Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating Formulation and Application
2.3. Characterization Methods
3. Results and Discussion
3.1. Coating Preparation and Curing Process
3.2. Tribological Coating Performance
3.3. Mechanical Coating Performance
3.4. Coating Surface Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Ramon, E.; Sguzzo, C.; Moreira, P.M.P.G. A review of recent research on bio-based epoxy systems for engineering applications and potentialities in the aviation sector. Aerospace 2018, 5, 110. [Google Scholar] [CrossRef]
- Guadagno, L.; Raimondo, M.; Vittoria, V.; Vertuccio, L.; Naddeo, C.; Russo, S.; De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. Development of epoxy mixtures for application in aeronautics and aerospace. RSC Adv. 2014, 30, 15474–15488. [Google Scholar] [CrossRef]
- Manouchehri, S.; Bagheri, B.; Rad, S.H.; Nezhad, M.N.; Kim, Y.C.; Park, O.O.; Farokhi, M.; Jouyandeh, M.; Ganjali, M.R.; Yazdi, M.K.; et al. Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Prog. Org. Coat. 2019, 131, 389–396. [Google Scholar] [CrossRef]
- Sreehari, H.; Sethuleskshmi, A.S.; Saritha, A. Bio epoxy coatings: An emergent green anticorrosive coating for the future. Marcomol. Mater. Eng. 2022, 307, 2200004. [Google Scholar] [CrossRef]
- Rad, E.R.; Vahabi, H.; de Anda, A.R.; Saeb, M.R.; Thomas, S. Bio-epoxy resins with inherent flame retardancy. Prog. Org. Coat. 2019, 135, 608–612. [Google Scholar] [CrossRef]
- Chrysanthos, M.; Galy, J.; Pascault, J.-P. Influence of the bio-based epoxy prepolymer structure on network properties. Macromol. Mater. Eng. 2013, 298, 1209–1219. [Google Scholar] [CrossRef]
- Han, S.; Kim, W.G.; Yoon, H.G.; Moon, T.J. Curing reaction of biphenyl epoxy resin with different phenolic functional hardeners. J. Polym. Sci. A Polym. Chem. 1998, 36, 773–783. [Google Scholar] [CrossRef]
- Bakar, M.; Szymanska, J.; Rudecka, J.; Fitas, J. Effect of reactive diluents and kaolin on the mechanical properties of epoxy resin. Polym. Polym. Comp. 2010, 18, 503–510. [Google Scholar] [CrossRef]
- Samyn, P.; Bosmans, J.; Cosemans, P. Benchmark study of epoxy coatings with selection of bio-based phenalkamine versus fossil-based amine crosslinkers. Molecules 2023, 28, 4259. [Google Scholar] [CrossRef]
- Suzuki, K.; Miyano, Y.; Kunio, T. Change of viscoelastic properties of epoxy resin in the curing process. J. Appl. Polym. Sci. 1977, 21, 3367–3379. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Fan, L.; Jiang, Y.; Cao, L.; Tang, Z.; Zhu, J. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity. ChemSusChem 2014, 7, 555–562. [Google Scholar] [CrossRef]
- Lascano, D.; Quiles-Carrillo, L.; Torres-Giner, S.; Boronat, T.; Montanes, N. Optimization of the curing and post-curing conditions for the manufacturing of partially bio-based epoxy resins with improved toughness. Polymers 2019, 11, 1354. [Google Scholar] [CrossRef]
- Monte, S.J. Diluents and viscosity modifiers for epoxy resins. In Plastics Additives; Pritchard, G., Ed.; Springer: Dordrecht, The Netherlands, 1998; Volume 1, pp. 211–216. [Google Scholar]
- Dagdag, O.; Hsissou, R.; Safi, Z.; Hamed, O.; Jodeh, S.; Haldhar, R.; Verma, C.; Ebenso, E.E.; El Bachiri, A.; El Gouri, M. Viscosity of epoxy resins based on aromatic diamines, glucose, bisphenolic and bio-based derivatives: A comprehensive review. J. Polym. Res. 2022, 29, 200. [Google Scholar] [CrossRef]
