The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review
Abstract
:1. Introduction
2. Chemical Structure and Morphologies of Natural Fibres as Reinforcements
2.1. Chemical Structure of Natural Plant Fibre
2.2. Morphological Structure of Natural Plant Fibre
3. Effects of Various Environmental Conditions on the Impact Toughness Behaviour of NFRCs
3.1. Factors Affecting the Impact Damage Behaviour
3.1.1. Influence of Moisture Absorption
3.1.2. Effects of Humid Conditions on the Performance of Natural-Fibre-Reinforced Composites
3.1.3. Influence of Matrix Properties on the Moisture Ingress Behaviour of NFRCs
3.2. Mechanisms of Moisture Ingress in NFRCs
3.2.1. Fickian and Non-Fickian Behaviours
- i.
- The flux (J) through a material unit area is proportionate to the concentration gradient (C) measured perpendicular to the material.
- ii.
- The molecular diffusion coefficient (D) equals the square of diffusive molecule velocity.
3.2.2. Diffusion Coefficient and Influencing Parameters
4. Effects of Temperatures on Properties of NFRCs
4.1. Influence of Thermal Degradation Caused by Various Temperatures
4.2. Effects of Temperatures on Impact Damage Behaviour of NFRCs
4.2.1. Effects of Cryogenic Temperatures
4.2.2. Effects of High Temperatures
5. Ways to Minimise the Moisture Ingress and Its Influence on the Impact Characteristics
5.1. Hybrid Technique
5.2. Influence of Various Surface Treatments
6. Applications of NFRCs
6.1. Marine Industries
6.2. Aviation Industries
6.3. Automotive Industries
7. Future Prospects
- It is essential to know the impact behaviour of natural fibre embedded with polymer matrixes subjected to different humid conditions. However, in the current literature studies, the work focused on the effects of varied environmental conditions on the tensile, flexural, and other mechanical properties of natural-fibre composites. Therefore, further research is still needed on the impact behaviour and shear responses of natural composites with varying RH values.
- In addition, there are no sufficient studies on the effects of high, low, and cryogenic temperatures on the impact damage behaviour of NFRCs. However, it is essential to know how natural-fibre laminates behave in harsh environments, which could be helpful for many engineering applications. Particularly in marine sectors, natural-fibre materials are being tested for use in designing and building new boats for glacial exploration structures.
- Based on the above literature studies, it is evident that most chemical treatments have detrimental effects on the impact strength of NFRCs. As opposed to improving tensile and flexural strength, enhancing IFSS in NFCs is not always beneficial to impact strength. It has been found that the most prevalent chemical treatment, mercerisation, has a negative impact on the impact strength of NFCs, whereas only a few chemical treatments, such as silanisation, latex treatment, and MEKP treatment, are beneficial in improving the impact strength of NFRCs. Therefore, further research is still required on enhancing the chemical modification of natural fibres, particularly for impact properties.
8. Concluding Remarks
- Moisture ingress significantly reduces the load-bearing capacity of NFRCs when exposed to harsh environments, particularly for sub-zero and high temperatures. In addition, the effect of moisture on the impact performance of natural-fibre composites is critical in engineering applications such as marine, automotive, and aerospace because it can modify the behaviour of the structure under varied loading conditions. As far as protection and withstand ability are concerned, fibre hybridisation significantly improves the moisture ingress and impact behaviour of natural fibre-reinforced composites.
- Bio-based plant composites will play a significant role in the future, where environmental credibility is of prime importance.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, W.; Yang, K.; Wu, S.; Yang, J.; Luo, H.; Guan, J.; Ritchie, R.O. Impact of hydration on the mechanical properties and damage mechanisms of natural silk fibre reinforced composites. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106458. [Google Scholar] [CrossRef]
- Lau, K.-T.; Hung, P.-Y.; Zhu, M.-H.; Hui, D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Kumar, N.; Das, D. Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Compos. Part B Eng. 2017, 130, 54–63. [Google Scholar] [CrossRef]
- Dayo, A.Q.; Gao, B.-C.; Wang, J.; Liu, W.-B.; Derradji, M.; Shah, A.H.; Babar, A.A. Natural hemp fiber reinforced polybenzoxazine composites: Curing behavior, mechanical and thermal properties. Compos. Sci. Technol. 2017, 144, 114–124. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A Review: Natural Fiber Composites Selection in View of Mechanical, Light Weight, and Economic Properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Dhakal, H.N.; Zhang, Z.Y.; Barouni, A.; Zahari, R. Enhancement of impact toughness and damage behaviour of natural fibre reinforced composites and their hybrids through novel improvement techniques: A critical review. Compos. Struct. 2021, 259, 113496. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Nasir, M.; Saba, N. Effect of Fiber Loadings and Treatment on Dynamic Mechanical, Thermal and Flammability Properties of Pineapple Leaf Fiber and Kenaf Phenolic Composites. J. Renew. Mater. 2018, 6, 383–393. [Google Scholar] [CrossRef]
- Sfiligoj, M.; Hribernik, S.; Stana, K.; Kreže, T. Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research; Intech: Rijeka, Croatia, 2013; pp. 369–398. [Google Scholar] [CrossRef] [Green Version]
- Sadrmanesh, V.; Chen, Y. Bast fibres: Structure, processing, properties, and applications. Int. Mater. Rev. 2019, 64, 381–406. [Google Scholar] [CrossRef]
- Kumar, M.N.S.; Mohanty, A.K.; Erickson, L.; Misra, M. Lignin and Its Applications with Polymers. J. Biobased Mater. Bioenergy 2009, 3, 1–24. [Google Scholar] [CrossRef]
- Summerscales, J.; Dissanayake, N.P.J.; Virk, A.S.; Hall, W. A Review of Bast Fibres and Their Composites. Part 1—Fibres as Reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Ivens, J.; Verpoest, I. Mechanical Properties of Flax Fibre Reinforced Epoxy Composites. Angew. Makromol. Chemie 1999, 272, 41–45. [Google Scholar] [CrossRef]
- Yuanjian, T.; Isaac, D.H. Impact and fatigue behaviour of hemp fibre composites. Compos. Sci. Technol. 2007, 67, 3300–3307. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Arumugam, V.; Aswinraj, A.; Santulli, C.; Zhang, Z.Y.; Lopez-Arraiza, A. Influence of temperature and impact velocity on the impact response of jute/UP composites. Polym. Test. 2014, 35, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Adekomaya, O.; Adama, K. A Review on Application of Natural fibre in Structural Reinforcement: Challenges of Properties Adaptation. J. Appl. Sci. Environ. Manag. 2018, 22, 749. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wu, Q.; McNabb, J. A Review of Coupling Agents and Treatments. Wood Sci. Technol. 2000, 32, 88–104. [Google Scholar]
- Rozman, H.D.; Lee, M.H.; Kumar, R.N.; Abusamah, A.; Mohd Ishak, Z.A. The Effect of Chemical Modification of Rice Husk with Glycidyl Methacrylate on the Mechanical and Physical Properties of Rice Husk-Polystyrene Composites. J. Wood Chem. Technol. 2000, 20, 93–109. [Google Scholar] [CrossRef]
- Nabi Saheb, D.; Jog, J.P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351–363. [Google Scholar] [CrossRef]
- Das, O.; Babu, K.; Shanmugam, V.; Sykam, K.; Tebyetekerwa, M.; Neisiany, R.E.; Försth, M.; Sas, G.; Gonzalez-Libreros, J.; Capezza, A.J.; et al. Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 2022, 158, 112054. [Google Scholar] [CrossRef]
