.3390/polym15102370