A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of ZPU and CPU
2.3. Characterization
3. Results and Discussion
3.1. Fabrication and Structure Characterization
3.2. Thermal Property
3.3. Mechanical Properties
3.4. Self-Healing Property
3.5. Reprocessing Ability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Kooij, H.M.; Susa, A.; García, S.J.; van der Zwaag, S.; Sprakel, J. Imaging the Molecular Motions of Autonomous Repair in a Self-Healing Polymer. Adv. Mater. 2017, 29, 1701017. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, Y.; Wu, Q.; Wang, S.; Huang, G.; Wu, J. Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer 2018, 157, 172–179. [Google Scholar] [CrossRef]
- Wu, H.-T.; Jin, B.-Q.; Wang, H.; Wu, W.-Q.; Cao, Z.-X.; Yuan, Z.-Y.; Huang, Y.; Li, W.-H.; Huang, G.-S.; Liao, L.-S.; et al. A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds. Chin. J. Polym. Sci. 2021, 39, 1299–1309. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, R.; Zhao, C.; Han, L.; Han, S. Water plasticization accelerates the underwater self-healing of hydrophobic polyurethanes. Polymer 2022, 250, 124863. [Google Scholar] [CrossRef]
- Imato, K.; Nakajima, H.; Yamanaka, R.; Takeda, N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym. J. 2020, 53, 355–362. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, Z.; Li, C.; Wang, J.; Jin, Y.; Song, S.; Pan, M.; Yuan, J. Dipeptide end-capping resultant multiple hydrogen bonds triggering self-healing waterborne polyurethane elastomers. Polymer 2022, 246, 124778. [Google Scholar] [CrossRef]
- Nellepalli, P.; Patel, T.; Oh, J.K. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol. Rapid Commun. 2021, 42, e2100391. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, B.; Xu, Z.; Yang, J.; Liu, W. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Mater. Horiz. 2021, 8, 2742–2749. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Torkelson, J.M. Reprocessable Polymer Networks via Thiourethane Dynamic Chemistry: Recovery of Cross-link Density after Recycling and Proof-of-Principle Solvolysis Leading to Monomer Recovery. Macromolecules 2019, 52, 8207–8216. [Google Scholar] [CrossRef]
- Wen, H.; Chen, S.; Ge, Z.; Zhuo, H.; Ling, J.; Liu, Q. Development of humidity-responsive self-healing zwitterionic polyurethanes for renewable shape memory applications. RSC Adv. 2017, 7, 31525–31534. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Jiang, S. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, J.; Li, L.; Jiang, S. Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. J. Am. Chem. Soc. 2005, 127, 14473–14478. [Google Scholar] [CrossRef]
- Zheng, S.Y.; Mao, S.; Yuan, J.; Wang, S.; He, X.; Zhang, X.; Du, C.; Zhang, D.; Wu, Z.L.; Yang, J. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications. Chem. Mater. 2021, 33, 8418–8429. [Google Scholar] [CrossRef]
- Wang, Z.; Andel, E.V.; Pujari, S.P.; Feng, H.; Dijksman, J.A.; Smulders, M.; Zuilhof, H. Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mater. Chem. B 2017, 5, 6728–6733. [Google Scholar] [CrossRef]
- Lu, M.; Yu, S.; Wang, Z.; Xin, Q.; Sun, T.; Chen, X.; Liu, Z.; Chen, X.; Weng, J.; Li, J. Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility. Eur. Polym. J. 2020, 134, 109821. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, G.; Zhong, Z.; Sato, T.; Hozumi, A.; Su, Z. Substrate-independent polyzwitterionic coating for oil/water separation membranes. Chem. Eng. J. 2019, 362, 126–135. [Google Scholar] [CrossRef]
- Nikam, S.P.; Chen, P.; Nettleton, K.; Hsu, Y.-H.; Becker, M.L. Zwitterion surface-functionalized thermoplastic polyurethane for antifouling catheter applications. Biomacromolecules 2020, 21, 2714–2725. [Google Scholar] [CrossRef]
- Coneski, P.N.; Wynne, J.H. Zwitterionic polyurethane hydrogels derived from carboxybetaine-functionalized diols. ACS Appl. Mater. Interfaces 2012, 4, 4465–4469. [Google Scholar] [CrossRef]
