A Comparison of Failure Loads for Polycrystalline Zirconia Ceramics with Varying Amounts of Yttria, Glass-Ceramics and Polymers in Two Different Test Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- The crunch the crown tests revealed that the Katana UTML (3Y-PSZ) crowns had significantly lower failure loads than Cercon XT (4Y-PSZ) and BruxZir Anterior (5Y-PSZ) crowns. The IPS e.max Press specimens produced similar failure loads as zirconia crowns with Cercon XT (4Y-PSZ), and BruxZir Anterior (5Y-PSZ) but were stronger than the Katana UTML (3Y-PSZ) specimens.
- Two polymers (Trilor and Juvora) produced the highest failure loads in both the crunch the crown and layered disc tests.
- The failure load of the trilayer disc specimens did not correlate with the failure load of the respective crown specimens for the zirconia, glass-ceramic and polymeric materials.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mühlemann, S.; Lakha, T.; Jung, R.E.; Hämmerle, C.H.F.; Benic, G.I. Prosthetic outcomes and clinical performance of CAD-CAM monolithic zirconia versus porcelain-fused-to-metal implant crowns in the molar region: 1-year results of a RCT. Clin. Oral Implants Res. 2020, 31, 856–864. [Google Scholar] [CrossRef]
- Ezzat, Y.; Sharka, R.; Rayyan, M.; Al-Rafee, M. Fracture resistance of monolithic high-translucency crowns versus porcelain-veneered zirconia crowns after artificial aging: An in vitro study. Cureus 2021, 13, e20640. [Google Scholar] [CrossRef]
- Manziuc, M.M.; Gasparik, C.; Burde, A.V.; Ruiz-López, J.; Buduru, S.; Dudea, D. Influence of manufacturing technique on the color of zirconia restorations: Monolithic versus layered crowns. J. Esthet. Restor. Dent. 2022, 34, 978–987. [Google Scholar] [CrossRef]
- Comba, A.; Paolone, G.; Baldi, A.; Vichi, A.; Goracci, C.; Bertozzi, G.; Scotti, N. Effects of substrate and cement shade on the translucency and color of CAD/CAM lithium-disilicate and zirconia ceramic materials. Polymers 2022, 14, 1778. [Google Scholar] [CrossRef] [PubMed]
- De Lima, E.; Tanaka, C.B.; Meira, J.B.C.; Santos, K.F.; Arashiro, L.; Cribari, L.; Gonzaga, C.C.; Cesar, P.F. Effect of processing methods on the chipping resistance of veneered zirconia. J. Mech. Behav. Biomed. Mater. 2022, 126, 104995. [Google Scholar] [CrossRef]
- Schriwer, C.; Gjerdet, N.R.; Arola, D.; Øilo, M. The effect of preparation taper on the resistance to fracture of monolithic zirconia crowns. Dent. Mater. 2021, 37, e427–e434. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Suarez, C.; Tobar, C.; Sola-Ruiz, M.F.; Pelaez, J.; Suarez, M.J. Effect of thermomechanical and static loading on the load to fracture of metal-ceramic, monolithic, and veneered zirconia posterior fixed partial dentures. J. Prosthodont. 2019, 28, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Too, T.D.C.; Inokoshi, M.; Nozaki, K.; Shimizubata, M.; Nakai, H.; Liu, H.; Minakuchi, S. Influence of sintering conditions on translucency, biaxial flexural strength, microstructure, and low-temperature degradation of highly translucent dental zirconia. Dent. Mater. J. 2021, 40, 1320–1328. [Google Scholar] [CrossRef]
- Elsayed, A.; Meyer, G.; Wille, S.; Kern, M. Influence of the yttrium content on the fracture strength of monolithic zirconia crowns after artificial aging. Quintessence Int. 2019, 50, 344–348. [Google Scholar]
- Lawson, N.C.; Jurado, C.A.; Huang, C.T.; Morris, G.P.; Burgess, J.O.; Liu, P.R.; Kinderknecht, K.E.; Lin, C.P.; Givan, D.A. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns. J. Prosthodont. 2019, 28, 659–665. [Google Scholar] [CrossRef]
