Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Films Containing Encapsulated Propolis in Hyaluronic Matrix
2.2.1. Preparation of Polysaccharide Gels
2.2.2. Preparation of Propolis Emulsion
2.2.3. Control Sample Preparation
2.2.4. Preparation of Propolis Nanocapsules
2.2.5. Film Preparation
2.3. SEM Microscopy
2.4. UV-Vis Spectroscopy
2.5. FTIR Spectroscopy
2.6. Surface Color Measurements
2.7. Thickness Measurement
2.8. Mechanical Properties of Composites
2.9. Particle Sizes (DLS) and Zeta Potential
2.10. Contact Angle and Surface Free Energy
2.11. Moisture Content and Moisture Uptake
2.11.1. Water Content
2.11.2. Moisture Uptake
2.12. Differential Scanning Calorimetry (DSC)
2.13. Microbiological Analyses
2.13.1. Isolation and Identification of Microorganisms
2.13.2. Antimicrobial Activity of Films Containing Encapsulated Propolis
2.14. Statistical Analysis
3. Results and Discussion
3.1. Scanning Electronm Microscopy (SEM)
3.2. UV-Vis Spectroscopy
3.3. ATR-FTIR Spectroscopy
3.4. Surface Color Measurements
3.5. Mechanical Properties of Composites
3.6. Particle Sizes (DLS), Zeta Potential, Contact Angle and Surface Free Energy
3.7. Moisture Content and Moisture Uptake
3.8. Differential Scanning Calorimetry
3.9. Microbiological Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Żarska, S.; Szczepankowska, J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers 2022, 14, 948. [Google Scholar] [CrossRef] [PubMed]
- Nowak, N.; Grzebieniarz, W.; Khachatryan, G.; Konieczna-Molenda, A.; Krzan, M.; Khachatryan, K. Preparation of nano/microcapsules of ozonated olive oil in chitosan matrix and analysis of physicochemical and microbiological properties of the obtained films. Innov. Food Sci. Emerg. Technol. 2022, 82, 103181. [Google Scholar] [CrossRef]
- Khachatryan, K.; Khachatryan, L.; Krzan, M.; Krystyjan, M.; Krzemińska-Fiedorowicz, L.; Lenart-Boroń, A.; Koronowicz, A.; Drozdowska, M.; Khachatryan, G. Formation and Investigation of Physicochemical, Biological and Bacteriostatic Properties of Nanocomposite Foils Containing Silver Nanoparticles and Graphene Oxide in Hyaluronic Acid Matrix. Materials 2021, 14, 3377. [Google Scholar] [CrossRef]
- Tomadoni, B.; Fabra, M.J.; Méndez, D.A.; Martínez-Abad, A.; López-Rubio, A. Electrosprayed Agar Nanocapsules as Edible Carriers of Bioactive Compounds. Foods 2022, 11, 2093. [Google Scholar] [CrossRef]
- Muhammad, D.R.A. Nanoencapsulation: A New Way of Using Herbs and Spices in Food and Its Related Products. Rev. Agric. Sci. 2022, 10, 288–303. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to nanotechnology. In Springer Handbooks; Springer Nature Switzerland AG: Cham, Switzerland, 2017; pp. 1–19. [Google Scholar] [CrossRef]
- Ettlinger, R.; Lächelt, U.; Gref, R.; Horcajada, P.; Lammers, T.; Serre, C.; Couvreur, P.; Morris, R.E.; Wuttke, S. Toxicity of metal–organic framework nanoparticles: From essential analyses to potential applications. Chem. Soc. Rev. 2022, 51, 464–484. [Google Scholar] [CrossRef]
