Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches
Abstract
:1. Introduction
2. Degradation by Bacteria
Bacteria | Plastic Type | Observation of Degradations | Localization | Reference |
---|---|---|---|---|
Genus Pseudomonas, Alcanivorax, Tenacibaculum | PCL, poly(b-hydroxybutyrate/valerate) (PHB/V), polybutylene succinate (PBS) | Morphological observation (SEM); tensile strength | Deep sea | [38] |
Pseudomonas sp., Rhodococcus sp., Clonostachys rosea | PBSA, polybutylene succinate-co-adipate (PBS), PCL, PLA | Morphological observation (SEM) | Arctic region | [31] |
Kocuria palustris Bacillus pumilus, Bacillus subtilis | LDPE | Weight loss; FT-IR observation | Pelagic Seawater | [39] |
Vibrio alginolyticus, Vibrio parahemolyticus | Polyvinyl alcohol linear low-density polyethylene (PVA-LLDPE) | Morphological observation (SEM); breaking strength | Seawater | [40] |
Genus Bacillus | PVC, LDPE, HDPE | Weight loss; FT-IR observation; morphological observation (SEM) | Seawater | [41] |
Brevibacillus borstelensis | HDPE | FT-IR observation; morphological observation (SEM) | Seawater | [42] |
Pseudomonas sp., Arthrobacter sp. | HDPE | Weight loss; FT-IR observation | Marine ecosystem | [44] |
Lysinibacillus sp., Salinibacterium sp. | PE | FT-IR observation; morphological observation (SEM) | Surface seawater | [28] |
Rhodococcus sp., Bacillus sp. | PP | Weight loss; FT-IR observation; morphological observation (SEM) | Mangrove sediment | [43] |
Bacillus cereus, Bacillus sphericus, Vibrio furnisii, Brevundimonas vesicularis | N6, N66 | Weight loss; FT-IR observation; DSC; epi-fluorescence microscopy | Marine ecosystem | [27] |
Muricauda sp., Pelomonas sp., Sphingomonas sp., Acinetopbacter sp., Staphylococcus epidermidis, Thalassospira sp. | Polyester | Marine ecosystem | [45] | |
Thalassospira povalilytica | PVA | Marine ecosystem | [46] |
3. Degradation by Marine Fungi
Fungi | Plastic Type | Observation of Degradations | Localization | Reference |
---|---|---|---|---|
Aspergillus tubingensis, Aspergillus flavus | HDPE | Weight loss; FT-IR observation; morphological observation (SEM) | Mangrove | [47] |
Aspergillus 1997 sp., Penicillium sp. | LDPE | Weight loss; morphological observation (SEM); formation of carbon dioxyde | Red Seawater | [56] |
Aspergillus caespitosus, Phialophora alba, Paecilomyces variotii, Aspergillus terreus, Alternaria alternata, Eupenicillium hirayamae | LDPE | Morphological observation (SEM) | Red Seawater | [48] |
Aspergillus terreus, Aspergillus sydowii | LDPE, PE | Weight loss; FT-IR observation; morphological observation (SEM) | Seawater and mangrove | [57] |
Zalerion maritimum | PET | Weight loss | Seawater | [8] |
Penicillium simplicissimum, Paecilomyces farinosus, Aspergillus fumigatus. | PHB | Weight loss; morphological observation (SEM) | Soils | [58] |
Asteromyces cruciatus, Candida guillermondii, Debaryomyces hansenii, Nia vibrissa | poly-3-hydroxyalkanoates (PHA), PHB | Complete degradation | Seawater | [60] |
Fusarium oxysporium, Paecilomyces lilacinus, Paecilomyces farinosus | PHBV | Weight loss; morphological observation | Soils | [59] |
4. Degradation by Microalgae
Algae | Plastic Type | Observation of Degradations | Localization | Reference |
---|---|---|---|---|
Chlorella fusca | Bisphenol A (BPA) | Weight loss | Aquatic and soil environment | [66] |
Chlorella vulgaris | BPA | Decrease in concentration (Thermo Trace GC and GC-MS) | Algae culture laboratory | [67] |
Phormidium lucidum, Oscillatoria subbrevis, Lyngbya diguetii, Nostoc carneum, and Cylindrospermum muscicola | PE | Growth of the alga using PE | Domestic sewage water | [75] |