- Mayinger, F.; Pfefferle, R.; Reichert, A.; Stawarczyk, B. Impact of high-speed sintering of three-unit 3Y-TZP and 4Y-TZP fixed dental prostheses on fracture load with and without artificial aging. Int. J. Prosthodont. 2021, 34, 47–53. [Google Scholar] [CrossRef]
- Holman, C.D.; Lien, W.; Gallardo, F.F.; Vandewalle, K.S. Assessing flexural strength degradation of new cubic containing zirconia materials. J. Contemp. Dent. Pract. 2020, 21, 114–118. [Google Scholar] [CrossRef]
- Kwon, S.J.; Lawson, N.C.; McLaren, E.E.; Nejat, A.H.; Burgess, J.O. Comparison of the mechanical properties of translucent zirconia and lithium disilicate. J. Prosthet. Dent. 2018, 120, 132–137. [Google Scholar] [CrossRef]
- Choo, S.S.; Ko, K.H.; Huh, Y.H.; Park, C.J.; Cho, L.R. Fatigue resistance of anterior monolithic crowns produced from CAD-CAM materials: An in vitro study. J. Prosthet. Dent. 2023, 130, 620–628. [Google Scholar] [CrossRef]
- Abdulmajeed, A.; Sulaiman, T.; Abdulmajeed, A.; Bencharit, S.; Närhi, T. Fracture load of different zirconia types: A mastication simulation study. J. Prosthodont. 2020, 29, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Ender, A.; Mehl, A. Influence of CAD/CAM fabrication and sintering procedures on the fracture load of full-contour monolithic zirconia crowns as a function of material thickness. Oper. Dent. 2020, 45, 219–226. [Google Scholar] [CrossRef]
- Mosele, J.C.; Oliveira, A.R.; Pizzolatto, G.; Benetti, P.; Borba, M. Failure behavior of zirconia crowns subjected to air abrasion with different particle sizes. Braz. Dent. J. 2023, 34, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Barreto, L.A.L.; Grangeiro, M.T.V.; Prado, P.H.C.O.; Bottino, M.A.; Dal Piva, A.M.O.; Ramos, N.C.; Tribst, J.P.M.; Junior, L.N. Effect of finishing protocols on the surface roughness and fatigue strength of a high-translucent zirconia. Int. J. Dent. 2023, 2023, 8882878. [Google Scholar] [CrossRef] [PubMed]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The effect of sintering temperature on the phase composition, microstructure, and mechanical properties of yttria-stabilized zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef]
- Sanchez, I.; Axinte, D.; Liao, Z.; Gavalda-Diaz, O.; Smith, R. The effect of high strain rate impact in Yttria stabilized zirconia. Mater. Des. 2023, 229, 111908. [Google Scholar] [CrossRef]
- Nassary Zadeh, P.; Lümkemann, N.; Sener, B.; Eichberger, M.; Stawarczyk, B. Flexural strength, fracture toughness, and translucency of cubic/tetragonal zirconia materials. J. Prosthet. Dent. 2018, 120, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Kongkiatkamon, S.; Booranasophone, K.; Tongtaksin, A.; Kiatthanakorn, V.; Rokaya, D. Comparison of fracture load of the four translucent zirconia crowns. Molecules 2021, 26, 5308. [Google Scholar] [CrossRef]
- Yan, J.; Kaizer, M.R.; Zhang, Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J. Mech. Behav. Biomed. Mater. 2018, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Säilynoja, E.; Vallittu, P.K.; Lassila, L. Fracture-behavior of CAD/CAM ceramic crowns before and after cyclic fatigue aging. Int. J. Prosthodont. 2023, 36, 649. [Google Scholar] [PubMed]
- Rojpaibool, T.; Leevailoj, C. Fracture resistance of lithium disilicate ceramics bonded to enamel or dentin using different resin cement types and film thicknesses. J. Prosthodont. 2017, 26, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Simião da Rocha, L.; Della Bona, A.; Deprá Pretto, M.; Corazza, P.H.; Borba, M.; Benetti, P. Assessment of the survival and success rates of lithium disilicate crowns after different surface finishing procedures: An in vitro study. J. Prosthet. Dent. 2023, 129, 897–905. [Google Scholar] [CrossRef]