- Qing, Y.; Long, C.; An, K.; Liu, C. Natural rosin-grafted nanoparticles for extremely-robust and eco-friendly antifouling coating with controllable liquid transport. Compos. Part B Eng. 2022, 236, 109797. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Grzebieniarz, W.; Nowak, N.; Khachatryan, G.; Krzan, M.; Krystyjan, M.; Kosiński, J.; Khachatryan, K. The Preparation and Characterization of Quantum Dots in Polysaccharide Carriers (Starch/Chitosan) as Elements of Smart Packaging and Their Impact on the Growth of Microorganisms in Food. Materials 2021, 14, 7732. [Google Scholar] [CrossRef]
- Nowak, N.; Grzebieniarz, W.; Khachatryan, G.; Khachatryan, K.; Konieczna-Molenda, A.; Krzan, M.; Grzyb, J. Synthesis of Silver and Gold Nanoparticles in Sodium Alginate Matrix Enriched with Graphene Oxide and Investigation of Properties of the Obtained Thin Films. Appl. Sci. 2021, 11, 3857. [Google Scholar] [CrossRef]
- Rutkowski, M.; Krzemińska-Fiedorowicz, L.; Khachatryan, G.; Kabacińska, J.; Tischner, M.; Suder, A.; Kulik, K.; Lenart-Boroń, A. Antibacterial Properties of Biodegradable Silver Nanoparticle Foils Based on Various Strains of Pathogenic Bacteria Isolated from The Oral Cavity of Cats, Dogs and Horses. Materials 2022, 15, 1269. [Google Scholar] [CrossRef]
- Rutkowski, M.; Krzemińska-Fiedorowicz, L.; Khachatryan, G.; Bulski, K.; Kołton, A.; Khachatryan, K. Biodegradable Silver Nanoparticles Gel and Its Impact on Tomato Seed Germination Rate in In Vitro Cultures. Appl. Sci. 2022, 12, 2722. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials. Polymers 2021, 13, 2327. [Google Scholar] [CrossRef]
- Janik-hazuka, M.; Kamiński, K.; Kaczor-kamińska, M.; Szafraniec-szczęsny, J.; Kmak, A.; Kassassir, H.; Watała, C.; Wróbel, M.; Zapotoczny, S. Hyaluronic acid-based nanocapsules as efficient delivery systems of garlic oil active components with anticancer activity. Nanomaterials 2021, 11, 1354. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S.; Samir Mitragotri, C. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Majeed, M.I.; Qaddoori, H.T. Nanotechnology Targeting Drug Delivery With Biosensor—A Review. Acad. Globe Inderscience Res. 2022, 3, 1–17. [Google Scholar] [CrossRef]
- Nehme, H.; Saulnier, P.; Ramadan, A.A.; Cassisa, V.; Guillet, C.; Eveillard, M.; Umerska, A. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. PLoS ONE 2018, 13, e0189950. [Google Scholar] [CrossRef]
- Singh, A.; Amiji, M.M. Application of nanotechnology in medical diagnosis and imaging. Curr. Opin. Biotechnol. 2022, 74, 241–246. [Google Scholar] [CrossRef]
- Dulińska-Litewka, J.; Dykas, K.; Felkle, D.; Karnas, K.; Khachatryan, G.; Karewicz, A. Hyaluronic Acid-Silver Nanocomposites and Their Biomedical Applications: A Review. Materials 2021, 15, 234. [Google Scholar] [CrossRef]
- Hanula, M.; Szpicer, A.; Górska-Horczyczak, E.; Khachatryan, G.; Pogorzelski, G.; Pogorzelska-Nowicka, E.; Poltorak, A. Hydrogel Emulsion with Encapsulated Safflower Oil Enriched with Açai Extract as a Novel Fat Substitute in Beef Burgers Subjected to Storage in Cold Conditions. Molecules 2022, 27, 2397. [Google Scholar] [CrossRef] [PubMed]