- Mustata, F.; Bicu, I.; Cascaval, C.N. Rheological and thermal behaviour of an epoxy resin modified with reactive diluents. J. Polym. Eng. 1997, 17, 491–506. [Google Scholar] [CrossRef]
- Ramos, J.A.; Pagani, N.; Riccardi, C.C.; Boraajo, J.; Goyanes, S.N.; Mondragon, I. Cure kinetics and shrinkage model for epoxy-amine systems. Polymer 2005, 46, 3323–3328. [Google Scholar] [CrossRef]
- Villanueva, M.; Fraga, I.; Rodriguez-Anon, J.A.; Proupin-Castineiras, J. Study of the influence of a reactive diluent on the rheological properties of an epoxy-diamine system. J. Therm. Anal. Calorim. 2009, 98, 521–525. [Google Scholar] [CrossRef]
- Jagtap, A.R.; More, A. Developments in reactive diluents: A review. Polym. Bull. 2022, 79, 5667–5708. [Google Scholar] [CrossRef]
- Aalto-Korte, K.; Kuuliala, O.; Henriks-Eckerman, M.-L.; Suuronen, K. Contact allergy to reactive diluents and related aliphatic epoxy resins. Contact Derm. 2015, 72, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Karami, Z.; Nademi, F.; Zohuriaan-Mehr, M.J.; Rostami, A. An efficient fully bio-based reactive diluent for epoxy thermosets: 2-[(Oxiran-2-ylmethoxy) methyl] furan versus a petroleum-based counterpart. J. Appl. Polym. Sci. 2017, 134, 44957. [Google Scholar] [CrossRef]
- Muturi, P.; Wang, D.; Dirlikov, S. Epoxidized vegetable oils as reactive diluents I. Comparison of vernonia, epoxidized soybean and epoxidized linseed oils. Prog. Org. Coat. 1994, 25, 85–94. [Google Scholar] [CrossRef]
- Chen, J.; Nie, X.; Liu, Z.; Mi, Z.; Zhou, Y. Synthesis and application of polyepoxide cardanol glycidyl ether as bio-based polyepoxide reactive diluent for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3, 1164–1171. [Google Scholar] [CrossRef]
- Wang, Q.; Thomas, J.; Soucek, M.D. Investigation of UV-curable alkyd coating properties. J. Coat. Technol. Res. 2023, 20, 545–557. [Google Scholar] [CrossRef]
- Liang, B.; Li, R.; Zhang, C.; Yang, Z.; Yuan, T. Synthesis and characterization of a novel tri-functional bio-based methacrylate prepolymer from castor oil and its application in UV-curable coatings. Ind. Crops Prod. 2019, 135, 170–178. [Google Scholar] [CrossRef]
- Sinha, A.; Khan, N.I.; Das, S.; Zhang, J.; Halder, S. Effect of reactive and non-reactive diluents on thermal and mechanical properties of epoxy resin. High Perform. Polym. 2018, 30, 1159–1168. [Google Scholar] [CrossRef]
- Rudawska, A.; Frigione, M. Effect of diluents on mechanical characteristics of epoxy compounds. Polymers 2022, 14, 2277. [Google Scholar] [CrossRef]
- Maiorana, A.; Yue, L.; Manas-Zloczower, I.; Gross, R. Structure–property relationships of a bio-based reactive diluent in a bio-based epoxy resin. J. Appl. Polym. Sci. 2016, 133, 43635. [Google Scholar] [CrossRef]
- Pastarnokienė, L.; Jonikaitė-Švėgždienė, J.; Lapinskaitė, N.; Kulbokaite, R.; Bockuviene, A.; Kochane, T.; Makuska, R. The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coating. J. Coat. Technol. Res. 2023, 20, 1207–1221. [Google Scholar] [CrossRef]
- Kregl, L.; Wallner, G.M.; Lang, R.W.; Mayrhofer, G. Effect of resin modifiers on the structural properties of epoxy resins. J. Appl. Polym. Sci. 2017, 134, 45348. [Google Scholar] [CrossRef]
- Urbaczewski-Espuche, E.; Galy, J.; Gerard, J.-F.; Pascault, J.-P.; Sautereau, H. Influence of chain flexibility and crosslink density on mechanical properties of epoxy/amine networks. Polym. Eng. Sci. 1991, 31, 1572–1580. [Google Scholar] [CrossRef]