Oscillatoria. limnetica, Phormidium calcicola, Oscillatoria earlei, Lyngbya cinerascens, Nostoc linckia, Spirulina major, Hydrocoleum sp., Pithophora sp., Scenedesmus quadricauda, Calothrix fusca, Stigeoclonium tenue, Calothrix marchica, Anomoeoneis sp., Oedogonium sp., Arthrospira platensis, Navicula minuta, Nitzschia sp., Navicula dicephala, Nitzschia intermedia, Spirogyra sp. and Synedra tabulata | PE | Morphological observation | River | [68] |
Phormidium tenue, Oscillatoria tenuis, Monoraphidium contortum, Microcystis aeruginosa, Closterium constatum, Chlorella vulgaris, and Amphora ovalis | PE | Morphological observation | Various ponds, lakes, and water bodies of Kota city | [69] |
Oscillatoria princeps, O. acuminate, O. willei, O. amoena, O. splendida, O. vizagapatensis, O. peronata, O. formosa, O. okeni, O. geitleriana, O. limosa, O. chalybea, O. salina, O. rubescens, O.curviceps, O. tenuis and O. laete-virens | PET | Morphological observation | Domestic sewage | [71] |
Chlorella sp. and Cyanobacteria sp. | PET | FT-IR observation; DSC | Seawater | [72] |
Spirulina sp. | Polyethylene Terephthalate (PETE), PP | tensile strength; FT-IR observation; Morphological observation (SEM). | Freshwater | [73] |
Phaeodactylum tricornutum | PETE | Ultra-high performance liquid chromatography (UHPLC); morphological observation (SEM). | Seawater | [74] |
Uronema africanum | LDPE | Optical microscopy; dark field microscopy; gas chromatography; weight loss; FT-IR observation; SEM; atomic force microscopical (AFM). | Seawater | [70] |
5. Influence of Environmental Factors on Degradation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics—The Facts 2021. Available online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (accessed on 9 September 2022).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [Green Version]
- Kubowicz, S.; Booth, A.M. Biodegradability of Plastics: Challenges and Misconceptions. Environ. Sci. Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef]
- Paul, M.B.; Stock, V.; Cara-Carmona, J.; Lisicki, E.; Shopova, S.; Fessard, V.; Braeuning, A.; Sieg, H.; Böhmert, L. Micro- and Nanoplastics—Current State of Knowledge with the Focus on Oral Uptake and Toxicity. Nanoscale Adv. 2020, 2, 4350–4367. [Google Scholar] [CrossRef]
- Barron, A.; Sparks, T.D. Commercial Marine-Degradable Polymers for Flexible Packaging. Iscience 2020, 23, 101353. [Google Scholar] [CrossRef]
- Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E.; Linley, T.D. Microplastics and Synthetic Particles Ingested by Deep-Sea Amphipods in Six of the Deepest Marine Ecosystems on Earth. R. Soc. Open Sci. 2019, 6, 180667. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.M.; Yang, J.; Criddle, C.S. Microplastics pollution and reduction strategies. Front. Environ. Sci. Eng. 2017, 11, 6. [Google Scholar] [CrossRef]
- Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.M.; Pereira, R.; Pereira, M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 2017, 15, 10–15. [Google Scholar] [CrossRef]
- Federici, S.; Ademovic, Z.; Amorim, M.J.B.; Bigalke, M.; Cocca, M.; Depero, L.E.; Dutta, J.; Fritzsche, W.; Hartmann, N.B.; Kalčikova, G.; et al. COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics 2022, 1, 282–290. [Google Scholar] [CrossRef]
- Anbumani, S.; Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 2018, 25, 14373–14396. [Google Scholar] [CrossRef]
- Green, D.S.; Boots, B.; Sigwart, J.; Jiang, S.; Rocha, C. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ. Pollut. 2016, 208 Pt B, 426–434. [Google Scholar] [CrossRef]
