Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Docking
2.2. Molecular Dynamic Simulations and Estimation of the Free Energies of Binding
2.3. Construction of the IsPETase Mutants
2.4. Enzyme Expression and Purification
2.5. PET Degradation Assay
2.6. Scanning Electron Microscopy (SEM)
2.7. Atomic Force Microscopy (AFM)
2.8. PET Crystallinity Assay
3. Results and Discussion
3.1. IsPETase Engineering for Enhancing PET-Degrading Activity
3.2. Modified IsPETase Exhibits Increased PET-Degrading Activity over Highly Crystallized PET
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Facts 2021: An Analysis of European Plastics Production, Demand and Waste Data. 2021. Available online: https://plasticseurope.org (accessed on 29 January 2023).
- UNEP. Single-Use Plastics: A Roadmap for Sustainability; International Environmental Technology Centre: Nairobi, Kenia, 2018. [Google Scholar]
- WWF. Plastic in Our Oceans is Killing Marine Mammals. 2021. Available online: https://www.wwf.org.au (accessed on 29 January 2023).
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef] [PubMed]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An emerging environmental challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [PubMed]
- Yusuf, A.A.; Ampah, J.D.; Soudagar, M.E.M.; Veza, I.; Kingsley, U.; Afrane, S.; Jin, C.; Liu, H.; Elfasakhany, A.; Buyondo, K.A. Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic waste. Energy Convers. Manag. 2022, 264, 115758. [Google Scholar]
- Crawford, C.B.; Quinn, B. The Contemporary History of Plastics. Microplastic Pollutants; Elsevier Science: Amsterdam, The Netherlands, 2017; pp. 19–37. [Google Scholar]
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar]
- Hiraga, K.; Taniguchi, I.; Yoshida, S.; Kimura, Y.; Oda, K. Biodegradation of waste PET. EMBO Rep. 2019, 20, e49365. [Google Scholar] [CrossRef]
- Badia, J.; Strömberg, E.; Karlsson, S.; Ribes-Greus, A. The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polym. Degrad. Stab. 2012, 97, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B 2009, 364, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Thornthwaite, D.W.; Ogunjobi, J.K.; Melroy, C.R.; Macquarrie, D.J.; Farmer, T.J.; Clark, J.H.; Breeden, S.W. Proceso Para la Producción de Tereftalato de Dialquilo; WIPO: Buenos Aires, Argentina, 2020. [Google Scholar]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar]
- Müller, R.J.; Schrader, H.; Profe, J.; Dresler, K.; Deckwer, W.D. Enzymatic degradation of poly (ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol. Rapid Commun. 2005, 26, 400–1405. [Google Scholar]
- Ribitsch, D.; Acero, E.H.; Greimel, K.; Eiteljoerg, I.; Trotscha, E.; Freddi, G.; Schwab, H.; Guebitz, G.M. Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatal. Biotransformation 2012, 30, 2–9. [Google Scholar] [CrossRef]
- Araújo, R.; Silva, C.; O’Neill, A.; Micaelo, N.; Guebitz, G.; Soares, C.M.; Casal, M.; Cavaco-Paulo, A. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6, 6 fibers. J. Biotechnol. 2007, 128, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Austin, H.P.; Allen, M.D.; Donohoe, B.S.; Rorrer, N.A.; Kearns, F.L.; Silveira, R.L.; Pollard, B.C.; Dominick, G.; Duman, R.; El Omari, K.; et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl. Acad. Sci. USA 2018, 115, E4350–E4357. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; He, L.; Wang, L.; Li, T.; Li, C.; Liu, H.; Luo, Y.; Bao, R. Protein crystallography and site-direct mutagenesis analysis of the poly (ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. ChemBioChem 2018, 19, 1471–1475. [Google Scholar] [CrossRef]
- Han, X.; Liu, W.; Huang, J.-W.; Ma, J.; Zheng, Y.; Ko, T.-P.; Xu, L.; Cheng, Y.-S.; Chen, C.-C.; Guo, R.-T. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 2017, 8, 2106. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Yao, M.; Li, B.; Ding, M.; He, B.; Chen, S.; Zhou, X.; Yuan, Y. Enhanced poly (ethylene terephthalate) hydrolase activity by protein engineering. Engineering 2018, 4, 888–893. [Google Scholar] [CrossRef]
- Joo, S.; Cho, I.J.; Seo, H.; Son, H.F.; Sagong, H.-Y.; Shin, T.J.; Choi, S.Y.; Lee, S.Y.; Kim, K.-J. Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat. Commun. 2018, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Shi, C.; Zhu, S.; Wei, R.; Yin, C.-C. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis. Biochem. Biophys. Res. Commun. 2019, 508, 289–294. [Google Scholar] [CrossRef]
- OMEGA, 4.2.1.2; OpenEye Scientific Software: Santa Fe, NM, USA, 2023.
- Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef]
- QUACPAC, 2.2.1.2; OpenEye Scientific Software: Santa Fe, NM, USA, 2023.
- Jones, G.; Willett, P.; Glen, R.; Leach, A.; Taylor, R. (Eds.) Development and Validation of a Genetic Algorithm for Flexible Ligand Docking; Abstracts of Papers of the American Chemical Society; Amer Chemical Soc: Washington, DC, USA, 1997. [Google Scholar]
- Perez-Castillo, Y.; Lima, T.C.; Ferreira, A.R.; Silva, C.R.; Campos, R.S.; Neto, J.B.A.; Magalhães, H.I.F.; Cavalcanti, B.C.; Júnior, H.V.N.; de Sousa, D.P. Bioactivity and molecular docking studies of derivatives from cinnamic and benzoic acids. BioMed Res. Int. 2020, 2020, 6345429. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.A.A.; Ben-Shalom, I. AMBER 2022; University of California: San Francisco, CA, USA, 2022. [Google Scholar]
- Araújo, M.O.; Pérez-Castillo, Y.; Oliveira, L.H.; Nunes, F.C.; Sousa, D.P.D. Larvicidal activity of cinnamic acid derivatives: Investigating alternative products for Aedes aegypti L. control. Molecules 2020, 26, 61. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.P.; Castillo, Y.P.; Monteiro, M.L.; de Menezes, R.R.; Almeida, R.N.; Martins, A.; Sousa, D.P. Trypanocidal mechanism of action and in silico studies of p-coumaric acid derivatives. Int. J. Mol. Sci. 2019, 20, 5916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, M.R.; Pantano, S. Split the charge difference in two! A rule of thumb for adding proper amounts of ions in MD simulations. J. Chem. Theory Comput. 2020, 16, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Pundir, S.; Martin, M.J.; O’Donovan, C. UniProt protein knowledgebase. In Protein Bioinformatics: From Protein Modifications and Networks to Proteomics; Humana Press: New York, NY, USA, 2017; pp. 41–55. [Google Scholar]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.-M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Lonhienne, T.; Cheng, Y.; Garcia, M.D.; Hu, S.H.; Low, Y.S.; Schenk, G.; Williams, C.M.; Guddat, L.W. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat. Commun. 2022, 13, 3368. [Google Scholar] [CrossRef]
- Cohen, S.N.; Chang, A.C.; Hsu, L. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 1972, 69, 2110–2114. [Google Scholar] [CrossRef] [Green Version]
- Son, H.F.; Cho, I.J.; Joo, S.; Seo, H.; Sagong, H.-Y.; Choi, S.Y.; Lee, S.Y.; Kim, K.-J. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 2019, 9, 3519–3526. [Google Scholar] [CrossRef]
- Ronkay, F.; Molnár, B.; Nagy, D.; Szarka, G.; Iván, B.; Kristály, F.; Mertinger, V.; Bocz, K. Melting temperature versus crystallinity: New way for identification and analysis of multiple endotherms of poly (ethylene terephthalate). J. Polym. Res. 2020, 27, 372. [Google Scholar] [CrossRef]
- Marten, E.; Müller, R.-J.; Deckwer, W.-D. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polym. Degrad. Stab. 2005, 88, 371–381. [Google Scholar] [CrossRef]
- Menzel, T.; Weigert, S.; Gagsteiger, A.; Eich, Y.; Sittl, S.; Papastavrou, G.; Ruckdäschel, H.; Altstädt, V.; Höcker, B. Impact of enzymatic degradation on the material properties of poly (ethylene terephthalate). Polymers 2021, 13, 3885. [Google Scholar] [CrossRef]
- Erickson, E.; Shakespeare, T.; Bratti, F.; Buss, B.; Graham, R.; Hawkins, M.; König, G.; Michener, W.; Miscall, J.; Ramirez, K.; et al. Comparative performance of PETase as a function of reaction conditions, substrate properties, and product accumulation. ChemSusChem 2022, 15, e202101932. [Google Scholar] [CrossRef]
Mutation | Effect on Enzymatic Activity | Method | Substrate | Ref. | |
---|---|---|---|---|---|