- Aurélio, I.L.; Prochnow, C.; Guilardi, L.F.; Ramos, G.F.; Bottino, M.A.; May, L.G. The effect of extended glaze firing on the flexural fatigue strength of hard-machined ceramics. J. Prosthet. Dent. 2018, 120, 755–761. [Google Scholar] [CrossRef]
- Andrade, J.P.; Stona, D.; Bittencourt, H.R.; Borges, G.A.; Burnett, L.H., Jr.; Spohr, A.M. Effect of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials and thicknesses on the fracture resistance of occlusal veneers. Oper. Dent. 2018, 43, 539–548. [Google Scholar] [CrossRef]
- Zimmermann, M.; Egli, G.; Zaruba, M.; Mehl, A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent. Mater. J. 2017, 36, 778–783. [Google Scholar] [CrossRef]
- De Kok, P.; Pereira, G.K.R.; Fraga, S.; de Jager, N.; Venturini, A.B.; Kleverlaan, C.J. The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dent. Mater. 2017, 33, 1416–1425. [Google Scholar] [CrossRef]
- Aldhuwayhi, S.; Alauddin, M.S.; Martin, N. The structural integrity and fracture behaviour of teeth restored with PEEK and lithium-disilicate glass ceramic crowns. Polymers 2022, 14, 1001. [Google Scholar] [CrossRef]
- Menini, M.; Pera, F.; Barberis, F.; Rosenberg, G.; Bagnascoa, F.; Pesce, P. Evaluation of adhesion between carbon fiber frameworks and esthetic veneering materials. Int. J. Prosthodont. 2018, 31, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Flexural strengths, failure load, and hardness of glass-ceramics for dental applications. J. Prosthet. Dent. 2022, 128, 512.e1–512.e9. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F.; Janowski, G.M.; Eberhardt, A.W. An experimental study of flexural strength and hardness of zirconia and their relation to crown failure loads. J. Prosthet. Dent. 2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Trindade, F.Z.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent. Mater. 2014, 30, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Schriwer, C.; Skjold, A.; Gjerdet, N.R.; Øilo, M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent. Mater. 2017, 33, 1012–1020. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Janowski, G.M.; Ning, H.; Eberhardt, A.W. Qualitative SEM analysis of fracture surfaces for dental ceramics and polymers broken by flexural strength testing and crown compression. J. Prosthodont. 2023, 32, 100–110. [Google Scholar] [CrossRef]
- Jenista, J.S.; Hoopes, W.L.; Knowles, J.F.; Vandewalle, K.S. Fracture load of zirconia crowns based on preparation and cement type. Gen. Dent. 2022, 70, 22–27. [Google Scholar]
- Al Mortadi, N.; Bataineh, K.; Al Janaideh, M. Fatigue failure load of molars with thin-walled prosthetic crowns made of various materials: A 3D-FEA theoretical study. Clin. Cosmet. Investig. Dent. 2020, 18, 581–593. [Google Scholar] [CrossRef]
- Chen, S.E.; Park, A.C.; Wang, J.; Knoernschild, K.L.; Campbell, S.; Yang, B. Fracture resistance of various thickness e.max CAD lithium disilicate crowns cemented on different supporting substrates: An in vitro study. J. Prosthodont. 2019, 28, 997–1004. [Google Scholar] [CrossRef]
- Abhay, S.S.; Ganapathy, D.; Veeraiyan, D.N.; Ariga, P.; Heboyan, A.; Amornvit, P.; Rokaya, D.; Srimaneepong, V. Wear resistance, color stability and displacement resistance of milled PEEK crowns compared to zirconia crowns under stimulated chewing and high-performance aging. Polymers 2021, 13, 3761. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Zhang, T.; Wang, X.; Kyaw, L.; Pow, E.H.N.; Zhao, K. Effect of supporting dies’ mechanical properties on fracture behavior of monolithic zirconia molar crowns. Dent. Mater. J. 2022, 41, 249–255. [Google Scholar] [CrossRef] [PubMed]
