Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabric Pretreatment
2.3. Flame-Retardant Finishing Treatment
2.4. Flammability Test
2.5. Physico-Mechanical Properties Analysis
2.6. Surface Characterization
2.7. Thermal Properties Analysis
2.8. Formaldehyde Test
3. Results and Discussion
3.1. Determination of Flammability
3.2. Reaction Mechanism of the FR Chemical, Knittex FFRC and Cellulose
3.3. Physico-Mechanical Properties Analysis
3.4. Surface Chemical Composition and Surface Morphology Analysis
3.5. Thermal Properties Analysis
3.6. Formaldehyde Content Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar Samanta, A.; Bhattacharyya, R.; Chowdhury, R. Fire-Retardant Chemical Finishing of Jute Fabric Using Sulfamate and Urea Mixture. AASCIT J. Mater. 2015, 1, 98–110. [Google Scholar]
- Samanta, A.K.; Biswas, S.K.; Bagchi, A.; Bhattacharjee, R. Semi-Durable Fire Retardant Finishing of Jute Fabric and Its Thermal Behaviour. J. Inst. Eng. 2011, 91, 18–20. [Google Scholar]
- Samanta, A.K.; Bagchi, A.; Biswas, S.K. Fire Retardant Finishing of Jute Fabric and Its Thermal Behaviour Using Phosphorous and Nitrogen Based Compound. J. Polym. Mater. 2011, 28, 151–171. [Google Scholar]
- Weil, E.D.; Levchik, S.v. Flame Retardants in Commercial Use or Development for Textiles. J. Fire Sci. 2008, 26, 243–281. [Google Scholar] [CrossRef]
- Samanta, A.K. Chemical Finishing If Jute and Jute Blended Textiles. Colourage 1995, 42, 37. [Google Scholar]
- Horrocks, A.R. An Introduction to the Burning Behaviour of Cellulosic Fibres. J. Soc. Dyers Colour. 1983, 16, 191–197. [Google Scholar] [CrossRef]
- Banerjee SK, D.A.R.P. Fireproofing Jute. Text. Res. J. 1986, 56, 338–339. [Google Scholar] [CrossRef]
- Pal, A.; Kumar Samanta, A.; Bagchi, A.; Samanta, P.; Ranjan Kar, T. A Review on Fire Protective Functional Finishing of Natural Fibre Based Textiles: Present Perspective. Curr. Trends Fash. Technol. Text. Eng. 2020, 7, 555705. [Google Scholar] [CrossRef]
- Lewin, M.; Mark, H.F. Flame Retarding of Polymers with Sulfamates. I. Sulfation of Cotton and Wool. J. Fire Sci. 1997, 15, 263–276. [Google Scholar] [CrossRef]
- Dobele, G.; Urbanovich, I.; Zhurins, A.; Kampars, V.; Meier, D. Application of Analytical Pyrolysis for Wood Fire Protection Control. J. Anal. Appl. Pyrolysis 2007, 79, 47–51. [Google Scholar] [CrossRef]
- Mostashari, S.M.; Mostashari, S.Z. Mostashari Combustion Pathway of Cotton Fabrics Treated by Ammonium Sulfate as a Flame-Retardant Studied by Tg. J. Therm. Anal. Calorim. 2008, 91, 437–441. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.; Yan, W.; Tang, H. Preparation of Flame Retardant Polyamide 6 Composite with Melamine Cyanurate Nanoparticles in Situ Formed in Extrusion Process. Polym. Degrad. Stab. 2006, 91, 2632–2643. [Google Scholar] [CrossRef]
- Yusuf, M. A Review on Flame Retardant Textile Finishing: Current and Future Trends. Curr. Smart Mater. 2018, 3, 99–108. [Google Scholar] [CrossRef]
- Mehta, R.D.; Hoque, A.K.M. Communication to the Editor. Flammability of Metal-Cation-Exchanged Jute Fabrics. Text. Res. J. 1982, 52, 607–608. [Google Scholar] [CrossRef]
- Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J.M. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. J. Anal. Appl. Pyrolysis 2014, 107, 323–331. [Google Scholar] [CrossRef]
- Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007, 90, 213902. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.K.; Bhattacharyya, R.; Jose, S.; Basu, G.; Chowdhury, R. Fire Retardant Finish of Jute Fabric with Nano Zinc Oxide. Cellulose 2017, 24, 1143–1157. [Google Scholar] [CrossRef]