- Czub, P. Characterization of an epoxy resin modified with natural oil-based reactive diluents. Macromol. Symp. 2006, 245–246, 533–538. [Google Scholar] [CrossRef]
- Nalawade, P.P.; Soucek, M.D. Modified soybean oil as a reactive diluent: Coating performance. J. Coat. Technol. Res. 2015, 12, 1005–1012. [Google Scholar] [CrossRef]
- Lascano, D.; Quiles-Carrillo, L.; Balart, R.; Boronat, T.; Montanes, N. Kinetic analysis of the curing of a partially bio-based epoxy resin using dynamic differential scanning calorimetry. Polymers 2019, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Patel, R.G.; Patel, V.S. Effects of reactive diluent diepoxidized cardanol and epoxy fortifier on curing kinetics of epoxy resin. J. Therm. Anal. 1989, 35, 47–57. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohanty, S.; Nayak, S.K. Synthesis and characterization of bio-based epoxy blends from renewable resource based epoxidized soybean oil as reactive diluent. Chin. J. Polym. Sci. 2015, 33, 137–152. [Google Scholar] [CrossRef]
- Czub, P. Application of modified natural oils as reactive diluents for epoxy resin. Macromol. Symp. 2006, 242, 60–64. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Khandelwal, V.; Manik, G. Development of toughened bio-based epoxy with epoxidized linseed oil as reactive diluent and cured with bio-renewable crosslinker. Polym. Adv. Technol. 2018, 29, 565–574. [Google Scholar] [CrossRef]
- Aras, O.; Kaya, Y. Effect of reactive and non-reactive diluent on mechanical properties of epoxy resin. Bilecik Şeyh Edebali Univ. J. Sci. 2021, 8, 167–172. [Google Scholar] [CrossRef]
- Khalina, M.; Beheshty, M.H.; Salimi, A. The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Polym. Bull. 2019, 76, 3905–3927. [Google Scholar] [CrossRef]
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2021.
- ISO 2813; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. ISO: Geneva, Switzerland, 2014.
- ISO 4586-2; High-Pressure Decorative Laminates—Sheets Made from Thermosetting Resins—Part 2: Determination of Properties. ISO: Geneva, Switzerland, 2019.
- ISO 19403-2; Paints and Varnishes—Wettability—Part 2: Determination of the Surface Free Energy of Solid Surfaces by Measuring the Contact Angle. ISO: Geneva, Switzerland, 2017.
- Zabel, K.H.; Klaasen, R.P.; Muizebelt, W.J.; Gracey, B.P.; Hallett, C.; Brooks, C.D. Design and incorporation of reactive diluents for air-drying high solids alkyd paints. Prog. Org. Coat. 1999, 35, 255–264. [Google Scholar] [CrossRef]
- Ozgul, E.O.; Ozkul, M.H. Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures. Constr. Build. Mater. 2018, 158, 369–377. [Google Scholar] [CrossRef]
- Wang, R.; Schuma, T.P. Epoxidized glycidyl ester of soybean oil as reactive diluent for epoxy resin. Mater. Sci. 2011, 1, 1–15. [Google Scholar]
- Hong, I.K.; Yoon, Y.S.; Lee, S.B. Selection of thinner for epoxy type resins for neon transformer housing. J. Ind. Eng. Chem. 2012, 18, 1997–2003. [Google Scholar] [CrossRef]
- Yurugi, K.; Fukada, A.; Matsukawa, K. Reactive Diluent and Curable Resin Composition. Patent US6767980, 27 July 2004. [Google Scholar]
- Kathalewar, M.; Sabnis, A. Effect of molecular weight of phenalkamines on the curing, mechanical, thermal and anticorrosive properties of epoxy based coatings. Prog. Org. Coat. 2015, 84, 79–88. [Google Scholar] [CrossRef]