- Rist, S.; Hartmann, N.B. Aquatic ecotoxicity of microplastics and nanoplastics: Lessons learned from engineered nanomaterials. In Freshwater Microplastics; Springer: Cham, Switzerland, 2018; pp. 25–49. [Google Scholar]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Grassie, N.; Scott, G. Polymer Degradation and Stabilisation; Cambridge University Press: New York, NY, USA, 1988; p. 222. [Google Scholar]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- van Velzen, E.U.T.; Santomasi, G. Tailor-made enzymes for plastic recycling. Nature 2022, 604, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Danso, D.C.J.; Streit, W.R. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 2019, 85, e01095-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances. Int. Biodeterior. Biodegrad. 2003, 52, 69–91. [Google Scholar] [CrossRef]
- Yang, X.G.; Wen, P.P.; Yang, Y.F.; Jia, P.P.; Li, W.G.; Pei, D.S. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front. Microbiol. 2023, 13, 1001750. [Google Scholar] [CrossRef]
- Bhatta, P.; Bhatt, K.; Huanga, Y.; Lia, J.; Wua, S.; Chena, S. Biofilm formation in xenobiotic-degrading microorganisms. Crit. Rev. Biotechnol. 2022, 28, 1–21. [Google Scholar] [CrossRef]
- Priyanka, N.; Archana, T. Biodegradability of Polythene and Plastic by the Help of Microorganism: A Way for Brighter Future. J. Environ. Anal. Toxicol. 2011, 1, 111. [Google Scholar] [CrossRef]
- Grima, S.; Bellon-Maurel, V.; Feuilloley, P.; Silvestre, F. Aerobic biodegradation of polymers in solid-state conditions: A review of environmental and physicochemical parameter settings in laboratory simulations. J. Polym. Environ. 2000, 8, 183–195. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Sudhakar, M.; Priyadarshini, C.; Doble, M.; Murthy, S.; Venkatesan, R. Marine bacteria mediated degradation of nylon 66 and 6. Int. Biodeterior. Biodegrad. 2007, 60, 144–151. [Google Scholar] [CrossRef]
- Delacuvellerie, A.; Cyriaque, V.; Gobert, S.; Benali, S.; Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low density polyethylene degradation. J. Hazard. Mater. 2019, 380, 120899. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Shahid, M.; Azeem, F.; Rasul, I.; Shah, A.A.; Noman, M.; Hameed, A.; Manzoor, N.; Manzoor, I.; Muhammad, S. Biodegradation of plastics: Current scenario and future prospects for environmental safety. Environ. Sci. Pollut. Res. 2018, 25, 7287–7298. [Google Scholar] [CrossRef] [PubMed]
- Sheth, M.U.; Kwartler, S.K.; Schmaltz, E.R.; Hoskinson, S.M.; Martz, E.J.; Dunphy-Daly, M.M.; Schultz, T.F.; Read, A.J.; Eward, W.C.; Somarelli, J.A. Bioengineering a Future Free of Marine Plastic Waste. Front. Mar. Sci. 2019, 6, 624. [Google Scholar] [CrossRef] [Green Version]
- Syranidou, E.; Karkanorachaki, K.; Amorotti, F.; Repouskou, E.; Kroll, K.; Kolvenbach, B.; Corvini, P.F.; Fava, F.; Kalogerakis, N. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films. PLoS ONE 2017, 12, e0183984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivan, A.; Santo, M.; Pavlov, V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 2006, 72, 346–352. [Google Scholar] [CrossRef]
- Lobelle, D.; Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 2011, 62, 197–200. [Google Scholar] [CrossRef]
- Urbanek, A.K.; Rymowicz, W.; Mironczuk, A.M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 2018, 102, 7669–7678. [Google Scholar] [CrossRef] [Green Version]