S238F/W159H | 4.13% higher than wild type | Absolute crystallinity loss | PET 14.8 ± 0.2% crystallinity | [18] | |
W185A | highly impaired performance relative to wild type | ||||
S160A | Not detected | Disrupt the catalysis process | Relative activity towards MHET and TPA production | PET drinking bottle | [19] |
D206A | |||||
H237A | |||||
W159A | Increased | Influence the substrate binding | |||
W159H | Increased | ||||
M161A | Decreased | ||||
W185A | Decreased | ||||
A209I | No change observed | ||||
Q119A | Decreased | ||||
S214H | Increased | ||||
S238F | Decreased | ||||
W97L | Decreased | Change the hydrophobic property | |||
Q182L | No change | ||||
R123A | Decreased | ||||
N241A | Decreased | ||||
S160A | Decreased | Expressed by production levels of MHET and TPA. | BHET | [20] | |
R132G | Decreased | ||||
C203S | Decreased | ||||
C239S | Decreased | ||||
W185A | Decreased | ||||
S214H | Decreased | ||||
I208A | Decreased | ||||
W159A | Decreased | ||||
W159H | Decreased | ||||
M161A | Decreased | ||||
Y87A | 80.73% MHET production; TPA production decreased | ||||
T88A | Full activity in producing MHET; TPA production decreased | ||||
R61A | Increased 1.6 times wild type activity | Expressed by kinetic parameters (kcat/KM) | PET film | [21] | |
L88F | Increased 2.0 times wild type activity | ||||
I179F | Increased 15.0 times wild type activity | ||||
S178T | Decreased to 29.7% of the activity of wild type | ||||
S209V | Decreased to 38.2% of the activity of wild type | ||||
S160A | Almost complete loss | Expressed hydrolytic activity | BHET | [22] | |
D206A | Almost complete loss | ||||
H237A | Almost complete loss | ||||
Y87A | 5% hydrolytic activity | ||||
M161A | 52% hydrolytic activity | ||||
W185A | 5% hydrolytic activity | ||||
I208A | 46% hydrolytic activity | ||||
W159A | 8% hydrolytic activity | ||||
S238A | Similar hydrolytic activity | ||||
N241A | 18% hydrolytic activity | ||||
R280A | Similar hydrolytic activity, increased thermostability and PET degradation activity by 14-fold at 40 degrees Celsius; when associated with E-121 and H-186. | ||||
W159H | Dramatically decreased | ||||
S238F | Dramatically decreased | ||||
C203A/C239A | Dramatically decreased | ||||
S93M | Increases activity towards 1-naphthyl butyrate | Expressed hydrolytic activity | 1-naphthyl butyrate | [23] | |
W159F | |||||
N241F |
IsPETase | ΔG (kcal/mol) | |
---|---|---|
PET | Products | |
WT | −21.20 | −17.94 |
I208V | −25.50 | −18.58 |
N212A | −28.36 | −14.88 |
S238Y | −25.50 | −17.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevilla, M.E.; Garcia, M.D.; Perez-Castillo, Y.; Armijos-Jaramillo, V.; Casado, S.; Vizuete, K.; Debut, A.; Cerda-Mejía, L. Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase. Polymers 2023, 15, 1779. https://doi.org/10.3390/polym15071779
Sevilla ME, Garcia MD, Perez-Castillo Y, Armijos-Jaramillo V, Casado S, Vizuete K, Debut A, Cerda-Mejía L. Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase. Polymers. 2023; 15(7):1779. https://doi.org/10.3390/polym15071779
Chicago/Turabian StyleSevilla, Maria Eduarda, Mario D. Garcia, Yunierkis Perez-Castillo, Vinicio Armijos-Jaramillo, Santiago Casado, Karla Vizuete, Alexis Debut, and Liliana Cerda-Mejía. 2023. "Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase" Polymers 15, no. 7: 1779. https://doi.org/10.3390/polym15071779
APA StyleSevilla, M. E., Garcia, M. D., Perez-Castillo, Y., Armijos-Jaramillo, V., Casado, S., Vizuete, K., Debut, A., & Cerda-Mejía, L. (2023). Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase. Polymers, 15(7), 1779. https://doi.org/10.3390/polym15071779