Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Synthesis of PPE
2.3. Synthesis of FPUFs
2.4. Characterization
3. Results and Discussion
3.1. Characterization of PPE
3.2. Study of Morphologies and Mechanical Properties
3.3. Flame Retardancy
3.4. Fire Behavior
3.5. Thermal Degradation of FPUFs
3.6. Analysis of Gas Phase
3.7. Analysis of Condensed Phase
3.8. Flame-Retardant Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dounis, D.V.; Wilkes, G.L. Structure-property relationships of flexible polyurethane foams. Polymer 1997, 38, 2819–2828. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R. Pyrolysis and combustion study of flexible polyurethane foam. J. Anal. Appl. Pyrol 2015, 113, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, R.H.; Zammarano, M.; Linteris, G.T.; Gedde, U.W.; Gilman, J.W. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stab. 2010, 95, 1115–1122. [Google Scholar] [CrossRef]
- Allan, D.; Daly, J.; Liggat, J.J. Thermal volatilisation analysis of TDI-based flexible polyurethane foam. Polym. Degrad. Stab. 2013, 98, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, J.; Bastin, B.; Bras, M.L.; Duquesne, S.; Paleja, R.; Delobel, R. Thermal stability and fire properties of conventional flexible polyurethane foam formulations. Polym. Degrad. Stab. 2005, 88, 28–34. [Google Scholar] [CrossRef]
- Singh, H.; Jain, A.K. Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: A comprehensive review. J. Appl. Polym. Sci. 2008, 111, 1115–1143. [Google Scholar] [CrossRef]
- Ravey, M.; Pearce, E.M. Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 1997, 63, 47–74. [Google Scholar] [CrossRef]
- Lefebvre, J.; Bastin, B.; Bras, M.L.; Duquesne, S.; Ritter, C.; Paleja, R.; Poutch, F. Flame spread of flexible polyurethane foam: Comprehensive study. Polym. Test. 2004, 23, 281–290. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Chao, C.; Wang, J.H. Transition from smoldering to flaming combustion of horizontally oriented flexible polyurethane foam with natural convection. Combust. Flame 2001, 127, 2252–2264. [Google Scholar] [CrossRef]
- McKenna, S.T.; Hull, T.R. The fire toxicity of polyurethane foams. Fire Sci. Rev. 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.M.; Kroeger, G.; Warnell, K.D.; Clark, C.R.; Stapleton, H.M. Results from Screening Polyurethane Foam Based Consumer Products for Flame Retardant Chemicals: Assessing Impacts on the Change in the Furniture Flammability Standards. Environ. Sci. Technol. 2016, 50, 10653–10660. [Google Scholar] [CrossRef] [PubMed]
- Denecker, C.; Liggat, J.J.; Snape, C.E. Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams. J. Appl. Polym. Sci. 2010, 100, 3024–3033. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weill, E.D. Thermal decomposition, combustion and fire-retardancy of polyurethanes-a review of the recent literature. Polym. Int. 2004, 53, 1585–1610. [Google Scholar] [CrossRef]
- Flambard, X.; Bourbigot, S.; Kozlowski, R.; Muzyczek, M.; Mieleniak, B.; Ferreira, M.; Vermeulen, B.; Poutch, F. Progress in safety, flame retardant textiles and flexible fire barriers for seats in transportation. Polym. Degrad. Stab. 2005, 88, 98–105. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef]