- Roy, P.K.; Mukhopadhyay, S.; Butola, B.S. A Study on Durable Flame Retardancy of Jute. J. Nat. Fibers 2018, 15, 483–495. [Google Scholar] [CrossRef]
- Dorez, G.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J.M. Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. [Google Scholar] [CrossRef]
- Lazko, J.; Landercy, N.; Laoutid, F.; Dangreau, L.; Huguet, M.H.; Talon, O. Flame Retardant Treatments of Insulating Agro-Materials from Flax Short Fibres. Polym. Degrad. Stab. 2013, 98, 1043–1051. [Google Scholar] [CrossRef]
- Samanta, A.K.; Bagchi, A. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound. J. Inst. Eng. India Ser. E 2017, 98, 25–31. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K.; Chattopadhyay, S.; Narkar, R.; Bhowmick, M.; Das, S.; Saikh, A.H. Fire Retardant Finishing of Jute Fabric Treated with Thio-Urea. J. Text. Assoc. 2014, 74, 273–281. [Google Scholar]
- Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J.H. A Durable Flame Retardant for Cellulosic Fabrics. Polym. Degrad. Stab. 2012, 97, 2467–2472. [Google Scholar] [CrossRef]
- Tang, K.P.M.; Kan, C.W.; Fan, J.T.; Tso, S.L. Effect of Softener and Wetting Agent on Improving the Flammability, Comfort, and Mechanical Properties of Flame-Retardant Finished Cotton Fabric. Cellulose 2017, 24, 2619–2634. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Chen, Y.; Wan, C.; Zhang, G. A High Molecular Weight Formaldehyde-Free Polymer Flame Retardant Made from Polyvinyl Alcohol for Cellulose. Int. J. Biol. Macromol. 2021, 166, 117–126. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Zhang, Z.; Sun, H.; Kong, D.; Lu, Z. Durable Flame Retardant Cotton Fabrics Modified with a Novel Silicon–Phosphorus–Nitrogen Synergistic Flame Retardant. Cellulose 2020, 27, 9027–9043. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, B.; Liu, J.; Zhu, P.; Liu, Y.; Jiang, Z.; Dong, C.; Lu, Z. Multifunctional Antimicrobial and Flame Retardant Cotton Fabrics Modified with a Novel N,N-Di(Ethyl Phosphate) Biguanide. Cellulose 2020, 27, 7255–7269. [Google Scholar] [CrossRef]
- Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-Based Flame Retardants: When Nature Meets Fire Protection. Mater. Sci. Eng. R Rep. 2017, 117, 1–25. [Google Scholar] [CrossRef]
- Ling, C.; Guo, L. A Novel, Eco-Friendly and Durable Flame-Retardant Cotton-Based Hyperbranched Polyester Derivative. Cellulose 2020, 27, 2357–2368. [Google Scholar] [CrossRef]
- Basak, S.; Samanta, K.K. Thermal Behaviour and the Cone Calorimetric Analysis of the Jute Fabric Treated in Different PH Condition. J. Therm. Anal. Calorim. 2019, 135, 3095–3105. [Google Scholar] [CrossRef]
- Katović, D.; Flinčec Grgac, S.; Bischof-Vukušić, S.; Katović, A. Formaldehyde Free Binding System for Flame Retardant Finishing of Cotton Fabrics. Fibres Text. East. Eur. 2012, 20, 94–98. [Google Scholar]
- International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol; IARC Publications: Lyon, France, 2006; Volume 88, p. 478. ISBN 978-92-832-1288-1. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Formaldehyde-2-Butoxyethanol-And-1--Em-Tert-Em--Butoxypropan-2-ol-2006 (accessed on 26 May 2023).
- Begum, M.S.; Kader, A.; Milašius, R. The Effect of Flame-Retardant Finish on Jute and Jute-cotton Fabrics. In Proceedings of the AUTEX 2022 Conference Proceedings—21st World Textile Conference, Lodz, Poland, 7–10 June 2022; pp. 20–24. [Google Scholar]
- GB/T 17591–2006; Flame Retardant Fabrics. China’s General Administration of Quality Supervision, Inspection and Quarantine and Standardization Administration of China: Beijing, China, 2006.