- Manalo, A.C.; Wani, E.; Zukarnain, N.A.; Karunasena, W.; Lau, K.T. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre-polyester composites. Compos. Part B Eng. 2015, 80, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Sood, M.; Dharmpal, D.; Gupta, V.K. Effect of Fiber Chemical Treatment on Mechanical Properties of Sisal Fiber/Recycled HDPE Composite. Mater. Today Proc. 2015, 2, 3149–3155. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Holbery, J.; Houston, D. Natural-fiber-reinforced polymer composites in automotive applications. JOM 2006, 58, 80–86. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Singh Negi, Y. Recent Development in Natural Fiber Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.A.; Giriolli, J.C.; Amarasekera, J.; Moraes, G. Natural Fibers Plastic Composites for Automotive Applications. In Proceedings of the SPE Automotive and Composites Division-8th Annual Automotive Composites Conference and Exhibition, ACCE 2008-The Road to Lightweight Performance, Troy, MI, USA, 16–18 September 2008; Volume 1. [Google Scholar]
- Crosky, A.; Soatthiyanon, N.; Ruys, D.; Meatherall, S.; Potter, S. Thermoset matrix natural fibre-reinforced composites. In Natural Fibre Composites; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2014; pp. 233–270. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Skrifvars, M.; Adekunle, K.; Zhang, Z.Y. Falling weight impact response of jute/methacrylated soybean oil bio-composites under low velocity impact loading. Compos. Sci. Technol. 2014, 92, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.B.; Joseph, R. Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements. In Chemistry, Manufacture and Applications of Natural Rubber; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2014; pp. 249–283. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Bennett, N.; Reis, P.N.B. Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity. Compos. Struct. 2012, 94, 2756–2763. [Google Scholar] [CrossRef]
- Jariwala, H.; Jain, P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Compos. 2019, 38, 441–453. [Google Scholar] [CrossRef]
- Mustafa, A.; Bin Abdollah, M.F.; Shuhimi, F.F.; Ismail, N.; Amiruddin, H.; Umehara, N. Selection and verification of kenaf fibres as an alternative friction material using Weighted Decision Matrix method. Mater. Des. 2015, 67, 577–582. [Google Scholar] [CrossRef]
- Pickering, K.L.; Beckermann, G.W.; Alam, S.N.; Foreman, N.J. Optimising industrial hemp fibre for composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 461–468. [Google Scholar] [CrossRef]
- Fink, H.P.; Walenta, E.; Kunze, J. Structure of Natural Cellulosic Fibres. Part 2. The Supermolecular Structure of Bast Fibres and Their Changes by Mercerization as Revealed by X-ray Diffraction and 13C-NMR-Spectroscopy. Papier 1999, 53, 534–542. [Google Scholar]
- Liu, R.; Yu, H.; Huang, Y. Structure and morphology of cellulose in wheat straw. Cellulose 2005, 12, 25–34. [Google Scholar] [CrossRef]
- Vignon, M.R.; Garcia-Jaldon, C.; Dupeyre, D. Steam explosion of woody hemp chènevotte. Int. J. Biol. Macromol. 1995, 17, 395–404. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Salit, M.S. Materials Selection for Natural Fiber Composites; Woodhead Publishing: Sawston, UK; Elsevier: London, UK, 2017. [Google Scholar] [CrossRef]
- Alavudeen, A.; Rajini, N.; Karthikeyan, S.; Thiruchitrambalam, M.; Venkateshwaren, N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Mater. Des. 2015, 66, 246–257. [Google Scholar] [CrossRef]
- Placet, V.; Cisse, O.; Boubakar, M.L. Influence of environmental relative humidity on the tensile and rotational behaviour of hemp fibres. J. Mater. Sci. 2011, 47, 3435–3446. [Google Scholar] [CrossRef]
- Sajith, S.; Arumugam, V.; Dhakal, H.N. Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polym. Test. 2017, 58, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Mohit, H.; Selvan, V.A.M. Effect of a Novel Chemical Treatment on Nanocellulose Fibers for Enhancement of Mechanical, Electrochemical and Tribological Characteristics of Epoxy Bio-nanocomposites. Fibers Polym. 2019, 20, 1918–1944. [Google Scholar] [CrossRef]
- Mwaikambo, L. Review of the History, Properties and Application of Plant Fibres. Afr. J. Sci. Technol. 2006, 7, 121. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Indran, S.; Raj, R.E. Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydr. Polym. 2015, 117, 392–399. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A Review on Pineapple Leaves Fibre and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef] [Green Version]
- Amiandamhen, S.O.; Meincken, M.; Tyhoda, L. Natural Fibre Modification and Its Influence on Fibre-Matrix Interfacial Properties in Biocomposite Materials. Fibers Polym. 2020, 21, 677–689. [Google Scholar] [CrossRef] [Green Version]
- Thomason, J.L.; Gentles, F.; Brennan, A. Natural Fibre Cross Sectional Area Effects on the Determination of Fibre Mechanical Properties. In Proceedings of the ECCM 2012-Composites at Venice, Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 24–28 June 2012. [Google Scholar]
- Thomas, S.; Paul, S.A.; Pothan, L.A.; Deepa, B. Natural Fibres: Structure, Properties and Applications. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Noda, J.; Terasaki, Y.; Nitta, Y.; Goda, K. Tensile properties of natural fibers with variation in cross-sectional area. Adv. Compos. Mater. 2016, 25, 253–269. [Google Scholar] [CrossRef]
- Xu, X.W.; Jayaraman, K. An image-processing system for the measurement of the dimensions of natural fibre cross-section. Int. J. Comput. Appl. Technol. 2009, 34, 115. [Google Scholar] [CrossRef]
- Pothan, L.A.; Oommen, Z.; Thomas, S. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos. Sci. Technol. 2003, 63, 283–293. [Google Scholar] [CrossRef]
- Jumaidin, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Sahari, J. Seaweeds as Renewable Sources for Biopolymers and its Composites: A Review. Curr. Anal. Chem. 2018, 14, 249–267. [Google Scholar] [CrossRef]
- Hebel, D.E.; Javadian, A.; Heisel, F.; Schlesier, K.; Griebel, D.; Wielopolski, M. Process-Controlled Optimization of the Tensile Strength of Bamboo Fiber Composites for Structural Applications. Compos. Part B Eng 2014, 67, 125–131. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Mater. Des. 2011, 32, 4017–4021. [Google Scholar] [CrossRef]
- Migneault, S.; Koubaa, A.; Perré, P.; Riedl, B. Effects of wood fiber surface chemistry on strength of wood–plastic composites. Appl. Surf. Sci. 2015, 343, 11–18. [Google Scholar] [CrossRef]
- George, M.; Mussone, P.G.; Abboud, Z.; Bressler, D.C. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy. Appl. Surf. Sci. 2014, 314, 1019–1025. [Google Scholar] [CrossRef]
- Lee, J.M.; Heitmann, J.A.; Pawlak, J.J. Local morphological and dimensional changes of enzyme-degraded cellulose materials measured by atomic force microscopy. Cellulose 2007, 14, 643–653. [Google Scholar] [CrossRef]
- Deo, C.; Acharya, S.K. Effect of Moisture Absorption on Mechanical Properties of Chopped Natural Fiber Reinforced Epoxy Composite. J. Reinf. Plast. Compos. 2010, 29, 2513–2521. [Google Scholar] [CrossRef]
- Bachchan, A.A.; Das, P.P.; Chaudhary, V. Effect of moisture absorption on the properties of natural fiber reinforced polymer composites: A review. Mater. Today Proc. 2021, 49, 3403–3408. [Google Scholar] [CrossRef]
- Al-Maharma, A.Y.; Al-Huniti, N. Critical Review of the Parameters Affecting the Effectiveness of Moisture Absorption Treatments Used for Natural Composites. J. Compos. Sci. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Rassmann, S.; Reid, R.G.; Paskaramoorthy, R. Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1612–1619. [Google Scholar] [CrossRef]
- Tian, F.; Pan, Y.; Zhong, Z. A long-term mechanical degradation model of unidirectional natural fiber reinforced composites under hydrothermal ageing. Compos. Sci. Technol. 2017, 142, 156–162. [Google Scholar] [CrossRef]
