Synergistic Flame Retardant Effect between Ionic Liquid Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Epoxy Resin
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of EP Composites
2.3. Measurement and Characterization of EP Composites
2.3.1. Limiting Oxygen Index (LOI)
2.3.2. The Vertical Burning Test (UL-94)
2.3.3. Thermogravimetric Analysis (TGA)
2.3.4. Cone Calorimeter Test (CCT)
2.3.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. LOI and UL-94 Rating of EP Composites
3.2. Thermal Stability of EP Composites
3.3. CCT
3.4. Morphology of Char Residues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem. Eng. J. 2022, 114, 131578. [Google Scholar] [CrossRef]
- Zou, S.; Dang, L.; Li, Y.; Lan, S.; Zhu, D.; Li, L. Inorganic-organic dual modification of magnesium borate whisker by magnesium hydrate and dodecyl dihydrogen phosphate and its effect on the fire safety and mechanical properties of epoxy resin. Appl. Surf. Sci. 2022, 589, 153064. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Z.; Li, X.; Yu, L.; Zhang, Z.; Wu, Z. Zinc ferrite nanoparticle decorated boron nitride nanosheet: Preparation, magnetic field arrangement, and flame retardancy. Chem. Eng. J. 2019, 356, 680–692. [Google Scholar] [CrossRef]
- Liu, L.; Wang, W.; Shi, Y.; Fu, L.; Xu, L.; Yu, B. Electrostatic-interaction-driven assembly of binary hybrids towards fire-safe epoxy resin nanocomposites. Polymers 2019, 11, 229. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Morys, M.; Sut, A.; Illerhaus, B.; Schartel, B. Melamine poly(zinc phosphate) as flame retardant in epoxy resin: Decomposition pathways, molecular mechanisms and morphology of fire residues. Polym. Degrad. Stab. 2016, 130, 307–319. [Google Scholar] [CrossRef]
- Cechova, E.; Vojta, S.; Kukucka, P.; Kocan, A.; Trnovec, T.; Murinova, L.P.; de Cock, M.; van de Bor, M.; Askevold, J.; Eggesbo, M.; et al. Legacy and alternative halogenated flame retardants in human milk in Europe: Implications for children’s health. Environ. Int. 2017, 108, 137–145. [Google Scholar] [CrossRef]
- Wei, Y.L.; Bao, L.J.; Wu, C.C.; Zeng, E.Y. Characterization of anthropogenic impacts in a large urban center by examining the spatial distribution of halogenated flame retardants. Environ. Pollut. 2016, 215, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Sag, J.; Goedderz, D.; Kukla, P.; Greiner, L.; Dring, M. Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins. Molecules 2019, 24, 3746. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Bing, L. Flame-retardant behavior and mechanism of a DOPO-based phosphorus-nitrogen flame retardant in epoxy resin. High Perform. Polym. 2018, 31, 885–892. [Google Scholar] [CrossRef]
- Shuang, Y.; Wang, J.; Huo, S.; Cheng, L.; Mei, W. The synergistic effect of maleimide and phosphaphenanthrene groups on a reactive flame-retarded epoxy resin system. Polym. Degrad. Stab. 2015, 115, 63–69. [Google Scholar]
- Huang, Z.; Wang, Z. Synthesis of a bio-based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression. Polym. Adv. Technol. 2021, 32, 4282–4295. [Google Scholar] [CrossRef]
- Zhang, J.; Manias, E.; Wilkie, C.A. Polymerically modified layered silicates: An effective route to nanocomposites. J. Nanosci. Nanotechnol. 2008, 8, 1597–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Wu, Q.; Qu, B. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym. Degrad. Stab. 2009, 94, 751–756. [Google Scholar] [CrossRef]
- Guo, K.Y.; Wu, Q.; Mao, M.; Chen, H.; Zhang, G.D.; Zhao, L.; Gao, J.F.; Song, P.; Tang, L.C. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. Part B Eng. 2020, 193, 108017. [Google Scholar] [CrossRef]
- Jeencham, R.; Suppakarn, N.; Jarukumjorn, K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene. Compos. Part B Eng. 2014, 56, 249–253. [Google Scholar] [CrossRef]
- Pan, Y.H.; Zhao, Q.Y.; Gu, L.; Wu, Q.Y. Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination. Desalination 2017, 421, 160–168. [Google Scholar] [CrossRef]
- Li, L.; Ma, W.; Takada, A.; Takayama, N.; Takahara, A. Organic-inorganic hybrid films fabricated from cellulose fibers and imogolite nanotubes. Biomacromolecules 2019, 20, 3566–3574. [Google Scholar] [CrossRef]
- Zanzottera, C.; Vicente, A.; Celasco, E.; Fernandez, C.; Garrone, E.; Bonelli, B. Physico-chemical properties of imogolite nanotubes functionalized on both external and internal surfaces. J. Phys. Chem. C 2012, 116, 7499–7506. [Google Scholar] [CrossRef]