- Huang, Z.; Nazifi, S.; Cheng, K.; Karim, A.; Ghasemi, H. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings. Chem. Eng. J. 2021, 422, 130085. [Google Scholar] [CrossRef]
- Liang, B.; Zhong, Z.; Jia, E.; Zhang, G.; Su, Z. Transparent and Scratch-Resistant Antifogging Coatings with Rapid Self-Healing Capability. ACS Appl. Mater. Interfaces 2019, 11, 30300–30307. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, H.; Yi, P.; Sun, S.; Li, Y.; Liu, X.; Li, G. Zwitterionic hydrogels formed via quadruple hydrogen-bonds with ultra-fast room-temperature self-healing ability. Mater. Lett. 2020, 269, 127665. [Google Scholar] [CrossRef]
- Bai, T.; Liu, S.; Sun, F.; Sinclair, A.; Zhang, L.; Shao, Q.; Jiang, S. Zwitterionic fusion in hydrogels and spontaneous and time-independent self-healing under physiological conditions. Biomaterials 2014, 35, 3926–3933. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, S.; Qin, Z.; Li, J.; Yao, F. Fast self-healing zwitterion nanocomposite hydrogel for underwater sensing. Compos. Commun. 2021, 26, 100784. [Google Scholar] [CrossRef]
- Chen, S.; Mo, F.; Yang, Y.; Stadler, F.; Chen, S.; Yang, H.; Ge, Z. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J. Mater. Chem. A 2015, 3, 2924–2933. [Google Scholar] [CrossRef]
- Wang, M.; Shi, X.; Liu, W.; Zou, F.; Hua, P.; Zhang, M. A zwitterionic polyurethane-based self-healing triboelectric nanogenerator for efficient self-powered sensing. Mater. Lett. 2023, 333, 133629. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Zhang, X.; Yang, Z.; Zhang, Y.; Wang, T.; Wang, Q. Molecularly Engineered Unparalleled Strength and Supertoughness of Poly(urea-urethane) with Shape Memory and Clusterization-Triggered Emission. Adv. Mater. 2022, 34, e2205763. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Li, H.; Gao, H.; Wu, M.; Wang, Z.; Wang, Z. Dual-hard phase structures make mechanically tough and autonomous self-healable polyurethane elastomers. Chem. Eng. J. 2023, 454, 140268. [Google Scholar] [CrossRef]
- Gui, Z.; Qian, J.; An, Q.; Xu, H.; Zhao, Q. Synthesis, characterization and flocculation performance of zwitterionic copolymer of acrylamide and 4-vinylpyridine propylsulfobetaine. Eur. Polym. J. 2009, 45, 1403–1411. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Zhang, F.; Gao, S.; Wang, A.; Fang, W.; Jin, J. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil-in-water emulsion separation. Adv. Funct. Mater. 2018, 28, 1804121. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Wang, J.; Xie, T.; Sun, L.; Yang, K.; Li, Z. Renewable tannic acid based self-healing polyurethane with dynamic phenol-carbamate network: Simultaneously showing robust mechanical properties, reprocessing ability and shape memory. Polymer 2021, 228, 123860. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, L.; Yang, C.; Yang, Y.; Song, C.; Wu, Q.; Huang, G.; Wu, J. Super tough and strong self-healing elastomers based on polyampholytes. J. Mater. Chem. A 2018, 6, 19066–19074. [Google Scholar] [CrossRef]
Samples | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) |
---|---|---|---|
CPU | 1.32 ± 0.20 | 760 ± 18 | 7.78 ± 1.01 |
ZPU | 7.38 ± 0.45 | 980 ± 21 | 6.75 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.; Zhang, Q.; Lin, L.; He, X.; Wang, L. A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions. Polymers 2023, 15, 1270. https://doi.org/10.3390/polym15051270
Mao H, Zhang Q, Lin L, He X, Wang L. A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions. Polymers. 2023; 15(5):1270. https://doi.org/10.3390/polym15051270
Chicago/Turabian StyleMao, Haiyan, Qun Zhang, Ling Lin, Xuemei He, and Lili Wang. 2023. "A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions" Polymers 15, no. 5: 1270. https://doi.org/10.3390/polym15051270
APA StyleMao, H., Zhang, Q., Lin, L., He, X., & Wang, L. (2023). A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions. Polymers, 15(5), 1270. https://doi.org/10.3390/polym15051270