- Hardis, R.; Jessop, J.L.P.; Peters, F.E.; Kessler, M.R. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Compos. A Appl. Sci. Manufact. 2013, 49, 100–108. [Google Scholar] [CrossRef]
- Yi, C.; Rostron, P.; Vahdati, N.; Gunister, E.; Alfantazi, A. Curing kinetics and mechanical properties of epoxy based coatings: The influence of added solvent. Prog. Org. Coat. 2018, 124, 165–174. [Google Scholar] [CrossRef]
- Rosu, D.; Cascaval, C.N.; Mustata, F.; Ciobanu, C. Cure kinetics of epoxy resins studied by non-isothermal DSC data. Thermochim. Acta 2002, 383, 119–127. [Google Scholar] [CrossRef]
- Lakho, D.A.; Yao, D.; Cho, K.; Ishaq, M.; Wang, Y. Study of the curing kinetics toward development of fast-curing epoxy resins. Polym. Plast. Technol. Eng. 2017, 56, 161–170. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Chen, W. A study on the reactive diluent for the solvent-free epoxy anticorrosive coating. J. Chem. Pharm. Res. 2014, 6, 2466–2469. [Google Scholar]
- Urbaczewski, E.; Pascault, J.P.; Sautereau, H.; Riccardi, C.C.; Moschiar, S.S.; Williams, R.J.J. Influence of the addition of an aliphatic epoxide as reactive diluent on the cure kinetics of epoxy/amine formulations. Makromol. Chem. 1990, 191, 943–953. [Google Scholar] [CrossRef]
- Roudsan, G.M.; Mohanty, A.K.; Misra, M. Study of the curing kinetics of epoxy resins with bio-based hardener and epoxidized soybean oil. ACS Sustain. Chem. Eng. 2014, 2, 2111–2116. [Google Scholar]
- Matějka, L.; Dušek, K.; Dobáš, I. Curing of epoxy resins with amines. Polymer Bull. 1985, 14, 309–315. [Google Scholar] [CrossRef]
- Núñez-Regueira, L.; Villanueva, M.; Fraga-Rivas, I. Effect of a reactive diluent on the curing and dynamomechanical properties of an epoxy-diamine system. J. Therm. Anal. Calorim. 2006, 86, 463–468. [Google Scholar] [CrossRef]
- Tambe, S.P.; Jagtap, S.D.; Choudhari, R.N.; Mallik, B.P. Influence of cross-linking agents and curing condition on the performance of epoxy coating. Pigment Resin Technol. 2016, 45, 354–362. [Google Scholar] [CrossRef]
- Molero, G.; Sue, H.J. Scratch behavior of model epoxy resins with different crosslinking densities. Mater. Design 2019, 182, 107965. [Google Scholar] [CrossRef]
- Fernandez-Alvarez, M.; Velasco, F.; Bautista, A. Epoxy powder coatings hot mixed with nanoparticles to improve their abrasive wear. Wear 2020, 448–449, 203211. [Google Scholar] [CrossRef]
- Lange, J.; Luisier, A.; Hult, A. Influence of crosslink density, glass transition temperature and addition of pigment and wax on the scratch resistance of an epoxy coating. J. Coat. Technol. 1997, 69, 77–82. [Google Scholar] [CrossRef]
- Carolan, D.; Ivankovic, A.; Kinloch, A.J.; Sprenger, S.; Taylor, A.C. Toughening of epoxy-based hybrid nanocomposites. Polymer 2016, 97, 179–190. [Google Scholar] [CrossRef]
Product Type | Chemical Formula | EEW | CAS |
---|---|---|---|
DGEBA epoxy resin | Bisphenol A diglycidyl ether | 200 g/mol | 1675-54-3 |
Fossil-based monofunctional diluent (MGE) | Monoglycidyl ether of C12-C14 fatty alcohol | 250 g/mol | 68609-97-2 |
Fossil-based difunctional diluent (DGE) | Ethylene glycol diglycidyl ether | 142 g/mol | 2224-15-9 |
Bio-based trifunctional diluent (TGE) | Glycerol triglycidyl ether | 154 g/mol | 13236-02-7 |