- Pathak, V.; Navneet, M. Review on the Current Status of Polymer Degradation: A Microbial Approach. Bioresour. Bioprocess. 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Ma, J.; Sun, Y.; Zhou, T.; Zhao, Y.; Yu, F. Microbial degradation and other environmental aspects of microplastics/plastics. Sci. Total Environ. 2020, 715, 136968. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, S.; Ray, S. Study of microbes having potentiality for biodegradation of plastics. Environ. Sci. Pollut. Res. Int. 2013, 20, 4339–4355. [Google Scholar] [CrossRef]
- Williams, D.F. Enzymic Hydrolysis of Polylactic Acid. Eng. Med. 1981, 10, 5–7. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of polyesters by lipases. Nature 1977, 270, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Bosch, R.; Gibson, M.I.; Christie-Oleza, J.A. Plasticizer Degradation by Marine Bacterial Isolates: A Proteogenomic and Metabolomic Characterization. Environ. Sci. Technol. 2020, 54, 2244–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekiguchi, T.; Saika, A.; Nomura, K.; Watanabe, T.; Watanabe, T.; Fujimoto, Y.; Enoki, M.; Sato, T.; Kato, C.; Kanehiro, H. Biodegradation of Aliphatic Polyesters Soaked in Deep Seawaters and Isolation of Poly (ε-caprolactone)-degrading Bacteria. Polym. Degrad. Stab. 2011, 96, 1397–1403. [Google Scholar] [CrossRef]
- Harshvardhan, K.; Jha, B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters Arabian Sea, India. Mar. Pollut. Bull. 2013, 77, 100–106. [Google Scholar] [CrossRef]
- Raghul, S.S.; Bhat, S.G.; Chandrasekaran, M.; Francis, V.; Thachil, E.T. Biodegradation of Polyvinyl Alcohol-Low Linear Density Polyethylene-Blended Plastic Film by Consortium of Marine Benthic Vibrios. Int. J. Environ. Sci. Technol. 2013, 11, 1827–1834. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Chaudhary, D.R.; Jha, B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ. Sci. Pollut. Res. 2019, 26, 1507–1516. [Google Scholar] [CrossRef]
- Mohanrasu, K.; Premnath, N.; Siva Prakash, G.; Sudhakar, M.; Boobalan, T.; Arun, A. Exploring Multi Potential Uses of Marine Bacteria; an Integrated Approach for PHB Production, PAHs and Polyethylene Biodegradation. J. Photochem. Photobiol. B Biol. 2018, 185, 55–65. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeteriation of polypropylene microplastics by bacillus sp. and rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Natarajan, K.; Hemambika, B.; Ramesh, N.; Sumathi, C.S.; Kottaimuthu, R.; Kannan, V.R. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett. Appl. Microbiol. 2010, 51, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Debroas, D.; Mone, A.; Ter Halle, A. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders. Sci. Total Environ. 2017, 599–600, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Nogi, Y.; Yoshizumi, M.; Miyazaki, M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int. J. Syst. Evol. Microbiol. 2014, 64, 1149–1153. [Google Scholar] [CrossRef] [PubMed]
- Devi, R.S.; Kannan, V.R.; Nivas, D.; Kannan, K.; Chandru, S.; Antony, A.R. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India. Mar. Pollut. Bull. 2015, 96, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of Low 44Density Polyethylene (LDPE) by Mangrove fungi from the red sea coast. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 125–143. [Google Scholar] [CrossRef]
- Mehra, R.; Muschiol, J.; Meyer, A.S.; Kepp, K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018, 8, 17285. [Google Scholar] [CrossRef] [Green Version]
- Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar] [CrossRef]