- Meng, D.; Liu, X.D.; Wang, S.H.; Sun, J.; Li, H.F.; Wang, Z.W.; Gu, X.Y.; Zhang, S. Self-healing polyelectrolyte complex coating for flame retardant flexible polyurethane foam with enhanced mechanical property. Compos. Part B 2021, 219, 108886. [Google Scholar] [CrossRef]
- Hou, Y.B.; Xu, Z.M.; Yuan, Y.; Liu, L.X.; Ma, S.C.; Wang, W.; Hu, Y.; Hu, W.Z.; Gui, Z. Nanosized bimetal-organic frameworks as robust coating for multi-functional flexible polyurethane foam: Rapid oil-absorption and excellent fire safety. Compos. Sci. Technol. 2019, 177, 66–72. [Google Scholar] [CrossRef]
- Bellayer, S.; Jimenez, M.; Prieur, B.; Dewailly, B.; Ramgobin, A.; Sarazin, J.; Revel, B.; Tricot, G.; Bourbigot, S. Fire retardant sol-gel coated polyurethane foam: Mechanism of action. Polym. Degrad. Stab. 2018, 147, 159–167. [Google Scholar] [CrossRef]
- Pan, H.; Shen, Q.; Zhang, Z.; Yu, B.; Lu, Y. MoS2-filled coating on flexible polyurethane foam via layer-by-layer assembly technique: Flame-retardant and smoke suppression properties. J. Mater. Sci. 2018, 53, 9340–9349. [Google Scholar] [CrossRef]
- Cho, J.H.; Vasagar, V.; Shanmuganathan, K.; Jones, A.R.; Nazarenko, S.; Ellison, C.J. Bioinspired Catecholic Flame Retardant Nanocoating for Flexible Polyurethane Foams. Chem. Mater. 2016, 27, 784–6790. [Google Scholar] [CrossRef]
- Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Exceptionally Flame Retardant Sulfur-Based Multilayer Nanocoating for Polyurethane Prepared from Aqueous Polyelectrolyte Solutions. ACS Macro Lett. 2013, 2, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.L.; Xing, C.Y.; Chen, L.; Xu, L.; Zhang, S. Green flame-retardant flexible polyurethane foam based on cyclodextrin. Polym. Degrad. Stab. 2020, 178, 109171. [Google Scholar] [CrossRef]
- Yao, Y.; Jin, S.; Ma, X.; Yu, R.; Shu, Q. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Pan, H.; Yang, W.; Liew, K.M.; Song, L.; Hu, Y. Synthesis and characterization of MnO2 nanosheets based multilayer coating and applications as a flame retardant for flexible polyurethane foam. Compos. Sci. Technol. 2016, 123, 212–221. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, L.; Cai, W.; Hu, Y.; Jiang, S.; Zhao, H. Effect of layer-by-layer self-assembled sepiolite-based nanocoating on flame retardant and smoke suppressant properties of flexible polyurethane foam. Appl. Clay Sci. 2019, 168, 230–236. [Google Scholar] [CrossRef]
- Zhou, H.; Tan, S.; Wang, C.; Yong, W. Enhanced flame retardancy of flexible polyurethane foam with low loading of liquid halogen-free phosphonium thiocyanate. Polym. Degrad. Stab. 2021, 195, 109789. [Google Scholar] [CrossRef]
- Liang, S.Y.; Neisius, M.; Mispreuve, H.; Naescher, R.; Gaan, S. Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds. Polym. Degrad. Stab. 2012, 97, 2428–2440. [Google Scholar] [CrossRef]
- Chen, M.J.; Shao, Z.B.; Wang, X.L.; Chen, L.; Wang, Y.Z. Halogen-Free Flame-Retardant Flexible Polyurethane Foam with a Novel Nitrogen–Phosphorus Flame Retardant. Ind. Eng. Chem. Res. 2012, 51, 9769–9776. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Huang, Z.; Xing, W.; Song, L.; Hu, Y. Effect of aluminum diethylphosphinate on the thermal stability and flame retardancy of flexible polyurethane foams. Fire Saf. J. 2019, 106, 72–79. [Google Scholar] [CrossRef]
- König, A.; Kroke, E. Methyl-DOPO—A new flame retardant for flexible polyurethane foam. Polym. Adv. Technol. 2011, 22, 5–13. [Google Scholar] [CrossRef]