- Hanula, M.; Szpicer, A.; Górska-Horczyczak, E.; Khachatryan, G.; Pogorzelska-Nowicka, E.; Poltorak, A. Quality of Beef Burgers Formulated with Fat Substitute in a Form of Freeze-Dried Hydrogel Enriched with Açai Oil. Molecules 2022, 27, 3700. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.M. An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Academic Press: London, UK, 2017; pp. 1–34. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Encapsulation for Improving in Vitro Gastrointestinal Digestion of Plant Polyphenols and Their Applications in Food Products. Food Rev. Int. 2020, 38, 335–353. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Almagableh, A.; Omari, M.A. Design and fabrication of green biocomposites. In Green Biocomposites: Design and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 45–67. [Google Scholar] [CrossRef]
- Battegazzore, D.; Frache, A.; Carosio, F. Sustainable and High Performing Biocomposites with Chitosan/Sepiolite Layer-by-Layer Nanoengineered Interphases. ACS Sustain. Chem. Eng. 2018, 6, 9601–9605. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Konieczna-Molenda, A.; Grzesiakowska, A.; Kuchta-Gładysz, M.; Kawecka, A.; Grzebieniarz, W.; Nowak, N. The Functional and Application Possibilities of Starch/Chitosan Polymer Composites Modified by Graphene Oxide. Int. J. Mol. Sci. 2022, 23, 5956. [Google Scholar] [CrossRef]
- Khachatryan, G.; Khachatryan, K.; Krystyjan, M.; Krzan, M.; Khachatryan, L. Functional properties of composites containing silver nanoparticles embedded in hyaluronan and hyaluronan-lecithin matrix. Int. J. Biol. Macromol. 2020, 149, 417–423. [Google Scholar] [CrossRef]
- Lima, A.L.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods 2022, 199, 54–66. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef]
- Folentarska, A.; Łagiewka, J.; Krystyjan, M.; Ciesielski, W. Biodegradable Binary and Ternary Complexes from Renewable Raw Materials. Polymers 2021, 13, 2925. [Google Scholar] [CrossRef]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef]
- Zamboni, F.; Okoroafor, C.; Ryan, M.P.; Pembroke, J.T.; Strozyk, M.; Culebras, M.; Collins, M.N. On the bacteriostatic activity of hyaluronic acid composite films. Carbohydr. Polym. 2021, 260, 117803. [Google Scholar] [CrossRef]
- Gohar, K.; Khachatryan, L.; Krystyjan, M.; Lenart-Boróń, A.; Krzan, M.; Kulik, K.; Białecka, A.; Grabacka, M.; Nowak, N.; Khachatryan, K. Preparation of Nano/Microcapsules of Ozonated Olive Oil in Hyaluronan Matrix and Analysis of Physicochemical and Microbiological (Biological) Properties of the Obtained Biocomposite. Int. J. Mol. Sci. 2022, 23, 14005. [Google Scholar] [CrossRef]
- Chirsanova, A.; Capcanari, T.; Boistean, A.; Khanchel, I. Bee Honey: History, Characteristics, Properties, Benefits and Adulteration in The Beekeeping Sector. J. Soc. Sci. 2021, 4, 98–114. [Google Scholar] [CrossRef]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernández, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Ziobro, R.; Korus, A. The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT Food Sci. Technol. 2015, 63, 640–646. [Google Scholar] [CrossRef]
- de Campos, J.V.; Assis, O.B.G.; Bernardes-Filho, R. Atomic force microscopy evidences of bacterial cell damage caused by propolis extracts on E. coli and S. aureus. Food Sci. Technol. 2019, 40, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021, 115, 297–306. [Google Scholar] [CrossRef]