- Ronkvist, Å.M.; Xie, W.; Lu, W.; Gross, R.A. Cutinase-catalyzed Hydrolysis of Poly(Ethylene Terephthalate). Macromolecules 2009, 42, 5128–5138. [Google Scholar] [CrossRef]
- Wang, Y.; Barth, D.; Tamminen, A.; Wiebe, M.G. Growth of marine fungi on polymeric substrates. BMC Biotechnol. 2016, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, D.; Li, Q.; Zhao, Y.; Li, L.; Lin, H.; Bi, Q.; Zhao, Y. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 2020, 20, 135931. [Google Scholar] [CrossRef]
- Santacruz-Juárez, E.; Buendia-Corona, R.E.; Ramírez, R.E.; Sánchez, C. Fungal enzymes for the degradation of polyethylene: Molecular docking simulation and biodegradation pathway proposal. J. Hazard. Mater. 2021, 411, 125118. [Google Scholar] [CrossRef] [PubMed]
- Otero, I.V.R.; Ferro, M.; Bacci, M.; Ferreira, H.; Sette, L.D. De novo transcriptome assembly: A new laccase multigene family from the marine-derived basidiomycete Peniophora sp. CBMAI 1063. AMB Express 2017, 7, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshehrei, F. Biodegradation of Low Density Polyethylene by Fungi Isolated from Red Sea Water. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Sangale, M.K.; Shahnawaz, M.; Ade, A.B. Potential of Fungi Isolated from the Dumping Sites Mangrove Rhizosphere Soil to Degrade Polythene. Sci. Rep. 2019, 9, 5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Park, S.B.; Tran, Q.G.; Cho, D.H.; Choi, D.Y.; Lee, Y.J.; Kim, H.S. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb. Cell Fact. 2020, 19, 97. [Google Scholar] [CrossRef]
- Sang, B.I.; Hori, K.; Tanji, Y.; Unno, H. Fungal contribution to in situ biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl. Microbiol. Biotechnol. 2002, 58, 241–247. [Google Scholar] [CrossRef]
- Matavulj, M.; Molitoris, H. Marine fungi: Degraders of poly-3-hydroxyalkanoate based plastic materials. Proc. Nat. Sci. Matica Srpska Novi Sad 2009, 116, 253–265. [Google Scholar] [CrossRef]
- Mondal, M.; Halder, G.; Oinam, G.; Indrama, T.; Tiwari, O.N. Bioremediation of Organic and Inorganic Pollutants Using Microalgae. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 223–235. [Google Scholar]
- Ford, T.E.; Mitchell, R. The Ecology of Microbial Corrosion. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Springer: Boston, MA, USA, 1990; Volume 11, pp. 231–262. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J. Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. 2018, 25, 33508–33520. [Google Scholar] [CrossRef]
- Vimal Kumar, R.; Kanna, G.R.; Elumalai, S. Biodegradation of polyethylene by green photosynthetic microalgae. J. Bioremediation Biodegrad. 2017, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.G.; Jeon, H.J.; Kim, M.N. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. J. Biorem. Biodegrad. 2012, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- Hirooka, T.; Nagase, H.; Uchida, K.; Hiroshige, Y.; Ehara, Y.; Nishikawa, J.-I.; Nishihara, T.; Miyamoto, K.; Hirata, Z. Biodegradation of Bisphenol A and Disappearance of Its Estrogenic Activity by the Green Alga Chlorella Fusca var. vacuolata. Environ. Toxicol. Chem. 2005, 24, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
- Gulnaz, O.; Dincer, S. Biodegradation of bisphenol A by Chlorella vulgaris and Aeromonas hydrophilia. J. Appl. Biol. Sci. 2009, 3, 79–84. [Google Scholar]
- Sarmah, P.; Rout, J.J.P. Algal colonization on polythene carry bags in a domestic solid waste dumping site of Silchar town in Assam. Phykos 2018, 48, 67–77. [Google Scholar]
- Sharma, M.; Dubey, A.; Pareek, A. Algal Flora on Degrading Polythene Waste. CIBTech J. Microbiol. 2014, 3, 43–47. [Google Scholar]