Test Materials | Abbreviation | Manufacturer | Color | Class | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|
BruxZir Anterior | BRU | Glidewell Dental Lab, Newport Beach, CA, USA | A2 | Yttria-partially stabilized zirconia (Y-PSZ) | 210 | 0.25 |
Katana UTML | KAT | Kuraray Noritake Dental Inc., Tokyo, Japan | A2 | Yttria-partially stabilized zirconia (Y-PSZ) | 210 | 0.25 |
Cercon XT | CER | Dentsply Sirona Prosthetics, York, PA | A2 | Yttria-partially stabilized zirconia (Y-PSZ) | 210 | 0.25 |
Celtra Press | CEL | Dentsply Sirona Prosthetics, York, PA, USA | LT shade A2 | Zirconia-reinforced lithium silicate (ZLS) * | 70 | 0.22 |
IPS e.max Press | EMA | Ivoclar Vivadent AG, Schaan, Liechtenstein | LT shade A2 | Lithium disilicate (LS2) glass-ceramic | 95 | 0.22 |
Lisi Press | LIS | GC Corporation, Tokyo, Japan | LT-A | Lithium disilicate based glass-ceramic | 95 | 0.22 |
Trilor | TRI | Bioloren S.r.l., Saronno (Varese), Italy | White | Glass fiber-reinforced composite resin | 26 | 0.25 |
Juvora | JUV | JUVORA Dental, Lancashire, UK | Natural | PEEK | 4 | 0.36 |
Pekkton | PEK | Cendres + Métaux SA, Biel-Bienne, Switzerland | Ivory | PEKK | 5 | 0.38 |
Epoxy Resin for crown | Epoxy | Die Epoxy Type 8000, American Dental Supply, Inc. Allentown, PA, USA | Gray | Epoxy resin | 4 | 0.3 |
Epoxy Resin for disc | Epoxy | Epoxydplatte, Carbotec GmbH& Co. KG, Aachen, Germany | Gray | Epoxy resin | 4 | 0.3 |
Metal ring | Metal | ND | Black | Steel | 195 | 0.3 |
Zirconia Crowns | Glass-Ceramic Crowns | Polymeric Crowns | Epoxy Resin Abutments |
---|---|---|---|
Alumina powder was blasted (50 µm for 10 s, with 2.5 bar pressure at a distance of approximately 10 mm with oscillatory movements), then cleaned and dried ultrasonically. | Hydrofluoric acid with 9.6% concentration was applied for 20 s, then rinsed with water and dried. | Alumina powder was blasted (50 µm for 10 s, with 2.5 bar pressure at a distance of approximately 10 mm with oscillatory movements), then etched with 40% phosphoric acid for 30 s to clean the surface, rinsed with water, and dried. | Alumina powder was blasted (50 µm for 10 s, with 2.5 bar pressure at a distance of approximately 10 mm with oscillatory movements), then etched with 40% phosphoric acid for 30 s to clean the surface, rinsed with water, and dried. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghazzawi, T.F. A Comparison of Failure Loads for Polycrystalline Zirconia Ceramics with Varying Amounts of Yttria, Glass-Ceramics and Polymers in Two Different Test Conditions. Polymers 2023, 15, 4506. https://doi.org/10.3390/polym15234506
Alghazzawi TF. A Comparison of Failure Loads for Polycrystalline Zirconia Ceramics with Varying Amounts of Yttria, Glass-Ceramics and Polymers in Two Different Test Conditions. Polymers. 2023; 15(23):4506. https://doi.org/10.3390/polym15234506
Chicago/Turabian StyleAlghazzawi, Tariq F. 2023. "A Comparison of Failure Loads for Polycrystalline Zirconia Ceramics with Varying Amounts of Yttria, Glass-Ceramics and Polymers in Two Different Test Conditions" Polymers 15, no. 23: 4506. https://doi.org/10.3390/polym15234506
APA StyleAlghazzawi, T. F. (2023). A Comparison of Failure Loads for Polycrystalline Zirconia Ceramics with Varying Amounts of Yttria, Glass-Ceramics and Polymers in Two Different Test Conditions. Polymers, 15(23), 4506. https://doi.org/10.3390/polym15234506