- Alomayri, T.; Assaedi, H.; Shaikh, F.U.A.; Low, I.M. Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. J. Asian Ceram. Soc. 2014, 2, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Mehra, N.; Mu, L.; Ji, T.; Li, Y.; Zhu, J. Moisture driven thermal conduction in polymer and polymer blends. Compos. Sci. Technol. 2017, 151, 115–123. [Google Scholar] [CrossRef]
- El Messiry, M. Theoretical analysis of natural fiber volume fraction of reinforced composites. Alex. Eng. J. 2013, 52, 301–306. [Google Scholar] [CrossRef] [Green Version]
- de Albuquerque, A.; Joseph, K.; de Carvalho, L.H.; D’Almeida, J.R.M. Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos. Sci. Technol. 2000, 60, 833–844. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, K.; Hui, D.; Xu, F.; Liu, W.; Yang, S.; Wang, L. Monitoring of seawater immersion degradation in glass fibre reinforced polymer composites using quantum dots. Compos. Part B Eng. 2017, 112, 93–102. [Google Scholar] [CrossRef]
- Berthet, M.-A.; Gontard, N.; Angellier-Coussy, H. Impact of fibre moisture content on the structure/mechanical properties relationships of PHBV/wheat straw fibres biocomposites. Compos. Sci. Technol. 2015, 117, 386–391. [Google Scholar] [CrossRef]
- Toscano, A.; Pitarresi, G.; Scafidi, M.; Di Filippo, M.; Spadaro, G.; Alessi, S. Water diffusion and swelling stresses in highly crosslinked epoxy matrices. Polym. Degrad. Stab. 2016, 133, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Chevali, V.S.; Dean, D.R.; Janowski, G.M. Effect of environmental weathering on flexural creep behavior of long fiber-reinforced thermoplastic composites. Polym. Degrad. Stab. 2010, 95, 2628–2640. [Google Scholar] [CrossRef] [Green Version]
- Trache, D.; Hussin, M.H.; Hui Chuin, C.T.; Sabar, S.; Fazita, M.R.N.; Taiwo, O.F.A.; Hassan, T.M.; Haafiz, M.K.M. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application—A Review. Int. J. Biol. Macromol. 2016, 93, 789–804. [Google Scholar] [CrossRef]
- Shankar, G.; Kumar, S.K.; Mahato, P.K. Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Struct. 2017, 116, 53–68. [Google Scholar] [CrossRef]
- Mejri, M.; Toubal, L.; Cuillière, J.C.; François, V. Hygrothermal aging effects on mechanical and fatigue behaviors of a short- natural-fiber-reinforced composite. Int. J. Fatigue 2018, 108, 96–108. [Google Scholar] [CrossRef]
- Lai, M.; Botsis, J.; Cugnoni, J.; Coric, D. An experimental–numerical study of moisture absorption in an epoxy. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1053–1060. [Google Scholar] [CrossRef]
- Jiang, X.; Kolstein, H.; Bijlaard, F.S. Moisture diffusion in glass–fiber-reinforced polymer composite bridge under hot/wet environment. Compos. Part B Eng. 2013, 45, 407–416. [Google Scholar] [CrossRef]
- Humeau, C.; Davies, P.; Jacquemin, F. An experimental study of water diffusion in carbon/epoxy composites under static tensile stress. Compos. Part A Appl. Sci. Manuf. 2018, 107, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Li, X.; Lang, A.W.; Zhang, Y.; Nutt, S.R. Water immersion aging of polydicyclopentadiene resin and glass fiber composites. Polym. Degrad. Stab. 2016, 124, 35–42. [Google Scholar] [CrossRef]
- Guermazi, N.; Ben Tarjem, A.; Ksouri, I.; Ayedi, H.F. On the durability of FRP composites for aircraft structures in hygrothermal conditioning. Compos. Part B Eng. 2013, 85, 294–304. [Google Scholar] [CrossRef]
- Furtado, S.C.R.; Araújo, A.L.; Silva, A. Inverse characterization of vegetable fibre-reinforced composites exposed to environmental degradation. Compos. Struct. 2018, 189, 529–544. [Google Scholar] [CrossRef]
- Biswal, M.; Sahu, S.K.; Asha, A.V. Vibration of composite cylindrical shallow shells subjected to hygrothermal loading-experimental and numerical results. Compos. Part B Eng. 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Chow, C.; Xing, X.; Li, R. Moisture absorption studies of sisal fibre reinforced polypropylene composites. Compos. Sci. Technol. 2007, 67, 306–313. [Google Scholar] [CrossRef]
- Hu, R.-H.; Sun, M.-Y.; Lim, J.-K. Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater. Des. 2010, 31, 3167–3173. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Replacement of Glass/Unsaturated Polyester Composites by Flax/PLLA Biocomposites: Is It Justified? J. Biobased Mater. Bioenergy 2012, 5, 466–482. [Google Scholar] [CrossRef]
- Athijayamani, A.; Thiruchitrambalam, M.; Natarajan, U.; Pazhanivel, B. Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater. Sci. Eng. A 2009, 517, 344–353. [Google Scholar] [CrossRef]
- Zain, S.N.Z.M.; Ismarrubie, Z.N.; Zainudin, E.S. The Effect of Aging Temperature on Mechanical Properties of Banana Pseudostem Fiber Reinforced Polymer Composite. Key Eng. Mater. 2011, 471–472, 444–448. [Google Scholar] [CrossRef]
- Mayandi, K.; Rajini, N.; Ayrilmis, N.; Devi, M.I.; Siengchin, S.; Mohammad, F.; Al-Lohedan, H.A. An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites. J. Mater. Res. Technol. 2020, 9, 15962–15988. [Google Scholar] [CrossRef]
- Narendar, R.; Dasan, K.P.; Kalainathan, S. Coir pith/nylon/epoxy hybrid composites: Dynamic mechanical, ageing, and dielectric properties. Polym. Compos. 2017, 38, 1671–1679. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Seawater ageing of flax/poly(lactic acid) biocomposites. Polym. Degrad. Stab. 2009, 94, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Gassan, J.; Bledzki, A.K. Possibilities to Improve the Properties of Natural Fiber Reinforced Plastics by Fiber Modification–Jute Polypropylene Composites. Appl. Compos. Mater. 2000, 7, 373–385. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber-Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Aravinthan, T.; Cardona, F.; Lau, K.-T. Effects of Natural Fibre Surface on Composite Properties: A. Review. Energy Environ. Sustain. 2007, 94–99. [Google Scholar]
- Moudood, A.; Rahman, A.; Khanlou, H.M.; Hall, W.; Öchsner, A.; Francucci, G. Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Compos. Part B Eng. 2019, 171, 284–293. [Google Scholar] [CrossRef]
- Pandey, J.K.; Ahn, S.H.; Lee, C.S.; Mohanty, A.K.; Misra, M. Recent Advances in the Application of Natural Fiber Based Composites. Macromol. Mater. Eng. 2010, 295, 975–989. [Google Scholar] [CrossRef]
- Alvarez, V.A.; Fraga, A.N.; Vázquez, A. Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J. Appl. Polym. Sci. 2004, 91, 4007–4016. [Google Scholar] [CrossRef]
- Hautala, M.; Pasila, A.; Pirilä, J. Use of hemp and flax in composite manufacture: A search for new production methods. Compos. Part A Appl. Sci. Manuf. 2004, 35, 11–16. [Google Scholar] [CrossRef]
- Medina, L.; Schledjewski, R.; Schlarb, A.K. Process Related Mechanical Properties of Press Molded Natural Fiber Reinforced Polymers. In Proceedings of the Special Issue on the 12th European Conference on Composite Materials, ECCM 2006, Biarritz, France, 29 August–1 September 2009; Volume 69. [Google Scholar]
- Pan, Y.; Zhong, Z. Relative humidity and temperature dependence of mechanical degradation of natural fiber composites. Sci. China Phys. Mech. Astron. 2016, 59, 664603. [Google Scholar] [CrossRef]
- Davies, G.C.; Bruce, D.M. Effect of Environmental Relative Humidity and Damage on the Tensile Properties of Flax and Nettle Fibers. Text. Res. J. 1998, 68, 623–629. [Google Scholar] [CrossRef]
- Symington, M.C.; Banks, W.M.; West, O.D.; Pethrick, R.A. Tensile Testing of Cellulose Based Natural Fibers for Structural Composite Applications. J. Compos. Mater. 2009, 43, 1083–1108. [Google Scholar] [CrossRef] [Green Version]
- van Voorn, B.; Smit, H.H.G.; Sinke, R.J.; de Klerk, B. Natural fibre reinforced sheet moulding compound. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1271–1279. [Google Scholar] [CrossRef]