- Sanniyasi, E.; Gopal, R.K.; Gunasekar, D.K.; Raj, P.P. Biodegradation of Low-Density Polyethylene (LDPE) Sheet by Microalga, Uronema africanum Borge. Sci. Rep. 2021, 11, 17233. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, P.; Rout, J. Colonisation of Oscillatoria on Submerged Polythenes in Domestic Sewage Water of Silchar Town, Assam (India). J. Algal Biomass Util. 2017, 8, 135–144. [Google Scholar]
- Bhuyar, P.; Sundararaju, S.; Feng, H.X.; Rahim, M.H.A.; Muniyasamy, S.; Maniam, G.P.; Govindan, N. Evaluation of microalgae’s plastic biodeterioration property by a consortium of Chlorella sp. and Cyanobacteria sp. Environ. Res. Eng. Manag. 2021, 77, 86–98. [Google Scholar] [CrossRef]
- Khoironi, A.; Anggoro, S.; Sudarno, S. Evaluation of the interaction among microalgae Spirulina sp, plastics polyethylene terephthalate and polypropylene in freshwater environment. J. Ecol. Eng. 2019, 20, 161–173. [Google Scholar] [CrossRef]
- Moog, D.; Schmitt, J.; Senger, J.; Zarzycki, J.; Rexer, K.-H.; Linne, U.; Erb, T.; Maier, U.G. Using a Marine Microalga as a Chassis for Polyethylene Terephthalate (PET) Degradation. Microb. Cell Fact. 2019, 18, 171. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, P.; Rout, J.A. Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India). Curr. Trends Biotechnol. Pharm. 2018, 12, 2230–7303. [Google Scholar]
- Kliem, S.; Kreutzbruck, M.; Bonten, C. Review on the Biological Degradation of Polymers in Various Environments. Materials 2020, 13, 4586. [Google Scholar] [CrossRef] [PubMed]
- Pischedda, A.; Tosin, M.; Degli-Innocenti, F. Biodegradation of plastics in soil: The effect of temperature. Polym. Degrad. Stab. 2019, 170, 109017. [Google Scholar] [CrossRef]
- Albright, V.C.; Chai, Y. Knowledge Gaps in Polymer Biodegradation Research. Environ. Sci. Technol. 2021, 55, 11476–11488. [Google Scholar] [CrossRef] [PubMed]
- Bastioli, C. (Ed.) Handbook of Biodegradable Polymers; Rapra Technol. Lim.: Shropshire, UK, 2005. [Google Scholar]
- Otake, Y.; Kobayashi, T.; Asabe, H.; Murakami, N.; Ono, K. Biodegradation of Low-Density Polyethylene, Polystyrene, Polyvinyl Chloride, and Urea Formaldehyde Resin Buried under Soil for over 32 Years. J. Appl. Polym. Sci. 1995, 56, 1789–1796. [Google Scholar] [CrossRef]
- Feuilloley, P.; Cesar, G.; Benguigui, L.; Grohens, Y.; Pillin, I.; Bewa, H.; Lefaux, S.; Jamal, M. Degradation of polyethylene designed for agricultural purposes. J. Polym. Environ. 2005, 13, 349–355. [Google Scholar] [CrossRef]
- Huang, D.; Xu, Y.; Lei, F.; Yu, X.; Ouyang, Z.; Chen, Y.; Jia, H.; Guo, X. Degradation of Polyethylene Plastic in Soil and Effects on Microbial Community Composition. J. Hazard. Mater. 2021, 416, 126173. [Google Scholar] [CrossRef]
- Montazer, Z.; Habibi Najafi, M.B.; Levin, D.B. Challenges with Verifying Microbial Degradation of Polyethylene. Polymers 2020, 12, 123. [Google Scholar] [CrossRef] [Green Version]
- Ghatge, S.; Yang, Y.; Ahn, J.H.; Hur, H.G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 27. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Tribedi, P.; Sil, A.K. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm. Environ. Sci. Pollut. Res. Int. 2013, 20, 4146–4153. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial Enzymes for the Recycling of Recalcitrant Petroleum-Based Plastics: How Far Are We? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, D.L.; Mayer, J.M.; Greenberger, M.; Gross, R.; McCarthy, S. Degradation Methods and Degradation Kinetics of Polymer Films. Polym. Degrad. Stab. 1994, 45, 165–172. [Google Scholar] [CrossRef]