- Braakhuis, A. Evidence on the Health Benefits of Supplemental Propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pi, A.; Yan, L.; Li, J.; Nan, S.; Zhang, J.; Hao, Y. Research Progress on Therapeutic Effect and Mechanism of Propolis on Wound Healing. Evidence-Based Complement. Altern. Med. 2022, 2022, 5798941. [Google Scholar] [CrossRef] [PubMed]
- Martelli Chaib Saliba, A.S.; Giovanini de Oliveira Sartori, A.; Souza Batista, P.; Pedroso Gomes do Amaral, J.E.; Oliveira da Silva, N.; Ikegaki, M.; Rosalen, P.L.; Matias de Alencar, S. Simulated gastrointestinal digestion/Caco-2 cell transport: Effects on biological activities and toxicity of a Brazilian propolis. Food Chem. 2023, 403, 134330. [Google Scholar] [CrossRef]
- Ferreira De Brito, L.; Bergara Pereira, F.; Lorenzon, M.C.; Castro, R.N.; Laureano Melo, R.; Guerra, A.F.; Luchese, R.H. What is the Effect of Propolis Extracts against Pathogenic Microorganisms and on Potentially Probiotic Strains of Lacticaseibacillus and Limosilactobacillus? ACS Food Sci. Technol. 2021, 2, 493–502. [Google Scholar] [CrossRef]
- Michailidis, G.F.; Thamnopoulos, I.A.I.; Fletouris, D.J.; Angelidis, A.S. Synergistic, bacteriostatic effect of propolis and glycerol against Listeria monocytogenes in chocolate milk under refrigerated storage. Food Sci. Technol. Int. 2021, 27, 46–55. [Google Scholar] [CrossRef]
- Santos, L.M.; Fonseca, M.S.; Sokolonski, A.R.; Deegan, K.R.; Araújo, R.P.C.; Umsza-Guez, M.A.; Barbosa, J.D.V.; Portela, R.D.; Machado, B.A.S. Propolis: Types, composition, biological activities, and veterinary product patent prospecting. J. Sci. Food Agric. 2020, 100, 1369–1382. [Google Scholar] [CrossRef]
- El-Allaky, H.S.; Wahba, N.A.; Talaat, D.M.; Zakaria, A.S. Antimicrobial Effect of Propolis Administered through Two Different Vehicles in High Caries Risk Children: A Randomized Clinical Trial. J. Clin. Pediatr. Dent. 2020, 44, 289–295. [Google Scholar] [CrossRef]
- Moreno, M.A.; Vallejo, A.M.; Ballester, A.R.; Zampini, C.; Isla, M.I.; López-Rubio, A.; Fabra, M.J. Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll. 2020, 107, 105973. [Google Scholar] [CrossRef]
- Mei, L.; Ji, Q.; Jin, Z.; Guo, T.; Yu, K.; Ding, W.; Liu, C.; Wu, Y.; Zhang, N. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. LWT 2022, 163, 113550. [Google Scholar] [CrossRef]
- Tong Kong, Y.; Veloo Kutty, R. Physical characterization of propolis encapsulated vitamin E TPGS as nanomedicine. Mater. Today Proc. 2022, 48, 807–810. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Rudawska, A.; Jacniacka, E. Analysis for determining surface free energy uncertainty by the Owen-Wendt method. Int. J. Adhes. Adhes. 2009, 29, 451–457. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Tajik, S.; Maghsoudlou, Y.; Khodaiyan, F.; Jafari, S.M.; Ghasemlou, M.; Aalami, M. Soluble soybean polysaccharide: A new carbohydrate to make a biodegradable film for sustainable green packaging. Carbohydr. Polym. 2013, 97, 817–824. [Google Scholar] [CrossRef]