Bio-based multifunctional diluent | Epoxidized soybean oil (ESBO) | 230 g/mol | 8013-07-8 |
Product Type | Chemical Formula | EEW | CAS |
---|---|---|---|
Fossil-based amine (FA) | 100 g/mol | 2855-13-2 + 1477-55-0 | |
Bio-based phenalkamine (PK) | 125 g/mol | 868765-93-9 |
Diluent Type and Concentration (wt.-%) | MGE | DGE | TGE | 30ESBO + TGE | Diluent Type and Concentration (wt.-%) | ESBO |
---|---|---|---|---|---|---|
EEW Value (g/mol) | EEW Value (g/mol) | |||||
0 | 200 | 208.1 | ||||
1 | 203.7 | 192.8 | 194.7 | 201.7 | 10 | 202.6 |
2 | 206.9 | 187.3 | 190.5 | 196.6 | 20 | 205.3 |
3 | 209.6 | 182.8 | 187.1 | 192.4 | 30 | 208.1 |
4 | 212.1 | 179.0 | 184.3 | 189.1 | 40 | 211.0 |
5 | 214.3 | 176.0 | 181.9 | 186.3 | ||
7.5 | 218.8 | 170.2 | 177.3 | 180.8 | ||
Amount (g) of FA per 10 g DGEBA mixed with x g diluent | Amount (g) of FA per 10 g DGEBA mixed with x g diluent | |||||
0 | 5 | 4.81 | ||||
1 | 4.91 | 5.19 | 5.14 | 4.95 | 10 | 4.93 |
2 | 4.83 | 5.34 | 5.25 | 5.08 | 20 | 4.87 |
3 | 4.77 | 5.47 | 5.35 | 5.19 | 30 | 4.80 |
4 | 4.71 | 5.58 | 5.43 | 5.28 | 40 | 4.73 |
5 | 4.66 | 5.68 | 5.50 | 5.36 | ||
7.5 | 4.57 | 5.87 | 5.64 | 5.52 | ||
Amount (g) of PK per 10 g DGEBA mixed with x g diluent | Amount (g) of PK per 10 g DGEBA mixed with x g diluent | |||||
0 | 6.25 | 6.00 | ||||
1 | 6.13 | 6.48 | 6.42 | 6.20 | 10 | 6.17 |
2 | 6.04 | 6.68 | 6.56 | 6.35 | 20 | 6.10 |
3 | 5.96 | 6.84 | 6.68 | 6.49 | 30 | 6.00 |
4 | 5.89 | 6.98 | 6.78 | 6.60 | 40 | 5.92 |
5 | 5.83 | 7.10 | 6.87 | 6.71 | ||
7.5 | 5.71 | 7.34 | 7.05 | 6.91 |
FA-Epoxy | PK-Epoxy | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DHR (J/g) | Tp (°C) | Ea (kJ/mol) | A (min−1) | n (-) | DHR (J/g) | Tp (°C) | Ea (kJ/mol) | A (min−1) | n (-) | |
DGEBA | 295 | 128 | 64.2 | 2.5 × 106 | 0.999 | 281 | 132 | 52.3 | 2.8 × 106 | 0.995 |
DGEBA + 2 wt.-% MGE | 270 | 127 | 50.3 | 1.6 × 106 | 0.998 | 228 | 121 | 38.3 | 0.9 × 106 | 0.998 |
DGEBA + 5 wt.-% MGE | 265 | 126 | 49.8 | 1.5 × 106 | 0.998 | 212 | 122 | 40.2 | 1.0 × 106 | 0.996 |
DGEBA + 2 wt.-% DGE | 310 | 122 | 46.2 | 2.1 × 106 | 0.975 | 254 | 110 | 35.2 | 1.3 × 106 | 0.998 |
DGEBA + 5 wt.-% DGE | 286 | 122 | 47.5 | 2.2 × 106 | 0.988 | 232 | 112 | 39.5 | 1.2 × 106 | 0.986 |
DGEBA + 2 wt.-% TGE | 232 | 106 | 56.2 | 1.1 × 106 | 0.993 | 215 | 99.5 | 42.2 | 0.7 × 106 | 0.999 |
DGEBA + 5 wt.-% TGE | 245 | 108 | 58.2 | 1.0 × 106 | 0.998 | 205 | 106 | 45.1 | 0.6 × 106 | 0.991 |
DGEBA + 20 wt.-% ESBO | 194 | 133 | 83.4 | 1.3 × 106 | 0.998 | 165 | 128 | 76.8 | 0.9 × 106 | 0.990 |
DGEBA + 30 wt.-% ESBO | 185 | 141 | 84.2 | 0.9 × 106 | 0.997 | 159 | 122 | 80.8 | 0.7 × 106 | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samyn, P.; Bosmans, J.; Cosemans, P. Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker. Polymers 2023, 15, 3856. https://doi.org/10.3390/polym15193856
Samyn P, Bosmans J, Cosemans P. Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker. Polymers. 2023; 15(19):3856. https://doi.org/10.3390/polym15193856
Chicago/Turabian StyleSamyn, Pieter, Joey Bosmans, and Patrick Cosemans. 2023. "Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker" Polymers 15, no. 19: 3856. https://doi.org/10.3390/polym15193856
APA StyleSamyn, P., Bosmans, J., & Cosemans, P. (2023). Role of Bio-Based and Fossil-Based Reactive Diluents in Epoxy Coatings with Amine and Phenalkamine Crosslinker. Polymers, 15(19), 3856. https://doi.org/10.3390/polym15193856