- Hao, Z.; Sun, M.; Ducoste, J.J.; Benson, C.H.; Luettich, S.; Castaldi, M.J.; Barlaz, M.A. Heat Generation and Accumulation in Municipal Solid Waste Landfills. Environ. Sci. Technol. 2017, 51, 12434–12442. [Google Scholar] [CrossRef] [PubMed]
- Katsanevakis, S.; Verriopoulos, G.; Nicolaidou, A.; ThessalouLegaki, M. Effect of Marine Litter on the Benthic Megafauna of Coastal Soft Bottoms: A Manipulative Field Experiment. Mar. Pollut. Bull. 2007, 54, 771–778. [Google Scholar] [CrossRef]
- Itävaara, M.; Karjomaa, S.; Selin, J.-F. Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 2002, 46, 879–885. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Liao, J.; Chen, Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. J. Hazard. Mater. 2021, 418, 126329. [Google Scholar] [CrossRef]
- Siracusa, V. Microbial Degradation of Synthetic Biopolymers Waste. Polymers 2019, 11, 1066. [Google Scholar] [CrossRef] [Green Version]
- Ikada, E. Relationship between Photodegradability and Biodegradability of Some Aliphatic Polyesters. J. Photopolym. Sci. Technol. 1999, 12, 251–256. [Google Scholar] [CrossRef]
- Sangwan, P.; Wu, D.Y. New Insights into Polylactide Biodegradation from Molecular Ecological Techniques. Macromol. Biosci. 2008, 8, 304–315. [Google Scholar] [CrossRef]
- De Falco, F.; Avolio, R.; Errico, M.E.; Di Pace, E.; Avella, M.; Cocca, M.; Gentile, G. Comparison of biodegradable polyesters degradation behavior in sand. J. Hazard. Mater. 2021, 416, 126231. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.T.; Camargo, L.P.; Miller, S.A. Marine-degradable polylactic acid. Green Chem. 2014, 16, 1768–1773. [Google Scholar] [CrossRef]
- Manfra, L.; Marengo, V.; Libralato, G.; Costantini, M.; De Falco, F.; Cocca, M. Biodegradable polymers: A real opportunity to solve marine plastic pollution? J. Hazard. Mater. 2021, 416, 125763. [Google Scholar] [CrossRef] [PubMed]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef] [Green Version]
- Knott, B.C.; Erickson, E.; Allen, M.D.; Gado, J.E.; Graham, R.; Kearns, F.L.; Pardo, I.; Topuzlu, E.; Anderson, J.J.; Austin, H.P.; et al. characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 2020, 117, 25476–25485. [Google Scholar] [CrossRef] [PubMed]
- Carniel, A.; Valoni, É.; Nicomedes, J.; Gomes, A.d.C.; de Castro, A.M. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem. 2017, 59, 84–90. [Google Scholar] [CrossRef]
- Bermúdez-García, E.; Peña-Montes, C.; Martins, I.; Pais, J.; Pereira, C.S.; Sánchez, S.; Farrés, A. Regulation of the cutinases expressed by Aspergillus nidulans and evaluation of their role in cutin degradation. Appl. Microbiol. Biotechnol. 2019, 103, 3863–3874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viel, T.; Manfra, L.; Zupo, V.; Libralato, G.; Cocca, M.; Costantini, M. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers 2023, 15, 2673. https://doi.org/10.3390/polym15122673
Viel T, Manfra L, Zupo V, Libralato G, Cocca M, Costantini M. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers. 2023; 15(12):2673. https://doi.org/10.3390/polym15122673
Chicago/Turabian StyleViel, Thomas, Loredana Manfra, Valerio Zupo, Giovanni Libralato, Mariacristina Cocca, and Maria Costantini. 2023. "Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches" Polymers 15, no. 12: 2673. https://doi.org/10.3390/polym15122673
APA StyleViel, T., Manfra, L., Zupo, V., Libralato, G., Cocca, M., & Costantini, M. (2023). Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers, 15(12), 2673. https://doi.org/10.3390/polym15122673