- Pająk, P.; Gałkowska, D.; Juszczak, L.; Khachatryan, G. Octenyl succinylated potato starch-based film reinforced by honey-bee products: Structural and functional properties. Food Packag. Shelf Life 2022, 34, 100995. [Google Scholar] [CrossRef]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of Physicochemical Properties of Bee Pollen with Other Bee Products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [Green Version]
- Cavalu, S.; Bisboaca, S.; Mates, I.M.; Pasca, P.M.; Laslo, V.; Costea, T.; Fritea, L.; Vicas, S. Novel formulation based on chitosan-Arabic gum nanoparticles entrapping propolis extract production, physico-chemical and structural characterization. Rev. Chim. 2018, 69, 3756–3760. [Google Scholar] [CrossRef]
- Bilginer, R.; Ozkendir-Inanc, D.; Yildiz, U.H.; Arslan-Yildiz, A. Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion. J. Appl. Polym. Sci. 2021, 138, 50287. [Google Scholar] [CrossRef]
- Sutjarittangtham, K.; Sanpa, S.; Tunkasiri, T.; Chantawannakul, P.; Intatha, U.; Eitssayeam, S. Bactericidal effects of propolis/polylactic acid (PLA) nanofibres obtained via electrospinning. J. Apic. Res. 2015, 53, 109–115. [Google Scholar] [CrossRef]
- Wójcik-Pastuszka, D.; Skrzypczyk, A.; Musiał, W. The Interactions and Release Kinetics of Sodium Hyaluronate Implemented in Nonionic and Anionic Polymeric Hydrogels, Studied by Immunoenzymatic ELISA Test. Pharmaceutics 2021, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Baysal, G.; Olcay, H.S.; Keresteci, B.; Özpinar, H. The antioxidant and antibacterial properties of chitosan encapsulated with the bee pollen and the apple cider vinegar. Biomater. Sci. Polym. Ed. 2022, 33, 995–1011. [Google Scholar] [CrossRef] [PubMed]
- Kazachenko, A.S.; Vasilieva, N.Y.; Borovkova, V.S.; Fetisova, O.Y.; Issaoui, N.; Malyar, Y.N.; Elsuf’ev, E.V.; Karacharov, A.A.; Skripnikov, A.M.; Miroshnikova, A.V.; et al. Food Xanthan Polysaccharide Sulfation Process with Sulfamic Acid. Foods 2021, 10, 2571. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Kuś, P.M.; Jerković, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [Green Version]
- Pastor, C.; Sánchez-González, L.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content. Carbohydr. Polym. 2010, 82, 1174–1183. [Google Scholar] [CrossRef]
- Boke Sarikahya, N.; Varol, E.; Sumer Okkali, G.; Yucel, B.; Margaoan, R.; Nalbantsoy, A. Comparative Study of Antiviral, Cytotoxic, Antioxidant Activities, Total Phenolic Profile and Chemical Content of Propolis Samples in Different Colors from Turkiye. Antioxidants 2022, 11, 2075. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W. Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll. 2016, 61, 695–702. [Google Scholar] [CrossRef]
- Briassoulis, D.; Waaijenberg, D.; Gratraud, J.; Von Eslner, B. Mechanical Properties of Covering Materials for Greenhouses: Part 1, General Overview. J. Agric. Eng. Res. 1997, 67, 81–96. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, Y.; Xie, Q.; Fan, C.; Hilborn, J.; Dai, J.; Ossipov, D.A. Moldable Hyaluronan Hydrogel Enabled by Dynamic Metal–Bisphosphonate Coordination Chemistry for Wound Healing. Adv. Healthc. Mater. 2018, 7, 1700973. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Pavliňák, D.; Čileková, M.; Lepcio, P.; Abdel-Rahman, R.M.; Jančář, J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2019, 139, 730–739. [Google Scholar] [CrossRef]