- Scida, D.; Assarar, M.; Poilâne, C.; Ayad, R. Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite. Compos. Part B Eng. 2013, 48, 51–58. [Google Scholar] [CrossRef]
- Moudood, A.; Hall, W.; Öchsner, A.; Li, H.; Rahman, A.; Francucci, G. Effect of Moisture in Flax Fibres on the Quality of their Composites. J. Nat. Fibers 2017, 16, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 2009, 12, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Woodard, L.N.; Grunlan, M.A. Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro Lett. 2018, 7, 976–982. [Google Scholar] [CrossRef] [Green Version]
- Lyu, S.P.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [Green Version]
- Speight, J.G. Monomers, Polymers, and Plastics. In Handbook of Industrial Hydrocarbon Processes; Gulf Professional: Houston, TX, USA, 2020. [Google Scholar]
- Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ulański, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877. [Google Scholar] [CrossRef]
- Han, S.O.; Drzal, L.T. Water absorption effects on hydrophilic polymer matrix of carboxyl functionalized glucose resin and epoxy resin. Eur. Polym. J. 2003, 39, 1791–1799. [Google Scholar] [CrossRef]
- Cotugno, S.; Larobina, D.; Mensitieri, G.; Musto, P.; Ragosta, G. A novel spectroscopic approach to investigate transport processes in polymers: The case of water–epoxy system. Polymer 2001, 42, 6431–6438. [Google Scholar] [CrossRef]
- Mortazavian, S.; Fatemi, A.; Khosrovaneh, A. Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics. SAE Int. J. Mater. Manuf. 2015, 8, 435–443. [Google Scholar] [CrossRef]
- Ishak, Z.M.; Ariffin, A.; Senawi, R. Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites. Eur. Polym. J. 2001, 37, 1635–1647. [Google Scholar] [CrossRef]
- Apicella, A.; Migliaresi, C.; Nicolais, L.; Iaccarino, L.; Roccotelli, S. The water ageing of unsaturated polyester-based composites: Influence of resin chemical structure. Composites 1983, 14, 387–392. [Google Scholar] [CrossRef]
- Agarwal, B.D.; Broutman, L.J.; Chandrashekhara, K. Analysis and Performance of Fiber Composites; John Wiley & Sons: New Delhi, India, 1998; ISBN 9788126536368. [Google Scholar]
- Browning, C.E.; Husman, G.E.; Whitney, J.M. Moisture Effects in Epoxy Matrix Composites. In ASTM Special Technical Publication; ASTM International: West Conshohocken, PA, USA, 1977. [Google Scholar]
- Harper, C.A. Handbook of Plastics, Elastomers, and Composites; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Marom, G. Environmental Effects on Fracture Mechanical Properties of Polymer Composites. In Composite Materials Series; Elsevier: Amsterdam, The Netherlands, 1989; Volume 6, pp. 397–424. [Google Scholar]
- Pipes, R.B.; Vinson, J.R.; Chou, T.-W. On the Hygrothermal Response of Laminated Composite Systems. J. Compos. Mater. 1976, 10, 129–148. [Google Scholar] [CrossRef]
- Sahu, P.; Gupta, M. Water absorption behavior of cellulosic fibres polymer composites: A review on its effects and remedies. J. Ind. Text. 2020, 51, 7480S–7512S. [Google Scholar] [CrossRef]
- Akil, H.M.; Santulli, C.; Sarasini, F.; Tirillò, J.; Valente, T. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos. Sci. Technol. 2014, 94, 62–70. [Google Scholar] [CrossRef]
- Azwa, Z.N.; Yousif, B.F.; Manalo, A.C.; Karunasena, W. A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef] [Green Version]
- Guloglu, G.E.; Hamidi, Y.K.; Altan, M.C. Fast recovery of non-fickian moisture absorption parameters for polymers and polymer composites. Polym. Eng. Sci. 2016, 57, 921–931. [Google Scholar] [CrossRef]
- Patzek, T.W. Fick’s Diffusion Experiments Revisited—Part, I. Adv. Hist. Stud. 2014, 3, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Xu, W.X.; Park, S.J.; Liechti, K.M. Anomalous Moisture Diffusion in Viscoelastic Polymers: Modeling and Testing. J. Appl. Mech. 1999, 67, 391–396. [Google Scholar] [CrossRef]
- Jacobs, P.M.; Jones, E.R. Diffusion of moisture into two-phase polymers. J. Mater. Sci. 1989, 24, 2343–2347. [Google Scholar] [CrossRef]
- Maggana, C.; Pissis, P. Water sorption and diffusion studies in an epoxy resin system. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1165–1182. [Google Scholar] [CrossRef]
- Berens, A.R.; Hopfenberg, H.B. Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters. Polymer 1978, 19, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Sanders, E.S. Penetrant-induced plasticization and gas permeation in glassy polymers. J. Memb. Sci. 1988, 37, 63–80. [Google Scholar] [CrossRef]
- Carter, H.G.; Kibler, K.G. Langmuir-Type Model for Anomalous Moisture Diffusion in Composite Resins. J. Compos. Mater. 1978, 12, 118–131. [Google Scholar] [CrossRef]
- Grace, L.R.; Altan, M.C. Characterization of anisotropic moisture absorption in polymeric composites using hindered diffusion model. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1187–1196. [Google Scholar] [CrossRef]
- Glaskova, T.I.; Guedes, R.M.; Morais, J.J.; Aniskevich, A.N. A comparative analysis of moisture transport models as applied to an epoxy binder. Polym. Mech. 2007, 43, 377–388. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Lin, Z. Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J. Appl. Polym. Sci. 2008, 109, 3018–3023. [Google Scholar] [CrossRef]
- Mohan, T.; Kanny, K. Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 385–393. [Google Scholar] [CrossRef]
- Reddy, C.R.; Sardashti, A.P.; Simon, L.C. Preparation and characterization of polypropylene–wheat straw–clay composites. Compos. Sci. Technol. 2010, 70, 1674–1680. [Google Scholar] [CrossRef]
- Dhakal, H.N.; MacMullen, J.; Zhang, Z.Y. Moisture Measurement and Effects on Properties of Marine Composites. In Marine Applications of Advanced Fibre-Reinforced Composites; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Wang, W.; Sain, M.; Cooper, P.A. Study of moisture absorption in natural fiber plastic composites. Compos. Sci. Technol. 2006, 66, 379–386. [Google Scholar] [CrossRef]
- Bera, T.; Mohanta, N.; Prakash, V.; Pradhan, S.; Acharya, S.K. Moisture absorption and thickness swelling behaviour of luffa fibre/epoxy composite. J. Reinf. Plast. Compos. 2019, 38, 923–937. [Google Scholar] [CrossRef]
- Aktas, L.; Hamidi, Y.K.; Altan, M.C. Combined Edge and Anisotropy Effects on Fickian Mass Diffusion in Polymer Composites. J. Eng. Mater. Technol. 2004, 126, 427–435. [Google Scholar] [CrossRef]
- Guloglu, G.E.; Altan, M.C. Moisture Absorption of Carbon/Epoxy Nanocomposites. J. Compos. Sci. 2020, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.W.; Weitsman, Y. Non-Fickian Moisture Diffusion in Polymeric Composites. J. Compos. Mater. 1994, 28, 130–154. [Google Scholar] [CrossRef]
- Peret, T.; Clement, A.; Freour, S.; Jacquemin, F. Homogenization of Fickian and non-Fickian water diffusion in composites reinforced by hydrophobic long fibers: Application to the determination of transverse diffusivity. Compos. Struct. 2019, 226, 111191. [Google Scholar] [CrossRef]
- Grace, L.R. Projecting long-term non-Fickian diffusion behavior in polymeric composites based on short-term data: A 5-year validation study. J. Mater. Sci. 2015, 51, 845–853. [Google Scholar] [CrossRef]
- Chen, H.-T.; Liu, K.-C. Analysis of non-Fickian diffusion problems in a composite medium. Comput. Phys. Commun. 2003, 150, 31–42. [Google Scholar] [CrossRef]
- Bao, L.-R.; Yee, A.F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: Part II—Woven and hybrid composites. Compos. Sci. Technol. 2002, 62, 2111–2119. [Google Scholar] [CrossRef]
- Roy, S. Modeling of Anomalous Moisture Diffusion in Polymer Composites: A Finite Element Approach. J. Compos. Mater. 1999, 33, 1318–1343. [Google Scholar] [CrossRef]
- Grace, L.R.; Altan, M.C. Three-dimensional anisotropic moisture absorption in quartz-reinforced bismaleimide laminates. Polym. Eng. Sci. 2013, 54, 137–146. [Google Scholar] [CrossRef]