- Gaan, S.; Liang, S.; Mispreuve, H.; Perler, H.; Naescher, R.; Neisius, M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 2015, 113, 180–188. [Google Scholar] [CrossRef]
- Rao, W.H.; Hu, Z.Y.; Xu, H.X.; Xu, Y.J.; Qi, M.; Liao, W.; Xu, S.; Wang, Y.Z. Flame retardant flexible polyurethane foams with highly efficient melamine salt. Ind. Eng. Chem. Res. 2017, 56, 7112–7119. [Google Scholar] [CrossRef]
- Neisius, M.; Liang, S.; Mispreuve, H.; Gaan, S. Phosphoramidate-Containing Flame-Retardant Flexible Polyurethane Foams. Ind. Eng. Chem. Res. 2013, 52, 9752–9762. [Google Scholar] [CrossRef]
- Zhou, Y.; Qiu, S.; Chu, F.; Yang, W.; Qiu, Y.; Qian, L.; Hu, W.; Song, L. High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: Enhanced adsorption, mechanical and fire safety properties. J. Colloid Interf. Sci. 2022, 609, 794–806. [Google Scholar] [CrossRef]
- Feng, Z.A.; Tao, Z.; Bz, A.; Wh, A.; Bw, A.; Jing, Z.; Chao, M.A.; Yuan, H.A. Synthesis of a novel liquid phosphorus-containing flame retardant for flexible polyurethane foam: Combustion behaviors and thermal properties–ScienceDirect. Polym. Degrad. Stab. 2020, 171, 109029. [Google Scholar] [CrossRef]
- Albaqami, M.D.; Shaikh, S.F.; Nafady, A. Utilization of hybrid silicone rubber/Exolit AP 422 composite for the fabrication of mechanically flexible, flame-retardant and superhydrophobic polyurethane foams. Mater. Chem. Phys. 2021, 273, 125133. [Google Scholar] [CrossRef]
- Gomez-Fernandez, S.; Ugarte, L.; Pena-Rodriguez, C.; Zubitur, M.; Angeles Corcuera, M.; Eceiza, A. Flexible polyurethane foam nanocomposites with modified layered double hydroxides. Appl. Clay Sci. 2016, 123, 109–120. [Google Scholar] [CrossRef]
- Xie, H.; Yang, W.; Anthony, C.; Xie, C.; Xie, J.; Lu, H.; Yeoh, G.H. Study on flame retarded flexible polyurethane foam/alumina aerogel composites with improved fire safety. Chem. Eng. J. 2017, 311, 310–317. [Google Scholar] [CrossRef]
- Guo, K.Y.; Wu, Q.; Mao, M.; Chen, H.; Zhang, G.D.; Zhao, L.; Gao, J.F.; Song, P.A.; Tang, L.C. Water-based hybrid coatings toward mechanically flexible, super-hydrophobic and flame-retardant polyurethane foam nanocomposites with high-efficiency and reliable fire alarm response. Compos. Part B-Eng. 2020, 193, 108017. [Google Scholar] [CrossRef]
- Rao, W.H.; Xu, H.X.; Xu, Y.J.; Qi, M.; Wang, Y.Z. Persistently flame-retardant flexible polyurethane foams by a novel phosphorus-containing polyol. Chem. Eng. J. 2018, 343, 198–206. [Google Scholar] [CrossRef]
- Chen, M.J.; Wang, X.; Tao, M.C.; Liu, X.Y.; Liu, Z.G.; Zhang, Y.; Zhao, C.S.; Wang, J.S. Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams. Polym. Degrad. Stab. 2018, 154, 312–322. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A.; Cabulis, U.; Kirpluks, M.; Augucik, M. Innovative porous polyurethane-polyisocyanurate foams based on rapeseed oil and modified with expandable graphite. Ind. Crop. Prod. 2016, 95, 316–323. [Google Scholar] [CrossRef]
- Duquesne, S.; Bras, M.L.; Bourbigot, S.; Delobel, R.; Roels, T. Expandable graphite: A fire retardant additive for polyurethane coatings. Fire Mater. 2003, 27, 103–117. [Google Scholar] [CrossRef]