- Koo, J.H. Polymer Nanocomposites: Processing, Characterization, and Applications; McGraw-Hill Education: New York, NY, USA, 2019; ISBN 9781260132311. [Google Scholar]
- Eaton, P.; Quaresma, P.; Soares, C.; Neves, C.; de Almeida, M.P.; Pereira, E.; West, P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 2017, 182, 179–190. [Google Scholar] [CrossRef]
- Slika, L.; Moubarak, A.; Borjac, J.; Baydoun, E.; Patra, D. Preparation of curcumin-poly (allyl amine) hydrochloride based nanocapsules: Piperine in nanocapsules accelerates encapsulation and release of curcumin and effectiveness against colon cancer cells. Mater. Sci. Eng. C 2020, 109, 110550. [Google Scholar] [CrossRef]
- Rodrigues, R.M.; Ramos, P.E.; Cerqueira, M.F.; Teixeira, J.A.; Vicente, A.A.; Pastrana, L.M.; Pereira, R.N.; Cerqueira, M.A. Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation. Food Chem. 2020, 314, 126157. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, D.F.S.; Vilela, C.; Pinto, R.J.B.; Bastos, V.; Oliveira, H.; Catarino, J.; Faísca, P.; Rosado, C.; Silvestre, A.J.D.; Freire, C.S.R. Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: In vitro and in vivo evaluation. Mater. Sci. Eng. C 2021, 118, 111350. [Google Scholar] [CrossRef]
- Teacǎ, C.A.; Bodîrlǎu, R.; Spiridon, I. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydr. Polym. 2013, 93, 307–315. [Google Scholar] [CrossRef]
- Suriyatem, R.; Auras, R.A.; Rachtanapun, C.; Rachtanapun, P. Biodegradable Rice Starch/Carboxymethyl Chitosan Films with Added Propolis Extract for Potential Use as Active Food Packaging. Polymers 2018, 10, 954. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, K.; Rojas, H.; González-Paz, R.; Brenes Granados, D.; González-Masís, J.; Vega Baudrit, J.; Corrales-Ureña, Y.R. Production of Starch Films Using Propolis Nanoparticles as Novel Bioplasticizer. J. Renew. Mater 2017, 5, 3–4. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Yañez, C.R.; Ruiz-Hurtado, P.A.; Reyes-Reali, J.; Mendoza-Ramos, M.I.; Vargas-Díaz, M.E.; Hernández-Sánchez, K.M.; Pozo-Molina, G.; Méndez-Catalá, C.F.; García-Romo, G.S.; Pedroza-González, A.; et al. Antifungal Activity of Mexican Propolis on Clinical Isolates of Candida Species. Molecules 2022, 27, 5651. [Google Scholar] [CrossRef]
- Bruschi, M.L.; Dota, K.F.D.; Consolaro, M.E.L.; Svidzinski, T.I.E. Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evidence-Based Complement. Altern. Med. 2011, 2011, 201953. [Google Scholar] [CrossRef] [Green Version]
- Stähli, A.; Schröter, H.; Bullitta, S.; Serralutzu, F.; Dore, A.; Nietzsche, S.; Milia, E.; Sculean, A.; Eick, S. In Vitro Activity of Propolis on Oral Microorganisms and Biofilms. Antibiotics 2021, 10, 1045. [Google Scholar] [CrossRef] [PubMed]
- Moghim, H.; Taghipour, S.; Kheiri, S.; Khabbazi, H.; Baradaran, A. Antifungal Effects of Iranian Propolis Extract and Royal jelly Against Candida albicans In-Vitro. Int. J. Prev. Med. 2021, 12, 163. [Google Scholar] [CrossRef] [PubMed]