- Li, S.Q.; Tang, R.C.; Yu, C.B. Flame Retardant Treatment of Jute Fabric with Chitosan and Sodium Alginate. Polym. Degrad. Stab. 2022, 196, 109826. [Google Scholar] [CrossRef]
- Thi Hong Khanh, V.U.; Huong, N.T.H.I. Influence of Crosslinking Agent on the Effectiveness of Flame Retardant Treatment for Cotton Fabric. Ind. Text. 2019, 70, 413–420. [Google Scholar] [CrossRef]
- Stevens, C.V.; Smith, B.F. Cross-Linking of Cotton Cellulose with Ethylene Urea Derivatives Having Varying Hydrogen-Bonding Capabilities: Part I: Effects on the Physical Properties and the Hydrogen-Bonded Structure. Text. Res. J. 1970, 40, 749–760. [Google Scholar] [CrossRef]
- Lam, Y.L.; Kan, C.W.; Yuen, C.W.M. Effect of Titanium Dioxide on the Flame-Retardant Finishing of Cotton Fabric. J. Appl. Polym. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef]
- Saville, B.P. Physical Testing of Textiles; Woodhead: Cambridge, UK, 1999. [Google Scholar]
- Jothibasu, S.; Mohanamurugan, S.; Vijay, R.; Lenin Singaravelu, D.; Vinod, A.; Sanjay, M.R. Investigation on the Mechanical Behavior of Areca Sheath Fibers/Jute Fibers/Glass Fabrics Reinforced Hybrid Composite for Light Weight Applications. J. Ind. Text. 2020, 49, 1036–1060. [Google Scholar] [CrossRef]
- Paiva, M.C.; Ammar, I.; Campos, A.R.; Cheikh, R.B.; Cunha, A.M. Alfa Fibres: Mechanical, Morphological and Interfacial Characterization. Compos. Sci. Technol. 2007, 67, 1132–1138. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Kenny, J.M.; Puglia, D.; Santulli, C.; Sarasini, F. Morphological, Thermal and Mechanical Characterization of Okra (Abelmoschus Esculentus) Fibres as Potential Reinforcement in Polymer Composites. Compos. Sci. Technol. 2010, 70, 116–122. [Google Scholar] [CrossRef]
- Sonia, A.; Priya Dasan, K. Chemical, Morphology and Thermal Evaluation of Cellulose Microfibers Obtained from Hibiscus Sabdariffa. Carbohydr. Polym. 2013, 92, 668–674. [Google Scholar] [CrossRef]
- Yang, H.; Yang, C.Q. Nonformaldehyde Flame Retardant Finishing of the Nomex/Cotton Blend Fabric Using a Hydroxy-Functional Organophosphorus Oligomer. J. Fire Sci. 2007, 25, 425–446. [Google Scholar] [CrossRef]
- Benhamadouche, L.; Rokbi, M.; Osmani, H.; Jawaid, M.; Asim, M.; Supian, A.B.M.; Mekideche, S.; Moussaoui, N.; Fouad, H.; Khiari, R. Characterization of Physical and Mechanical Properties of Recycled Jute Fabric Reinforced Polypropylene Composites. Polym. Compos. 2021, 42, 5435–5444. [Google Scholar] [CrossRef]
- Pappas, C.; Tarantilis, P.A.; Daliani, I.; Mavromoustakos, T.; Polissiou, M. Comparison of Classical and Ultrasound-Assisted Isolation Procedures of Cellulose from Kenaf (Hibiscus Cannabinus L.) and Eucalyptus (Eucalyptus Rodustrus Sm.). Ultrason. Sonochem. 2002, 9, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Q.; Luo, Z.; Wen, L.; Cen, K. Mechanism Study on Cellulose Pyrolysis Using Thermogravimetric Analysis Coupled with Infrared Spectroscopy. Front. Ener. Power Eng. China 2007, 1, 413–419. [Google Scholar] [CrossRef]
- Zhu, P.; Sui, S.; Wang, B.; Sun, K.; Sun, G. A Study of Pyrolysis and Pyrolysis Products of Flame-Retardant Cotton Fabrics by DSC, TGA, and PY-GC-MS. J. Anal. Appl. Pyrolysis 2004, 71, 645–655. [Google Scholar] [CrossRef]
- Chen, Y.; Frendi, A.; Tewari, S.S.; Sibulkin, M. Combustion Properties of Pure and Fire-Retarded Cellulose. Combust. Flame 1991, 84, 121–140. [Google Scholar] [CrossRef]
- Lessan, F.; Montazer, M.; Moghadam, M.B. A Novel Durable Flame-Retardant Cotton Fabric Using Sodium Hypophosphite, Nano TiO2 and Maleic Acid. Thermochim. Acta 2011, 520, 48–54. [Google Scholar] [CrossRef]