- LaPlante, G.; Ouriadov, A.V.; Lee-Sullivan, P.; Balcom, B.J. Anomalous moisture diffusion in an epoxy adhesive detected by magnetic resonance imaging. J. Appl. Polym. Sci. 2008, 109, 1350–1359. [Google Scholar] [CrossRef]
- Arnold, J.C.; Alston, S.M.; Korkees, F. An assessment of methods to determine the directional moisture diffusion coefficients of composite materials. Compos. Part A Appl. Sci. Manuf. 2013, 55, 120–128. [Google Scholar] [CrossRef]
- Aronhime, M.T.; Neumann, S.; Marom, G. The anisotropic diffusion of water in Kevlar-epoxy composites. J. Mater. Sci. 1987, 22, 2435–2446. [Google Scholar] [CrossRef]
- Pierron, F.; Poirette, Y.; Vautrin, A. A Novel Procedure for Identification of 3D Moisture Diffusion Parameters on Thick Composites: Theory, Validation and Experimental Results. J. Compos. Mater. 2002, 36, 2219–2243. [Google Scholar] [CrossRef]
- Saidane, E.H.; Scida, D.; Assarar, M.; Ayad, R. Assessment of 3D moisture diffusion parameters on flax/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 80, 53–60. [Google Scholar] [CrossRef]
- Chilali, A.; Assarar, M.; Zouari, W.; Kebir, H.; Ayad, R. Effect of geometric dimensions and fibre orientation on 3D moisture diffusion in flax fibre reinforced thermoplastic and thermosetting composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 75–86. [Google Scholar] [CrossRef]
- Dixit, D.; Pal, R.; Kapoor, G.; Stabenau, M. Lightweight Composite Materials Processing. In Lightweight Ballistic Composites: Military and Law-Enforcement Applications, 2nd ed.; Woodhead Publishing: Sawston, UK, 2016; ISBN 9780081004258. [Google Scholar]
- Qin, S.-L.; He, Y. Confined subdiffusion in three dimensions. Chin. Phys. B 2014, 23, 110206. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 2008, 93, 90–98. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.; Rana, A.; Bose, N. The mechanical properties of vinylester resin matrix composites reinforced with alkali-treated jute fibres. Compos. Part A Appl. Sci. Manuf. 2001, 32, 119–127. [Google Scholar] [CrossRef]
- Alabdulkarem, A.; Ali, M.; Iannace, G.; Sadek, S.; Almuzaiqer, R. Thermal analysis, microstructure and acoustic characteristics of some hybrid natural insulating materials. Constr. Build. Mater. 2018, 187, 185–196. [Google Scholar] [CrossRef]
- Nasir, M.; Sulaiman, O.; Hashim, R.; Hossain, K.; Gupta, A.; Asim, M. Rubberwood Fiber Treatment by Lac-case Enzyme and Its Application in Medium Density Fiberboard. J. Pure Appl. Microbiol. 2015, 9, 2095–2100. [Google Scholar]
- Hidalgo-Salazar, M.A.; Correa, J.P. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results Phys. 2018, 8, 461–467. [Google Scholar] [CrossRef]
- Shen, Y.; Zhong, J.; Cai, S.; Ma, H.; Qu, Z.; Guo, Y.; Li, Y. Effect of Temperature and Water Absorption on Low-Velocity Impact Damage of Composites with Multi-Layer Structured Flax Fiber. Materials 2019, 12, 453. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Li, Y.; Wang, D.; Lu, C. Effect of Curing Temperature on Mechanical Properties of Flax Fiber and Their Reinforced Composites. Cailiao Gongcheng/J. Mater. Eng. 2015, 43, 14–19. [Google Scholar] [CrossRef]
- Fan, M.; Naughton, A. Mechanisms of thermal decomposition of natural fibre composites. Compos. Part B Eng. 2016, 88, 1–10. [Google Scholar] [CrossRef]
- Essabir, H.; Bensalah, M.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mech. Mater. 2016, 93, 134–144. [Google Scholar] [CrossRef]
- Dorez, G.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. [Google Scholar] [CrossRef]
- Shyr, T.-W.; Pan, Y.-H. Impact resistance and damage characteristics of composite laminates. Compos. Struct. 2003, 62, 193–203. [Google Scholar] [CrossRef]
- Garnier, C.; Pastor, M.-L.; Lorrain, B.; Pantalé, O. Fatigue behavior of impacted composite structures. Compos. Struct. 2013, 100, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A Appl. Sci. Manuf. 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
- Soutis, C. Carbon fiber reinforced plastics in aircraft construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Sápi, Z.; Butler, R. Properties of cryogenic and low temperature composite materials–A review. Cryogenics 2020, 111, 103190. [Google Scholar] [CrossRef]
- Ramadhan, A.A.; Abu Talib, A.R.; Mohd Rafie, A.S.; Zahari, R. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels. Mater. Des. 2012, 43, 307–321. [Google Scholar] [CrossRef]
- Choi, I.-H.; Kim, I.-G.; Ahn, S.-M.; Yeom, C.-H. Analytical and experimental studies on the low-velocity impact response and damage of composite laminates under in-plane loads with structural damping effects. Compos. Sci. Technol. 2010, 70, 1513–1522. [Google Scholar] [CrossRef]
- Ma, H.-L.; Jia, Z.; Lau, K.-T.; Leng, J.; Hui, D. Impact properties of glass fiber/epoxy composites at cryogenic environment. Compos. Part B Eng. 2016, 92, 210–217. [Google Scholar] [CrossRef]
- Torabizadeh, M.A.; Shokrieh, M.M. An experimental and numerical study of the dynamic response of composites under impact at low temperatures. Mech. Adv. Mater. Struct. 2016, 23, 615–623. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Bashirzadeh, R.; Mahinfalah, M.; Jazar, R. The role of temperature on impact properties of Kevlar/fiberglass composite laminates. Compos. Part B Eng. 2006, 37, 593–602. [Google Scholar] [CrossRef]
- Icten, B.M.; Atas, C.; Aktas, M.; Karakuzu, R. Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Compos. Struct. 2009, 91, 318–323. [Google Scholar] [CrossRef]
- Ibekwe, S.I.; Mensah, P.F.; Li, G.; Pang, S.-S.; Stubblefield, M.A. Impact and post impact response of laminated beams at low temperatures. Compos. Struct. 2007, 79, 12–17. [Google Scholar] [CrossRef]
- Gómez-del Río, T.; Zaera, R.; Barbero, E.; Navarro, C. Damage in CFRPs due to low velocity impact at low temperature. Compos. Part B Eng. 2004, 36, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Im, K.-H.; Cha, C.-S.; Kim, S.-K.; Yang, I.-Y. Effects of temperature on impact damages in CFRP composite laminates. Compos. Part B Eng. 2001, 32, 669–682. [Google Scholar] [CrossRef]
- López-Puente, J.; Zaera, R.; Navarro, C. The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Compos. Part B Eng. 2002, 33, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.H.; Elamin, M.; Li, B.; Tan, K. X-ray micro-computed tomography analysis of impact damage morphology in composite sandwich structures due to cold temperature arctic condition. J. Compos. Mater. 2018, 52, 3509–3522. [Google Scholar] [CrossRef]
- Li, D.-S.; Zhao, C.-Q.; Jiang, N.; Jiang, L. Experimental study on the charpy impact failure of 3D integrated woven spacer composite at room and liquid nitrogen temperature. Fibers Polym. 2015, 16, 875–882. [Google Scholar] [CrossRef]
- Elamin, M.; Li, B.; Tan, K. Impact damage of composite sandwich structures in arctic condition. Compos. Struct. 2018, 192, 422–433. [Google Scholar] [CrossRef]
- Chu, X.; Wu, Z.; Huang, R.; Zhou, Y.; Li, L. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 2009, 50, 84–88. [Google Scholar] [CrossRef]
- Russo, P.; Langella, A.; Papa, I.; Simeoli, G.; Lopresto, V. Thermoplastic polyurethane/glass fabric composite laminates: Low velocity impact behavior under extreme temperature conditions. Compos. Struct. 2017, 166, 146–152. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Ferrante, L.; Sergi, C.; Sbardella, F.; Russo, P.; Simeoli, G.; Mellier, D.; Calzolari, A. Effect of temperature and fiber type on impact behavior of thermoplastic fiber metal laminates. Compos. Struct. 2019, 223, 110961. [Google Scholar] [CrossRef]
- Vinod, B.; Sudev, L. Investigation on Effect of Cryogenic Temperature on Mechanical Behavior of Jute and Hemp Fibers Reinforced Polymer Composites. Appl. Mech. Mater. 2019, 895, 76–82. [Google Scholar] [CrossRef]
