Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology
Abstract
:1. Introduction
2. Structure of KGM
2.1. Helical and Topological Structures of KGM
2.1.1. Factors Affecting the Formation of the Helical Structure of KGM
2.1.2. Active Fragments of KGM
2.1.3. Topology–Based Stabilization Mechanism of the KGM Chain
2.2. Chemical Structure and Modification of KGM
2.2.1. Chemical Structure
2.2.2. Chemical Modification
3. Formation Mechanism of a Non–Base–Irreversible Gel of KGM
3.1. Molecular Dynamics (MD) Simulation
3.2. Properties of KGM Polysaccharide Gels
3.3. Physical Parameters Regulate the Properties of Non–Alkali Irreversible Gelation
Materials | Properties | References |
---|---|---|
KGM, silver nanoparticles | Improved mechanical performance, outstanding antibacterial efficacy, extended water retention period, and excellent water absorption capacity | [74] |
KGM, gelatin (G), gold nanoparticles | Favorable mechanical and antibacterial characteristics, exceptional water absorption and retention capabilities | [75] |
KGM, CS, AgNPs | Swelling capacity, mechanical properties, and biocompatibility | [76] |
4. Application of the KGM Gel in Biomedical Materials
4.1. Wound Dressing Material
4.2. Biological Scaffold
4.3. Drug Carriers
Matrix | Drug | References |
---|---|---|
KGM, GG | Dihydromyricetin | [99] |
KGM, functionalized CCNT | 5–fluorouracil | [3] |
CMKGM KGM, CS | Curcumin | [45] |
CKGM, G, tannic acid functional nanohydroxyapatite | EGCG | [96] |
KGM | Isoniazid, rifabutin | [94] |
KGM, concanavalin A | Oral insulin | [91] |
KGM, SPI, κ–carrageenan | Glucose | [56] |
KGM, OHA | EGCG | [98] |
KGM, MSN, SA, NG | NG | [97] |
KGM, AG | CPFX | [9] |
4.4. Endodontic Treatments
4.5. Three–Dimensional Printed Therapeutic Agents
5. Research Prospects of KGM in Medical Biology
5.1. Multiscale Simulation of the KGM Sol Mesoscopic System
5.2. Multiscale Simulation of KGM Mesoscopic Clusters in Microfluidic Spinning
5.3. Mechanical Test Approach and Analysis of the KGM Gel during Deconstruction
5.4. Preparation, Performance, and Mechanism Research of KGM–Based Sensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, S.; Zongo, A.W.; Shah, B.R.; Li, J.; Li, B. Konjac Glucomannan (KGM), Deacetylated KGM (Da–KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. J. Agric. Food Chem. 2021, 69, 12921–12932. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Jiang, H.; Wu, H.; Tong, C.; Pang, J.; Wu, C. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano–ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll. 2020, 107, 105942. [Google Scholar] [CrossRef]
- Wang, L.; Mu, R.J.; Lin, L.; Chen, X.; Lin, S.; Ye, Q.; Pang, J. Bioinspired aerogel based on konjac glucomannan and functionalized carbon nanotube for controlled drug release. Int. J. Biol. Macromol. 2019, 133, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Sun, Y.J.; Sun, Y.M. Studies on single chain structure of konjac glucomannan. Chin. J. Struct. Chem. 2006, 25, 1441–1448. [Google Scholar]
- Mu, R.-J.; Yuan, Y.; Wang, L.; Ni, Y.; Li, M.; Chen, H.; Pang, J. Microencapsulation of Lactobacillus acidophilus with konjac glucomannan hydrogel. Food Hydrocoll. 2018, 76, 42–48. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, R.; Perkins, W.S.; Cheng, Y. Morphology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel. Food Chem. 2018, 269, 80–88. [Google Scholar] [CrossRef]
- Jian, W.J.; Yao, M.N.; Wang, M.; Guan, Y.G.; Pang, J. Formation Mechanism and Stability Study of Konjac Glucomannan Helical Structure. Chin. J. Struct. Chem. 2010, 29, 543–550. [Google Scholar]
- Lin, W.; Ni, Y.; Pang, J. Size effect–inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int. J. Biol. Macromol. 2020, 149, 853–860. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Mu, R.J.; Gong, J.; Wang, Y.; Li, Y.; Ma, J.; Pang, J.; Wu, C. Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydr. Polym. 2018, 190, 196–203. [Google Scholar] [CrossRef]