- Yang, Z.; Fei, B.; Wang, X.; Xin, J.H. A Novel Halogen-Free and Formaldehyde-Free Flame Retardant for Cotton Fabrics. Fire Mater. 2012, 36, 31–39. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, S.; Horrocks, A.R. Evidence of Interaction in Flame-Retardant Fibre-Intumescent Combinations by Thermal Analytical Techniques. Thermochim. Acta 1997, 294, 113–125. [Google Scholar] [CrossRef]
- Gatlin, C.G. IARC Classifies Formaldehyde as Carcinogenic. Oncol. Times 2004, 26, 72. [Google Scholar] [CrossRef]
- Protano, C.; Buomprisco, G.; Cammalleri, V.; Pocino, R.N.; Marotta, D.; Simonazzi, S.; Cardoni, F.; Petyx, M.; Iavicoli, S.; Vitali, M. The Carcinogenic Effects of Formaldehyde Occupational Exposure: A Systematic Review. Cancers 2022, 14, 165. [Google Scholar] [CrossRef]
- Scheman, A.J.; Carroll, P.A.; Brown, K.H.; Osburn, A.H. Formaldehyde-Related Textile Allergy: An Update. Contact Dermat. 1998, 38, 332–336. [Google Scholar] [CrossRef]
- Fowler, J.F., Jr.; Skinner, S.M.; Belsito, D.V. Allergic Contact Dermatitis from Formaldehyde Resins in Permanent Press Clothing: An Underdiagnosed Cause of Generalized Dermatitis. J. Am. Acad. Dermatol. 1992, 27, 962–968. [Google Scholar] [CrossRef]
- Sidney, B.L.; Reinhardt, R.M. What Do Formaldehyde Tests Measure? Text. Chem. Color. 1981, 13, 131–135. [Google Scholar]
- Mohsin, M.; Ramzan, N.; Quatab, H.G.; Ahmad, S.W.; Sarwar, N. Synthesis of Halogen and Formaldehyde Free Bio Based Fire Retardant for Cotton. Ind. Text. 2017, 68, 221–225. [Google Scholar] [CrossRef]
- United States Government Accountability Office. Formaldehyde in Textiles; United States Government Accountability Office: Washington, DC, USA, 2010; pp. 1–53. Available online: https://www.gao.gov/assets/gao-10-875.pdf (accessed on 26 May 2023).
- Senaldi, C.; Summa, C.; Piccinini, P. European Survey on the Release of Formaldehyde from Textiles; EUR 22710 EN; European Commission: Brussels, Belgium, 2007; JRC36150; ISBN 9789279052156. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC36150 (accessed on 26 May 2023).
- Basak, S.; Samanta, K.K.; Saxena, S.; Chattopadhyay, S.K.; Narkar, R.; Mahangade, R.; Hadge, G.B. Flame Resistant Cellulosic Substrate Using Banana Pseudostem Sap. Pol. J. Chem. Technol. 2015, 17, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.; Liao, W.; Deng, S.B.; Cao, Z.J.; Wang, Y.Z. Flame Retardation of Cellulose-Rich Fabrics via a Simplified Layer-by-Layer Assembly. Carbohydr. Polym. 2016, 151, 434–440. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, Q.Y.; Cheng, B.W.; Ren, Y.L.; Zhang, Y.G.; Ding, C. Durable Flame Retardant Cellulosic Fibers Modified with Novel, Facile and Efficient Phytic Acid-Based Finishing Agent. Cellulose 2018, 25, 799–811. [Google Scholar] [CrossRef]
Chemical Name | Chemical Formula |
---|---|
Pyrovatex CP New | |
Knittex FFRC (dihydroxyethylene urea) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begum, M.S.; Kader, A.; Milašius, R. Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics. Polymers 2023, 15, 2563. https://doi.org/10.3390/polym15112563
Begum MS, Kader A, Milašius R. Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics. Polymers. 2023; 15(11):2563. https://doi.org/10.3390/polym15112563
Chicago/Turabian StyleBegum, Most Setara, Abdul Kader, and Rimvydas Milašius. 2023. "Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics" Polymers 15, no. 11: 2563. https://doi.org/10.3390/polym15112563
APA StyleBegum, M. S., Kader, A., & Milašius, R. (2023). Flame-Retardance Functionalization of Jute and Jute-Cotton Fabrics. Polymers, 15(11), 2563. https://doi.org/10.3390/polym15112563