- Shi, H.Q.; Sun, B.G.; Liu, Q.; Yang, Z.Y.; Zhang, Y. Properties of Cryogenic Epoxy Resin Matrix Composites Prepared by RTM Process. In Proceedings of the ICCM International Conferences on Composite Materials, Copenhagen, Denmark, 19–24 July 2015; Volume 2015. [Google Scholar]
- Jia, Z.; Li, T.; Chiang, F.-P.; Wang, L. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2018, 154, 53–63. [Google Scholar] [CrossRef]
- Lopresto, V.; Papa, I.; Langella, A. Residual strength evaluation after impact tests in extreme temperature conditions. New equipment for CAI tests. Compos. Part B Eng. 2017, 127, 44–52. [Google Scholar] [CrossRef]
- Castellanos, A.G.; Cinar, K.; Guven, I.; Prabhakar, P. Low-Velocity Impact Response of Woven Carbon Composites in Arctic Conditions. J. Dyn. Behav. Mater. 2018, 4, 308–316. [Google Scholar] [CrossRef]
- Icten, B.M. Low temperature effect on single and repeated impact behavior of woven glass-epoxy composite plates. J. Compos. Mater. 2014, 49, 1171–1178. [Google Scholar] [CrossRef]
- Khalili, S.M.R.; Eslami-Farsani, R.; Soleimani, N.; Hedayatnasab, Z. Charpy impact behavior of clay/basalt fiber-reinforced polypropylene nanocomposites at various temperatures. J. Thermoplast. Compos. Mater. 2016, 29, 1416–1428. [Google Scholar] [CrossRef]
- Hirai, Y.; Hamada, H.; Kim, J.-K. Impact response of woven glass-fabric composites—II. Effect of temperature. Compos. Sci. Technol. 1998, 58, 119–128. [Google Scholar] [CrossRef]
- Badawy, A.A.M. Impact behavior of glass fibers reinforced composite laminates at different temperatures. Ain Shams Eng. J. 2012, 3, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Aktas, M.; Karakuzu, R.; Icten, B.M. Impact Behavior of Glass/Epoxy Laminated Composite Plates at High Temperatures. J. Compos. Mater. 2010, 44, 2289–2299. [Google Scholar] [CrossRef]
- Aktaş, M.; Karakuzu, R.; Arman, Y. Compression-after impact behavior of laminated composite plates subjected to low velocity impact in high temperatures. Compos. Struct. 2009, 89, 77–82. [Google Scholar] [CrossRef]
- Bibo, G.; Leicy, D.; Hogg, P.; Kemp, M. High-temperature damage tolerance of carbon fibre-reinforced plastics: Part 1: Impact characteristics. Composites 1994, 25, 414–424. [Google Scholar] [CrossRef]
- Johnson, W.; Masters, J.; Karasek, M.; Strait, L.; Amateau, M.; Runt, J. Effect of Temperature and Moisture on the Impact Behavior of Graphite/Epoxy Composites: Part II—Impact Damage. J. Compos. Technol. Res. 1995, 17, 11. [Google Scholar] [CrossRef]
- Hosur, M.V.; Adya, M.; Jeelani, S.; Vaidya, U.K.; Dutta, P.K. Experimental Studies on the High Strain Rate Compression Response of Woven Graphite/Epoxy Composites at Room and Elevated Temperatures. J. Reinf. Plast. Compos. 2004, 23, 491–514. [Google Scholar] [CrossRef]
- Johnson, W.; Masters, J.; Karasek, M.; Strait, L.; Amateau, M.; Runt, J. Effect of Temperature and Moisture on the Impact Behavior of Graphite/Epoxy Composites: Part I—Impact Energy Absorption. J. Compos. Technol. Res. 1995, 17, 3. [Google Scholar] [CrossRef]
- Kumar, C.S.; Arumugam, V.; Dhakal, H.; John, R. Effect of temperature and hybridisation on the low velocity impact behavior of hemp-basalt/epoxy composites. Compos. Struct. 2015, 125, 407–416. [Google Scholar] [CrossRef]
- Bibo, G.; Hogg, P.; Kemp, M. High-temperature damage tolerance of carbon fibre-reinforced plastics: 2. Post-impact compression characteristics. Composites 1995, 26, 91–102. [Google Scholar] [CrossRef]
- Sorrentino, L.; de Vasconcellos, D.S.; D’Auria, M.; Sarasini, F.; Tirillò, J. Effect of temperature on static and low velocity impact properties of thermoplastic composites. Compos. Part B Eng. 2017, 113, 100–110. [Google Scholar] [CrossRef]
- Rajaei, M.; Kim, N.; Bhattacharyya, D. Effects of heat-induced damage on impact performance of epoxy laminates with glass and flax fibres. Compos. Struct. 2018, 185, 515–523. [Google Scholar] [CrossRef]
- Mueller, D.H. Improving the Impact Strength of Natural Fiber Reinforced Composites by Specifically Designed Material and Process Parameters. Int. Nonwovens J. 2004, os-13(4). [Google Scholar] [CrossRef] [Green Version]
- David-West, O.S.; Banks, W.M.; Pethrick, R.A. A study of the effect of strain rate and temperature on the characteristics of quasi-unidirectional natural fibre-reinforced composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2011, 225, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.I.P.; Singh, S.; Dhawan, V. Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. J. Nat. Fibers 2017, 15, 687–696. [Google Scholar] [CrossRef]
- Arthanarieswaran, V.; Kumaravel, A.; Kathirselvam, M. Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater. Des. 2014, 64, 194–202. [Google Scholar] [CrossRef]
- Hidayah, I.N.; Syuhada, D.N.; Khalil, H.A.; Ishak, Z.; Mariatti, M. Enhanced performance of lightweight kenaf-based hierarchical composite laminates with embedded carbon nanotubes. Mater. Des. 2019, 171, 107710. [Google Scholar] [CrossRef]
- Paul, V.; Kanny, K.; Redhi, G. Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source. Compos. Part A Appl. Sci. Manuf. 2015, 68, 90–100. [Google Scholar] [CrossRef]
- Dicker, M.P.M.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Perrier, A.; Touchard, F.; Chocinski-Arnault, L.; Mellier, D. Influence of water on damage and mechanical behaviour of single hemp yarn composites. Polym. Test. 2016, 57, 17–25. [Google Scholar] [CrossRef]
- Lu, M.M.; Van Vuure, A.W. Improving moisture durability of flax fibre composites by using non-dry fibres. Compos. Part A Appl. Sci. Manuf. 2019, 123, 301–309. [Google Scholar] [CrossRef]
- Saha, A.; Kumar, S.; Zindani, D. Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax-hemp-reinforced hybrid composite. Polym. Compos. 2021, 42, 4497–4516. [Google Scholar] [CrossRef]
- Ng, L.F.; Sivakumar, D.; Zakaria, K.A.; Bapokutty, O. Influence of Kenaf Fibre Orientation Effect on the Mechanical Properties of Hybrid Structure of Fibre Metal Laminate. Pertanika J. Sci. Technol. 2017, 25, 1–8. [Google Scholar]
- Karaduman, Y.; Onal, L.; Rawal, A. Effect of stacking sequence on mechanical properties of hybrid flax/jute fibers reinforced thermoplastic composites. Polym. Compos. 2014, 36, 2167–2173. [Google Scholar] [CrossRef]
- Ismail, S.O.; Akpan, E.; Dhakal, H.N. Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Compos. Part C Open Access 2022, 9, 100322. [Google Scholar] [CrossRef]
- El Hachem, Z.; Célino, A.; Challita, G.; Moya, M.-J.; Fréour, S. Hygroscopic multi-scale behavior of polypropylene matrix reinforced with flax fibers. Ind. Crop. Prod. 2019, 140, 111634. [Google Scholar] [CrossRef]
- Al-Hajaj, Z.; Zdero, R.; Bougherara, H. Mechanical, morphological, and water absorption properties of a new hybrid composite material made from 4 harness satin woven carbon fibres and flax fibres in an epoxy matrix. Compos. Part A Appl. Sci. Manuf. 2018, 115, 46–56. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Guthrie, R.; MacMullen, J.; Bennett, N. Development of flax/carbon fibre hybrid composites for enhanced properties. Carbohydr. Polym. 2013, 96, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Almansour, F.; Dhakal, H.; Zhang, Z. Investigation into Mode II interlaminar fracture toughness characteristics of flax/basalt reinforced vinyl ester hybrid composites. Compos. Sci. Technol. 2018, 154, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Živković, I.; Fragassa, C.; Pavlović, A.; Brugo, T. Influence of moisture absorption on the impact properties of flax, basalt and hybrid flax/basalt fiber reinforced green composites. Compos. Part B Eng. 2017, 111, 148–164. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Le Méner, E.; Feldner, M.; Jiang, C.; Zhang, Z. Falling Weight Impact Damage Characterisation of Flax and Flax Basalt Vinyl Ester Hybrid Composites. Polymers 2020, 12, 806. [Google Scholar] [CrossRef] [Green Version]