- Shehu, A.; Ismail, S.; Adzim, M.; Rohin, K.; Harun, A.; Aziz, A.A.; Haque, M. Antifungal Properties of Malaysian Tualang Honey and Stingless Bee Propolis against Candida albicans and Cryptococcus neoformans ARTICLE INFO ABSTRACT. J. Appl. Pharm. Sci. 2016, 6, 44–050. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Pavón, D.; Gómez-García, O.; Villa-Tanaca, L. Molecular Recognition of Citroflavonoids Naringin and Naringenin at the Active Site of the HMG-CoA Reductase and DNA Topoisomerase Type II Enzymes of Candida spp. and Ustilago maydis. Indian J. Microbiol. 2022, 62, 79–87. [Google Scholar] [CrossRef]
- Orsi, R.D.O.; Sforcin, J.M.; Cunha Funari, S.R.; Fernandes, A.; Bankova, V. Synergistic effect of propolis and antibiotics on the Salmonella Typhi. Brazilian J. Microbiol. 2006, 37, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Barud, H.D.S.; De Araújo Júnior, A.M.; Saska, S.; Mestieri, L.B.; Campos, J.A.D.B.; De Freitas, R.M.; Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; Vaz, M.M.D.O.L.L.; et al. Antimicrobial Brazilian propolis (EPP-AF) containing biocellulose membranes as promising biomaterial for skin wound healing. Evidence-Based Complement. Altern. Med. 2013, 2013, 703024. [Google Scholar] [CrossRef] [Green Version]
Species | Origin | HP1 | HP2 | HP3 | C |
---|---|---|---|---|---|
M. luteus | skin | 24.00 | 30.00 | 23.75 | 0 |
S. aureus | skin | 26.00 | 24.50 | 22.75 | 0 |
S. cohnii | skin | 20.00 | 19.50 | 24.25 | 0 |
S. epidermidis | skin | 24.50 | 27.50 | 26.25 | 0 |
S. haemolyticus | skin | 24.50 | 23.00 | 22.5 | 0 |
S. pasteuri | skin | 25.00 | 23.50 | 23.25 | 0 |
S. saprophyticus | skin | 24.00 | 23.50 | 24.25 | 0 |
S. warneri | skin | 24.00 | 22.50 | 28.75 | 0 |
mean | - | 24.00 | 24.25 | 24.47 | 0 |
Standard deviation | 1.75 | 3.21 | 2.08 | ||
Coefficient of variation (%) | 7.30 | 13.23 | 8.52 | ||
C. albicans 1 | type strain | 21.00 | 21.00 | 25.00 | 0 |
C. albicans 2 | anus | 21.50 | 22.00 | 24.00 | 0 |
C. albicans 3 | cheek | 20.00 | 21.50 | 23.00 | 0 |
C. albicans 4 | mouth | 21.50 | 22.50 | 21.00 | 0 |
C. formata | mouth | 24.00 | 24.50 | 26.00 | 0 |
C. glabrata | vagina | 25.50 | 26.00 | 27.00 | 0 |
C. guillermondii | skin under eye | 19.50 | 20.50 | 21.50 | 0 |
C. inconspicua 1 | vagina | 22.50 | 24.00 | 25.00 | 0 |
C. inconspicua 2 | vagina | 24.00 | 22.00 | 22.50 | 0 |
C. inconspicua 3 | skin | 21.20 | 22.90 | 25.10 | 0 |
C. inconspicua 4 | mouth | 17.50 | 19.50 | 20.00 | 0 |
C. inconspicua 5 | throat | 18.50 | 19.50 | 20.00 | 0 |
C. krusei | vagina | 23.00 | 24.00 | 25.50 | 0 |
C. parapsilosis 1 | type strain | 20.00 | 22.50 | 23.00 | 0 |
C. parapsilosis 2 | anus | 22.00 | 23.50 | 25.50 | 0 |
C. parapsilosis 3 | skin | 22.50 | 23.00 | 26.50 | 0 |
C. parapsilosis 4 | skin | 20.00 | 23.50 | 27.00 | 0 |
C. parapsilosis 5 | throat | 15.00 | 19.50 | 20.00 | 0 |
mean | 21.07 | 22.33 | 23.76 | ||
Standard deviation | 2.52 | 1.84 | 2.45 | ||
Coefficient of variation (%) | 11.96 | 8.23 | 10.33 |
Sample | L* (D65) | a* (D65) | b* (D65) |
---|---|---|---|
ControlH | 91.1 ± 0.03 a | −0.5 ± 0.01 a | 3.8 ± 0.04 d |
HP1 | 87.8 ± 0.19 b | −3.7 ± 0.10 d | 30.4 ± 0.74 a |
HP2 | 90.5 ± 0.30 a | −2.8 ± 0.07 c | 17.2 ± 0.34 b |
HP3 | 90.8 ± 0.45 a | −1.0 ± 0.03 b | 11.2 ± 0.60 c |
Sample | Thickness [mm] | TS [MPa] | E [%] |
---|---|---|---|
ControlH | 0.64 ± 0.062 a | 44.41 ± 9.85 b | 4.0 ± 0.3 a |