- Zhu, T.H.; Guo, G.Z.; Li, W.H.; Gao, M. Synergistic flame retardant effect between ionic liquid-functionalized imogolite nanotubes and ammonium polyphosphate in unsaturated polyester resin. ACS Omega 2022, 7, 47601–47609. [Google Scholar] [CrossRef]
- Arancibia-Miranda, N.; Escudey, M.; Molina, M.; García-González, M.T. Use of isoelectric point and PH to evaluate the synthesis of a nanotubular aluminosilicate. J. Non. Cryst. Solids 2011, 357, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Shen, J.; Sun, C.; Gao, M.; Yue, L.; Wang, Y. Ionic liquid modified graphene oxide for enhanced flame retardancy and mechanical properties of epoxy resin. J. Appl. Polym. Sci. 2021, 138, 50757. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Wang, L.X.; Dong, L.P. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym. Degrad. Stab. 2019, 162, 129–137. [Google Scholar] [CrossRef]
- Lewin, M. Synergistic and catalytic effects in flame retardancy of polymeric materials-an overview. J. Fire Sci. 1999, 17, 3–19. [Google Scholar] [CrossRef]
- Ciesielski, M.; Burk, B.; Heinzmann, C.; Döring, M. 2-Fire-retardant high-performance epoxy-based materials. Nov. Fire Retard. Polym. Compos. Mater. 2017, 3–51. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y.; Yu, Y.; Zhang, Q.; Huang, B.; Chen, Z.; Chen, T.; Jiang, J. Flame retardancy of unsaturated polyester composites with modified ammonium polyphosphate, montmorillonite, and zinc borate. J. Appl. Polym. Sci. 2019, 136, 47180. [Google Scholar] [CrossRef]
- Kim, M.; Ko, H.; Park, M.S. Synergistic effects of amine-modified ammonium polyphosphate on curing behaviors and flame retardation properties of epoxy composites. Compos. Part B 2019, 170, 19–30. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, G.; Dong, S.; Zhang, Q.; Kong, J. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf. Coat. Technol. 2007, 201, 7835–7841. [Google Scholar] [CrossRef]
- Schartel, B.; Bartholmai, M.; Knoll, U. Some comments on the use of cone calorimeter data. Polym. Degrad. Stab. 2005, 88, 540–547. [Google Scholar] [CrossRef]
- Makhlouf, G.; Hassan, M.; Nour, M.; Abdel-Monem, Y.K.; Abdelkhalik, A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J. Therm. Anal. Calorim. 2017, 130, 1031–1041. [Google Scholar] [CrossRef]
- Tian, S.; He, H.; Wang, D.; Yu, P.; Jia, Y.; Luo, Y. Study of using aluminum hypophosphite as a flame retardant for low-density polyethylene. Fire Mater. 2017, 41, 983–992. [Google Scholar] [CrossRef]
Sample | EP (wt%) | Curing Agent (wt%) | APP (wt%) | INTs-PF6-ILs (wt%) |
---|---|---|---|---|
Pure EP | 88.9 | 11.1 | - | - |
EP/APP | 85.3 | 10.7 | 4 | - |
EP/APP/INTs-PF6-ILs | 85.3 | 10.7 | 3.7 | 0.3 |
Samples | LOI (%) | UL-94 |
---|---|---|
Pure EP | 22.9 | - |
EP/APP | 27.4 | V-1 |
EP/APP/INTs-PF6-ILs | 28.0 | V-0 |
Samples | Air Atmosphere | ||
---|---|---|---|
Ti (°C) | Tmax (°C) | Char Residue Rate (%) at 735 °C | |
Pure EP | 355 | 359 | 15.06 |
EP/APP | 336 | 342 | 18.83 |
EP/APP/INTs-PF6-ILs | 337 | 343 | 19.61 |
Samples | Pure EP | EP/APP | EP/APP/INTs-PF6-ILs |
---|---|---|---|
TTI/s | 66 | 59 | 52 |
PHRR/kW∙m−2 | 869 | 516 | 515 |
Time to PHRR/s | 175 | 170 | 215 |
THR/MJ∙m−2 | 114 | 101 | 92 |
TSP/m2 | 34.7 | 25.2 | 23.9 |
FPI | 0.076 | 0.114 | 0.101 |
FSI | 4.966 | 3.035 | 2.395 |
EHC/MJ∙kg−1 | 21.3 | 21.7 | 21.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, T.; Zhou, X.; Guo, G.; Chai, Z.; Gao, M. Synergistic Flame Retardant Effect between Ionic Liquid Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Epoxy Resin. Polymers 2023, 15, 1455. https://doi.org/10.3390/polym15061455
Zhu T, Zhou X, Guo G, Chai Z, Gao M. Synergistic Flame Retardant Effect between Ionic Liquid Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Epoxy Resin. Polymers. 2023; 15(6):1455. https://doi.org/10.3390/polym15061455
Chicago/Turabian StyleZhu, Taohua, Xuan Zhou, Guozheng Guo, Zhihua Chai, and Ming Gao. 2023. "Synergistic Flame Retardant Effect between Ionic Liquid Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Epoxy Resin" Polymers 15, no. 6: 1455. https://doi.org/10.3390/polym15061455
APA StyleZhu, T., Zhou, X., Guo, G., Chai, Z., & Gao, M. (2023). Synergistic Flame Retardant Effect between Ionic Liquid Functionalized Imogolite Nanotubes and Ammonium Polyphosphate in Epoxy Resin. Polymers, 15(6), 1455. https://doi.org/10.3390/polym15061455