- Fiore, V.; Scalici, T.; Calabrese, L.; Valenza, A.; Proverbio, E. Effect of external basalt layers on durability behaviour of flax reinforced composites. Compos. Part B Eng. 2016, 84, 258–265. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. Assessment of performance degradation of hybrid flax-glass fiber reinforced epoxy composites during a salt spray fog/dry aging cycle. Compos. Part B Eng. 2022, 238, 109897. [Google Scholar] [CrossRef]
- Latif, R.; Wakeel, S.; Khan, N.Z.; Siddiquee, A.N.; Verma, S.L.; Khan, Z.A. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. J. Reinf. Plast. Compos. 2018, 38, 15–30. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- Vargas-rechia, C.G.; Reicher, F.; Sierakowski, M.R.; Heyraud, A.; Driguez, H.; Szymanska-chargot, M.; Zdunek, A.; Siddiqui, N.; Ph, D.; Rauf, A.; et al. A Profile of the South African Table Grape Market Value Chain. Bioresour. Technol. 2015, 6, 1–4. [Google Scholar]
- Gomes, A.; Matsuo, T.; Goda, K.; Ohgi, J. Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1811–1820. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Mamun, A.A.; Lucka-Gabor, M.; Gutowski, V.S. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym. Lett. 2008, 2, 413–422. [Google Scholar] [CrossRef]
- Mehta, G.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J. Appl. Polym. Sci. 2005, 99, 1055–1068. [Google Scholar] [CrossRef]
- Sreekumar, P.A.; Thomas, S.P.; Saiter, J.M.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1777–1784. [Google Scholar] [CrossRef]
- Thiruchitrambalam, M.; Alavudeen, A.; Athijayamani, A.; Venkateshwaran, N.; Perumal, A.E. Improving Mechanical Properties of Banana/Kenaf Polyester Hybrid Composites Using Sodium Laulryl Sulfate Treatment. Mater. Phys. Mech. 2009, 8, 165–173. [Google Scholar]
- Dayo, A.Q.; Zegaoui, A.; Nizamani, A.A.; Kiran, S.; Wang, J.; Derradji, M.; Cai, W.-A.; Liu, W.-B. The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Mater. Chem. Phys. 2018, 217, 270–277. [Google Scholar] [CrossRef]
- Sreekala, M.S.; Kumaran, M.G.; Joseph, S.; Jacob, M.; Thomas, S. Oil Palm Fibre Reinforced Phenol Formaldehyde Composites: Influence of Fibre Surface Modifications on the Mechanical Performance. Appl. Compos. Mater. 2000, 7, 295–329. [Google Scholar] [CrossRef]
- Shanmugam, D.; Thiruchitrambalam, M. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 2013, 50, 533–542. [Google Scholar] [CrossRef]
- Venkateshwaran, N.; Perumal, A.E.; Arunsundaranayagam, D. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Mater. Des. 2013, 47, 151–159. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Balamurugan, K. Effect of Alkali Treatment and Fiber Length on Impact Behavior of Coir Fiber Reinforced Epoxy Composites. J. Sci. Ind. Res. 2012, 71, 627–631. [Google Scholar]
- Fiore, V.; Di Bella, G.; Valenza, A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos. Part B Eng. 2015, 68, 14–21. [Google Scholar] [CrossRef]
- Mahjoub, R.; Yatim, J.M.; Mohd Sam, A.R.; Hashemi, S.H. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr. Build. Mater. 2014, 55, 103–113. [Google Scholar] [CrossRef]
- Gironès, J.; Méndez, J.A.; Boufi, S.; Vilaseca, F.; Mutjé, P. Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. J. Appl. Polym. Sci. 2007, 103, 3706–3717. [Google Scholar] [CrossRef]
- Alawar, A.; Hamed, A.M.; Al-Kaabi, K. Characterization of treated date palm tree fiber as composite reinforcement. Compos. Part B Eng. 2009, 40, 601–606. [Google Scholar] [CrossRef]
- Rayung, M.; Ibrahim, N.; Zainuddin, N.; Saad, W.; Razak, N.; Chieng, B. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites. Int. J. Mol. Sci. 2014, 15, 14728–14742. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Sain, M.; Oksman, K. Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Appl. Compos. Mater. 2007, 14, 89–103. [Google Scholar] [CrossRef]
- Paul, S.A.; Boudenne, A.; Ibos, L.; Candau, Y.; Joseph, K.; Thomas, S. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1582–1588. [Google Scholar] [CrossRef]
- Kalia, S.; Kaushik, V.K.; Sharma, R.K. Effect of Benzoylation and Graft Copolymerization on Morphology, Thermal Stability, and Crystallinity of Sisal Fibers. J. Nat. Fibers 2011, 8, 27–38. [Google Scholar] [CrossRef]
- Mishra, S.; Misra, M.; Tripathy, S.S.; Nayak, S.K.; Mohanty, A.K. Graft Copolymerization of Acrylonitrile on Chemically Modified Sisal Fibers. Macromol. Mater. Eng. 2001, 286, 107–113. [Google Scholar] [CrossRef]
- Hristov, V.N.; Vasileva, S.; Krumova, M.; Lach, R.; Michler, G.H. Deformation mechanisms and mechanical properties of modified polypropylene/wood fiber composites. Polym. Compos. 2004, 25, 521–526. [Google Scholar] [CrossRef]
- Khan, M.A.; Hassan, M.M.; Taslima, R.; Mustafa, A.I. Role of pretreatment with potassium permanganate and urea on mechanical and degradable properties of photocured coir (Cocos nucifera) fiber with 1,6-hexanediol diacrylate. J. Appl. Polym. Sci. 2006, 100, 4361–4368. [Google Scholar] [CrossRef]
- Bulut, Y.; Aksit, A. A comparative study on chemical treatment of jute fiber: Potassium dichromate, potassium permanganate and sodium perborate trihydrate. Cellulose 2013, 20, 3155–3164. [Google Scholar] [CrossRef]
- Razak, N.I.A.; Ibrahim, N.A.; Zainuddin, N.; Rayung, M.; Saad, W.Z. The Influence of Chemical Surface Modification of Kenaf Fiber using Hydrogen Peroxide on the Mechanical Properties of Biodegradable Kenaf Fiber/Poly(Lactic Acid) Composites. Molecules 2014, 19, 2957–2968. [Google Scholar] [CrossRef] [Green Version]
- Pongprayoon, T.; Yanumet, N.; Sangthong, S. Surface behavior and film formation analysis of sisal fiber coated by poly(methyl methacrylate) ultrathin film. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 320, 130–137. [Google Scholar] [CrossRef]
- Kumar, R.; Haq, M.I.U.; Raina, A.; Anand, A. Industrial applications of natural fibre-reinforced polymer composites–challenges and opportunities. Int. J. Sustain. Eng. 2018, 12, 212–220. [Google Scholar] [CrossRef]
- Mahmud, S.; Hasan, K.M.F.; Jahid, A.; Mohiuddin, K.; Zhang, R.; Zhu, J. Comprehensive review on plant fiber-reinforced polymeric biocomposites. J. Mater. Sci. 2021, 56, 7231–7264. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, D.; Gok, M.S.; Karaoglanli, A.C. Carbon Fiber Reinforced Polymer (CFRP) Composite Materials, Their Characteristic Properties, Industrial Application Areas and Their Machinability. In Advanced Structured Materials; Springer: Berlin/Heidelberg, Germany, 2020; Volume 124, pp. 235–253. [Google Scholar]
- Davies, P.; Arhant, M.; Grossmann, E. Seawater ageing of infused flax fibre reinforced acrylic composites. Compos. Part C Open Access 2022, 8, 100246. [Google Scholar] [CrossRef]
- Dieter Loibner Greenboats Pioneers Flax Boatbuilding–Professional BoatBuilder Magazine. Available online: https://www.proboat.com/2022/05/greenboats-flax/ (accessed on 31 December 2022).
- Peter Franklin Will Flax and Basalt Fibers Become the Future of Marine Composites? | Metstrade. Available online: https://www.metstrade.com/news/construction-and-material/flax-basalt-fibres-future-marine-composites/ (accessed on 31 December 2022).
- Sarasini, F.; Santulli, C.; Scarponi, C.; Tirillò, J. Green composites for aircraft interior panels. Int. J. Sustain. Aviat. 2017, 3, 252. [Google Scholar] [CrossRef]
- Alonso-Martin, P.P.; Gonzalez Garcia, A.; Lapena-Rey, N.; Fita-Bravo, S.; Martinez Sanz, V.; Mrti-Ferrer, F. Ep2463083a2. Eur. Pat. 2012, 2. [Google Scholar]
- Black, S. Looking to Lighten up Aircraft Interiors? Try Natural Fibers! | CompositesWorld. Available online: https://www.compositesworld.com/articles/looking-to-lighten-up-aircraft-interiors—With-natural-fibers (accessed on 31 December 2022).