- Duquesne, S.; Bras, M.L.; Bourbigot, S.; Delobel, R.; Roels, T. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym. Degrad. Stab. 2001, 74, 493–499. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F. Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polym. Degrad. Stab. 2002, 77, 195–202. [Google Scholar] [CrossRef]
- Rao, W.H.; Zhu, Z.M.; Wang, S.X.; Wang, T.; Tan, Y.; Liao, W.; Zhao, H.B.; Wang, Y.Z. A reactive phosphorus-containing polyol incorporated into flexible polyurethane foam: Self-extinguishing behavior and mechanism. Polym. Degrad. Stab. 2018, 153, 192–200. [Google Scholar] [CrossRef]
- Chen, M.J.; Chen, C.R.; Tan, Y.; Huang, J.Q.; Wang, X.L.; Chen, L.; Wang, Y.Z. Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Ind. Eng. Chem. Res. 2014, 53, 1160–1171. [Google Scholar] [CrossRef]
- Rao, W.H.; Liao, W.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Sharma, P.; Spiteri, C.; Velencoso, M.M.; Carmona, M.S.; Moses, J.E.; Rodriguez, J.F. A novel click-chemistry approach to flame retardant polyurethanes. React. Funct. Polym. 2013, 73, 1207–1212. [Google Scholar] [CrossRef]
- Wang, C.Q.; Ge, F.Y.; Sun, J.; Cai, Z.S. Effects of expandable graphite and dimethyl methylphosphonate on mechanical, thermal, and flame-retardant properties of flexible polyurethane foams. J. Appl. Polym. Sci. 2013, 130, 916–926. [Google Scholar] [CrossRef]
- Wang, X.; Qian, L.; Huang, Z.; Cao, Y.; Li, L. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym. Degrad. Stab. 2016, 130, 97–102. [Google Scholar] [CrossRef]
- Qian, L.; Feng, F.; Tang, S. Bi-phase flame-retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, D.Y.; Liang, W.J.; Li, F.; Wang, J.S.; Liu, Y.Q. Bi-phase flame-retardant actions of water-blown rigid polyurethane foam containing diethyl-N,N-bis(2-hydroxyethyl) phosphoramide and expandable graphite. J. Anal. Appl. Pyrolysis 2017, 124, 247–255. [Google Scholar] [CrossRef]
- Wu, N.; Niu, F.; Lang, W.; Yu, J.; Fu, G. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mater. Des. 2019, 181, 107929. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.; Chen, Y.; Wang, J.; Liu, X. Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym. Degrad. Stab. 2015, 122, 36–43. [Google Scholar] [CrossRef]
- Ma, C.; Qiu, S.; Xiao, Y.; Zhang, K.; Zheng, Y.; Xing, W.; Hu, Y. Fabrication of fire safe rigid polyurethane foam with reduced release of CO and NOx and excellent physical properties by combining phosphine oxide-containing hyperbranched polyol and expandable graphite. Chem. Eng. J. 2022, 431, 133347. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Ma, C.; Zhou, F.; Hu, Y.; Schartel, B. A liquid phosphorous flame retardant combined with expandable graphite or melamine in flexible polyurethane foam. Polym. Adv. Technol. 2022, 33, 326–339. [Google Scholar] [CrossRef]
- Yin, Y.; Chao, M.B.; Feng, Z.B.; Yuan, H.B.; Bs, A. Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite. Polym. Degrad. Stab. 2021, 191, 109656. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Q.; Zhao, X.; Jin, Z. Synthesis of reactive DOPO-based flame retardant and its application in polyurethane elastomers. Polym. Degrad. Stab. 2021, 183, 109440. [Google Scholar] [CrossRef]
- Qian, X.; Liu, Q.; Zhang, L.B.; Li, H.; Liu, J.W.; Yan, S.K. Synthesis of reactive DOPO-based flame retardant and its application in rigid polyisocyanurate-polyurethane foam. Polym. Degrad. Stab. 2022, 197, 109852. [Google Scholar] [CrossRef]