HP1 | 0.067 ± 0.022 a | 43.59 ± 5.20 b | 4.0 ± 0.8 a |
HP2 | 0.063 ± 0.023 a | 44.20 ± 9.17 b | 3.8 ± 0.5 a |
HP3 | 0.061 ± 0.013 a | 57.08 ± 8.11 a | 4.0 ± 0.1 a |
Sample | Contact Angle [°] | Surface Free Energy [mJ/m2] | Zeta Potential [mV] | Particle Size [nm] | PDI | |||
---|---|---|---|---|---|---|---|---|
Water | Diiodomethane | Dispersive | Polar | Total Free Energy | ||||
ControlH | 58.80 ± 2.5 | 42.50 ± 3.1 | 33.44 ± 1.3 | 15.67 ± 0.9 | 49.11 ± 2.2 | −5.12 ± 0.7 | 13,000 ± 450 | 0.42 |
HP1 | 28.10 ± 2.4 | 41.50 ± 1.5 | 28.30 ± 0.6 | 37.41 ± 0.8 | 65.70 ± 1.3 | −53.70 ± 2.3 | 8000 ± 150 | 0.25 |
HP2 | 46.43 ± 2.7 | 43.60 ± 4.1 | 30.03 ± 1.9 | 25.29 ± 0.6 | 55.32 ± 2.5 | −69.40 ± 3.5 | 8300 ± 200 | 0.23 |
HP3 | 76.85 ± 3.1 | 40.70 ± 2.7 | 39.57 ± 0.8 | 4.61 ± 1.0 | 44.18 ± 1.8 | −52.40 ± 2.7 | 8500 ± 180 | 0.27 |
Sample | Moisture Content [%] | Moisture Uptake [%] |
---|---|---|
ControlH | 7.87 ± 0.08 b | 6.94 ± 0.04 b |
HP1 | 11.11 ± 0.03 a | 7.35 ± 0.04 a |
HP2 | 7.41 ± 0.08 c | 6.67 ± 0.06 c |
HP3 | 2.02 ± 0.09 d | 0.48 ± 0.04 d |
Endothermic Process | |||||
---|---|---|---|---|---|
To (°C) | Tp (°C) | Te (°C) | ΔH (J/g) | Tg (°C) | |
ControlH | 165.6 ± 6.9 | 167.4 ± 7.2 | 171.3 ± 7.0 | 188.7 ± 7.4 | 166.5 |
HP1 | 169.0 ± 8.9 | 171.6 ± 8.4 | 176.6 ± 9.0 | 154.7 ± 11.6 | 170.3 |
HP2 | 181.4 ± 9.3 | 183.7 ± 9.5 | 188.2 ± 10.0 | 147.3 ± 0.9 | 182.6 |
HP3 | 183.3 ± 6.3 | 185.4 ± 5.7 | 190.0 ± 5.7 | 148.2 ± 4.4 | 184.3 |
Exothermic Process | |||||
To (°C) | Tp (°C) | Te (°C) | ΔH (J/g) | Tg (°C) | |
ControlH | 228.1 ± 2.0 | 233.8 ± 0.8 | 241.9 ± 1.5 | −220.5 ± 11.2 | 230.9 |
HP1 | 217.7 ± 2.1 | 227.3 ± 0.8 | 236.9 ± 0.8 | −197.6 ± 3.1 | 222.5 |
HP2 | 216.0 ± 0.7 | 226.5 ± 1.1 | 237.1 ± 0.2 | −197.1 ± 7.73 | 221.2 |
HP3 | 221.7 ± 1.5 | 229.0 ± 1.1 | 238.1 ± 2.5 | −202.0 ± 7.77 | 225.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khachatryan, G.; Khachatryan, K.; Krystyjan, M.; Krzemińska-Fiedorowicz, L.; Lenart-Boroń, A.; Białecka, A.; Krupka, M.; Krzan, M.; Blaszyńska, K.; Hanula, M.; et al. Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix. Polymers 2023, 15, 1271. https://doi.org/10.3390/polym15051271
Khachatryan G, Khachatryan K, Krystyjan M, Krzemińska-Fiedorowicz L, Lenart-Boroń A, Białecka A, Krupka M, Krzan M, Blaszyńska K, Hanula M, et al. Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix. Polymers. 2023; 15(5):1271. https://doi.org/10.3390/polym15051271
Chicago/Turabian StyleKhachatryan, Gohar, Karen Khachatryan, Magdalena Krystyjan, Lidia Krzemińska-Fiedorowicz, Anna Lenart-Boroń, Anna Białecka, Magdalena Krupka, Marcel Krzan, Karolina Blaszyńska, Monika Hanula, and et al. 2023. "Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix" Polymers 15, no. 5: 1271. https://doi.org/10.3390/polym15051271
APA StyleKhachatryan, G., Khachatryan, K., Krystyjan, M., Krzemińska-Fiedorowicz, L., Lenart-Boroń, A., Białecka, A., Krupka, M., Krzan, M., Blaszyńska, K., Hanula, M., & Juszczak, L. (2023). Synthesis and Investigation of Physicochemical and Biological Properties of Films Containing Encapsulated Propolis in Hyaluronic Matrix. Polymers, 15(5), 1271. https://doi.org/10.3390/polym15051271