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H.; Zaidi, A.A. Natural Fiber Reinforced Compo-sites: Sustainable Materials for Emerging Applications. Results Eng. 2021, 11, 100263. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Sapuan, S.M. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Carus, M.; Eder, A.; Dammer, L.; Korte, H.; Scholz, L.; Essel, R.; Breitmayer, E.; Barth, M. Wood-Plastic Com-posites (WPC) and Natural Fibre Composites (NFC): European and Global Markets 2012 and Future Trends in Automotive and Construction. Plast. Addit. Compd. 2015, 4, 553–567. [Google Scholar]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Kong, C.; Lee, H.; Park, H. Design and manufacturing of automobile hood using natural composite structure. Compos. Part B Eng. 2016, 91, 18–26. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Babu, L.G.; Pradhan, R.; Kumar, S. Study on tribological properties of palm kernel fiber for brake pad applications. Mater. Res. Express 2019, 7, 015102. [Google Scholar] [CrossRef]
- Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S. Improvement of Acoustical Characteristics: Wideband Bamboo Based Polymer Composite. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 012021. [Google Scholar] [CrossRef] [Green Version]
Fibre | Density (g/cm3) | Elongation (%) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Length mm | Diameter μm | L/D | References |
---|---|---|---|---|---|---|---|---|
Cotton | 1.5–1.6 | 7.0–8.0 | 400 | 5.5–12.6 | 20–70 | 20–30 | 1250 | [34,35,36,37,38] |
Jute | 1.3 | 1.5–1.8 | 393–773 | 26.5 | 2–3 | 16 | 160 | [34,35,36,37,38] |
Flax | 1.5 | 2.7–3.2 | 500–1500 | 27.6 | 2–40 | 20–23 | 100–2000 | [34,35,36,37,38] |
Hemp | 1.47 | 2–4 | 690 | 70 | 5–60 | 20–40 | 100–2000 | [34,35,36,37,38] |
Kenaf | 1.45 | 1.6 | 930 | 53 | --- | --- | --- | [34,35,36,37,38] |
Ramie | N/A | 3.6–3.8 | 400–938 | 61.4–128 | 40–150 | 30 | 40–150 | [34,35,36,37,38] |
Sisal | 1.5 | 2.0–2.5 | 511–635 | 9.4–22 | 2–7 | 20 | 140 | [34,35,36,37,38] |
Coir | 1.2 | 30 | 593 | 4.0–6.0 | --- | --- | --- | [34,35,36,37,38] |
Fibres | Cellulose | Lignin | Hemicellulose | Pectin | Ash | Moisture Content | Wax |
---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | |
Flax | 71 | 2.2 | 18.6–20.6 | 2.3 | - | 8–12 | 1.5–3.3 |
Kenaf | 31–72 | 15–19 | 21.5–23 | - | 2–5 | - | - |
Jute | 45–71.5 | 12–26 | 13.6–21 | 0.2 | 0.5–2 | 12.5–13.7 | 0.5 |
Hemp | 57–77 | 3.7–13 | 14–22.4 | 0.9 | 0.8 | 6.2–12 | 0.8 |
Ramie | 68.6–91 | 0.6–0.7 | 5–16.7 | 1.9 | - | 7.5–17 | 0.3 |
Abaca | 56–63 | 7–9 | 15–17 | - | 3 | 5–10 | - |
Sisal | 47–78 | 7–11 | 10–24 | 10 | 0.6–1 | 10–22 | - |
Henequen | 77.6 | 13.1 | 4–8 | - | - | - | - |
Fibre | Average CSA (mm2) | 95% Confidence Limit of the Average CSA | |
---|---|---|---|
Intra-fibre | Inter-fibre | ||
Sisal | 0.326 | 5.0% | 24.3% |
Coir | 0.028 | 11.3% | 24.0% |
Abaca | 0.021 | 6.5% | 42.5% |
Flax | 0.012 | 7.5% | 24.1% |
Kenaf | 0.006 | 12.9% | 15.6% |
Hemp | 0.005 | 10.8% | 27.6% |
Jute | 0.003 | 11.0% | 18.3% |
Types Of Diffusion | Diffusion Exponent (n) | Time Dependence | Mechanism | |
---|---|---|---|---|
Case I | First phase less Fickian Diffusion | n < 0.5 n = 0.5 | Water molecule diffusion occurs at a considerably slower rate than polymer segment mobility. | |
Case II | Case II Diffusion | n = 1.0 | (Time-independent) | The diffusion process is far more active than the relaxing process. |
Super Case II Diffusion | n > 1.0 | |||
Case III | Non-Fickian/ Anomalous Diffusion | 0.5 < n < 1.0 | Water-molecule mobility is equivalent to polymer-segment mobility, an intermediary performance between Case I and Case II diffusion. |
First Stage | Second Stage | Third Stage | References |
---|---|---|---|
50–100 °C | 200–300 °C | 330–500 °C | |
Moisture evaporation and fibre degradation happens due to the release of water absorbed by the fibres | Thermal decomposition happens for hemicellulose, lignin, pectin, and glycosidic linkages | Weight loss happens due to lignin and cellulose | [7,165,166] |
Type | Kelvin (K) | Celsius (°C) | Category of Temperatures |
---|---|---|---|
Normal room temperature | 296 | 23 | Room Temperature |
The temperature of arctic conditions | 223 | −50 | Low Temperature |
Temperature for aircraft components | 216 | −57 | Low Temperature |
Carbon dioxide (dry ice) | 195 | −78 | Low Temperature |
Earth’s lowest temperature | 184 | −89 | Low Temperature |
Liquid nitrogen (LN2) | 77 | −196 | Cryogenic Temperature |
Liquid oxygen (LOX) | 90 | −183 | Cryogenic Temperature |
Liquid hydrogen (LH2) | 20 | −253 | Cryogenic Temperature |
Liquid helium (LHe) | 4.2 | −269 | Cryogenic Temperature |
Fibre | Structure | Matrix | Temperature [K] | Properties Compared to Room Temperature | References |
---|---|---|---|---|---|
Carbon | UD | Epoxy (R608) | 77 | Impact energy (I) increases | [189] |
Carbon | QI and cross-ply laminates from UD | Epoxy (3501-6) | 123 | Absorbed energy (Eabs) increases | [179] |
Carbon | Woven | Epoxy (8552) | 123 | Absorbed energy (Eabs) decreases, and low-velocity impact (I) energy increases | [179] |
Carbon | UD | Vinyl Ester | 173 | Absorbed energy (Eabs) increases to 130 % | [190] |
Carbon | UD | Vinyl Ester | 223 | Absorbed energy (Eabs) decreases, and low-velocity impact (I) energy increases | [191,192] |
Glass | Woven | Vinyl Ester | 223 | Absorbed energy (Eabs) decreases, and low-velocity impact (I) energy increases to 3 % | [176] |
Glass (E-glass) | Woven | Epoxy | 223 | Absorbed energy (Eabs) decreases, and low-velocity impact (I) energy increases | [193] |
Glass (E-glass) | Woven | Epoxy | 213 | Absorbed energy (Eabs) decreases, and low-velocity impact (I) energy increases | [177] |
Basalt | Chopped fibre | PP (HP 500M) + nano clay | 77 | Absorbed energy (Eabs) increases, and low-velocity impact (I) energy decreases to 8% | [194] |
Fibre | Structure | Matrix | Temperature [°C] | Properties Compared to Room Temperature | References |
---|---|---|---|---|---|
Carbon T300-3000 | Orthotropic | Epoxy | 120 | Delamination area decreases with impact energy | [180] |
Carbon | Orthotropic | PEEK | 120 | Delamination area increases, but matrix cracking decreases | [180] |
Carbon | Quasi Isotropic | Epoxy | 150 | Very few delaminations are observed | [204] |
Carbon | Woven | Polyethene-naphtholate | 100 | Low-impact resistance + enhanced toughness | [205] |
Flax | Woven | Epoxy | 300 | Poor impact resistance due to fibre weakening | [206] |
Glass | Woven | Epoxy | 300 | Increased absorption + maximum deflection | [206] |
Jute | Woven | Unsaturated polyester | 75 | Low impact damage was observed at 30 °C and 50 °C, compared with 75 °C | [14] |
Flax | Stacked sequence | Epoxy | 100 | Low impact damage was observed at 100 °C | [162] |
Flax | Stacked sequence | Styrene polyester | 100 | Lower impact strength but increased tensile strength and flexural strength. | [209] |
Chemical Treatment | Effects | References |
---|---|---|
Alkaline | It enhances the bonding of the rough surface of the fibre and improves the mechanical properties | [241,242] |
Silane | It increases the physiochemical property between fibre and matrix | [243] |
Acetylation | It enhances the dimensional stability and reduces the hydrophilic nature of the fibre | [244] |
Bleaching | It enhances the mechanical properties and thermal stability of the fibre | [245,246] |
Benzoylation | It enhances mechanical strength and thermal stability and improves the hydrophobicity | [247,248] |
Acrylation and acrylonitrile grafting | It improves the stress transferability and enhances the adhesion between fibre and matrix | [49,249] |
Maleated coupling agents | It improves the fibre wettability by providing efficient fibre–matrix interaction | [250,251] |
Permanganate | It improves the interfacial bonding between fibre and the matrix | [252] |
Peroxide | It enhances the mechanical strength of the composites and improves the interfacial bonding between fibre and matrix | [253] |
Graft copolymerisation | It increases the thermal properties and mechanical strength | [248] |
Polymer coating | It increases the bonding between the fibre and the matrix | [254] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musthaq, M.A.; Dhakal, H.N.; Zhang, Z.; Barouni, A.; Zahari, R. The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review. Polymers 2023, 15, 1229. https://doi.org/10.3390/polym15051229
Musthaq MA, Dhakal HN, Zhang Z, Barouni A, Zahari R. The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review. Polymers. 2023; 15(5):1229. https://doi.org/10.3390/polym15051229
Chicago/Turabian StyleMusthaq, Muneer Ahmed., Hom Nath Dhakal, Zhongyi Zhang, Antigoni Barouni, and Rizal Zahari. 2023. "The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review" Polymers 15, no. 5: 1229. https://doi.org/10.3390/polym15051229
APA StyleMusthaq, M. A., Dhakal, H. N., Zhang, Z., Barouni, A., & Zahari, R. (2023). The Effect of Various Environmental Conditions on the Impact Damage Behaviour of Natural-Fibre-Reinforced Composites (NFRCs)—A Critical Review. Polymers, 15(5), 1229. https://doi.org/10.3390/polym15051229