- Pitts, W.M. Role of two stage pyrolysis in fire growth on flexible polyurethane foam slabs. Fire Mater. 2014, 38, 323–338. [Google Scholar] [CrossRef]
- Chen, X.L.; Huo, L.L.; Jiao, C.M.; Li, S.X. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J. Anal. Appl. Pyrolysis 2013, 100, 186–191. [Google Scholar] [CrossRef]
- Liu, L.B.; Xu, Y.; Li, S.; Xu, M.J.; He, Y.T.; Shi, Z.X.; Li, B. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos. Part B Eng. 2019, 176, 107218. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, H.Y.; Yu, B.; Shi, Y.Q.; Wang, W.; Song, L.; Hu, Y.; Zhang, Y.M. Phosphorus and nitrogen-containing polyols: Synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 2016, 55, 10813–10822. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, H.; Guo, J.; Sun, J.; Gu, X. Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Compos. Part B Eng. 2020, 182, 107498. [Google Scholar] [CrossRef]
- Wei, C.A.; Yh, B.; Ying, P.C.; Xia, Z.A.; Fc, A.; Lh, A.; Xm, A.; Zz, D.; Xin, W.A.; Wx, A. Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. J. Colloid Interface Sci. 2020, 561, 32–45. [Google Scholar] [CrossRef]
Sample | Pass/No (TB117) | Dripping (Yes/No) | Sample | Pass/No (TB117) | Dripping (Yes/No) |
---|---|---|---|---|---|
R-FPUF | No | Yes | R-FPUF/15EG | Pass | No |
P-FPUF | No | Yes | P-FPUF/5EG | Pass | No |
R-FPUF/5EG | No | Yes | P-FPUF/10EG | Pass | No |
R-FPUF/10EG | No | No | P-FPUF/15EG | Pass | No |
Sample | TTI (S) | PHRR (kW/m2) | TPHRR (s) | FIGRA | THR (MJ/m2) | PSPR (m2/s) | TSP (m2) | AEHC (MJ/Kg) | COY (kg/kg) | CY (%) |
---|---|---|---|---|---|---|---|---|---|---|
R-RPUF | 9 | 640 | 61 | 10.5 | 32.0 | 0.036 | 1.22 | 22.6 | 0.023 | 2.5 |
P-RPUF | 12 | 521 | 70 | 7.4 | 26.8 | 0.104 | 3.25 | 26.4 | 0.108 | 6.4 |
P-RPUF/10EG | 19 | 185 | 40 | 4.6 | 24.7 | 0.031 | 1.71 | 30.3 | 0.101 | 18.0 |
P-RPUF/15EG | 7 | 90 | 23 | 3.9 | 16.0 | 0.009 | 0.54 | 28.5 | 0.207 | 28.6 |
Sample | T5 (°C) | Tmax1 (°C) | RTmax1 (%/min) | Tmax2 (°C) | RTmax2 (%/min) | Cwt600 (%) |
---|---|---|---|---|---|---|
R-FPUF | 251 | 280 | 7.9 | 400 | 25.7 | 2.3 |
P-FPUF | 254 | 277 | 9.0 | 419 | 25.2 | 5.2 |
P-FPUF/10EG | 248 | 272 | 8.9 | 408 | 21.9 | 9.6 |
P-FPUF/15EG | 246 | 273 | 8.5 | 403 | 21.2 | 12.2 |
Sample | C (wt.%) | N (wt.%) | O (wt.%) | P (wt.%) |
---|---|---|---|---|
R-FPUF | 67.3 | 13.3 | 19.4 | 0 |
P-FPUF | 69.9 | 9.9 | 19.9 | 1.4 |
P-FPUF/15EG | 81.4 | 4.5 | 13.8 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, Q.; Li, H.; Zhang, H.; Yan, S. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Polymers 2023, 15, 1284. https://doi.org/10.3390/polym15051284
Wang H, Liu Q, Li H, Zhang H, Yan S. Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Polymers. 2023; 15(5):1284. https://doi.org/10.3390/polym15051284
Chicago/Turabian StyleWang, Hongkun, Qiang Liu, Hui Li, Hao Zhang, and Shouke Yan. 2023. "Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite" Polymers 15, no. 5: 1284. https://doi.org/10.3390/polym15051284
APA StyleWang, H., Liu, Q., Li, H., Zhang, H., & Yan, S. (2023). Flame-Retardant and Smoke-Suppressant Flexible Polyurethane Foams Based on Phosphorus-Containing Polyester Diols and Expandable Graphite. Polymers, 15(5), 1284. https://doi.org/10.3390/polym15051284