- Zhou, N.; Zheng, S.; Xie, W.; Cao, G.; Wang, L.; Pang, J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J. Appl. Polym. Sci. 2021, 139, 51780. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Mizuno, T. X–ray–Diffraction Study of Glucomannans and Their Acetates. Agric. Biol. Chem. 1991, 55, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Jian, W.J.; Wang, M.; Yao, M.N.; Pang, J. Formation Sites and Microscopic Conformation Study on the Konjac Glucomannan Molecular Helices. Chin. J. Struct. Chem. 2010, 29, 1084–1090. [Google Scholar]
- Jian, W.J.; Yao, M.N.; Wan, Y.; Lin, H.M.; Zeng, Y.A.; Pang, J. Study on the Hydration Shell of Single–helical of Konjac Glucomannan. Chin. J. Struct. Chem. 2011, 30, 127–133. [Google Scholar]
- Mao, Y.H.; Xu, Y.X.; Li, Y.H.; Cao, J.; Song, F.L.; Zhao, D.; Zhao, Y.; Wang, Z.M.; Yang, Y. Effects of konjac glucomannan with different molecular weights on gut microflora with antibiotic perturbance in in vitro fecal fermentation. Carbohydr. Polym. 2021, 273, 118546. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Peng, S.; Wen, C.; He, M.; Wei, X.; Wu, C.; Yao, M.; Feng, R.; Pang, J. Analysis of Influential Factors of Konjac Glucomannan (KGM) Molecular Structure on Its Activity. Chin. J. Struct. Chem. 2012, 31, 605–613. [Google Scholar]
- Chen, C.Y.; Huang, Y.C.; Yang, T.Y.; Jian, J.Y.; Chen, W.L.; Yang, C.H. Degradation of konjac glucomannan by Thermobifida fusca thermostable beta–mannanase from yeast transformant. Int. J. Biol. Macromol. 2016, 82, 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, B.; Wang, Y.; Li, B. Preparation and characterization of konjac glucomannan microcrystals through acid hydrolysis. Food Res. Int. 2015, 67, 111–116. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Geng, P.; Song, A.-X.; Wu, J.-Y. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll. 2017, 70, 14–19. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J.Y. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Pan, T.; Peng, S.; Xu, Z.; Xiong, B.; Wen, C.; Yao, M.; Pang, J. Synergetic degradation of konjac glucomannan by gamma–ray irradiation and hydrogen peroxide. Carbohydr. Polym. 2013, 93, 761–767. [Google Scholar] [CrossRef]
- Hien, N.Q.; Phu, D.V.; Duy, N.N.; Lan, N.T.K. Degradation of chitosan in solution by gamma irradiation in the presence of hydrogen peroxide. Carbohydr. Polym. 2012, 87, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, Y.; Yang, Y.; Ding, J.; Pang, J. Effect of γ–irradiation on some physiochemical properties of konjac glucomannan. Carbohydr. Polym. 2007, 70, 444–450. [Google Scholar] [CrossRef]
- Jian, W.; Tu, L.; Wu, L.; Xiong, H.; Pang, J.; Sun, Y.M. Physicochemical properties and cellular protection against oxidation of degraded Konjac glucomannan prepared by gamma–irradiation. Food Chem. 2017, 231, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Morais, S.; Heyman, A.; Barak, Y.; Caspi, J.; Wilson, D.B.; Lamed, R.; Shoseyov, O.; Bayer, E.A. Enhanced cellulose degradation by nano–complexed enzymes: Synergism between a scaffold–linked exoglucanase and a free endoglucanase. J. Biotechnol. 2010, 147, 205–211. [Google Scholar] [CrossRef]
- Jin, W.; Xu, W.; Li, Z.; Li, J.; Zhou, B.; Zhang, C.; Li, B. Degraded konjac glucomannan by γ–ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocoll. 2014, 36, 85–92. [Google Scholar] [CrossRef]
- Wu, C.; Li, Y.; Du, Y.; Wang, L.; Tong, C.; Hu, Y.; Pang, J.; Yan, Z. Preparation and characterization of konjac glucomannan–based bionanocomposite film for active food packaging. Food Hydrocoll. 2019, 89, 682–690. [Google Scholar] [CrossRef]
- Lin, W.; Ni, Y.; Wang, L.; Liu, D.; Wu, C.; Pang, J. Physicochemical properties of degraded konjac glucomannan prepared by laser assisted with hydrogen peroxide. Int. J. Biol. Macromol. 2019, 129, 78–83. [Google Scholar] [CrossRef]
- Wang, L.X.; Xiao, L.X.; Cai, L.G.; Yin, N.; Kou, D.D.; Pang, J. Influence of Konjac Glucomannan on the Crystallization Morphology and Structure of Calcium Oxalate. Chin. J. Struct. Chem. 2013, 32, 831–838. [Google Scholar]
- Pang, J.; Sun, Y.; Yang, Y.; Chen, Y.; Chen, Y.; Sun, Y. Studies on hydrogen bonding network structures of konjac glucomannan. Chin. J. Struct. Chem. 2008, 27, 431–436. [Google Scholar]
- Hong, X.; Ni, Y.S.; Lin, W.M.; Mu, R.J.; Wang, L.; Pang, J.; Wu, C.H.; Wen, C.R. Study on the Epigallocatechin Gallate and Konjac Glucomannan Mosaic Topological Structure. Chin. J. Struct. Chem. 2017, 36, 1447–1455. [Google Scholar] [CrossRef]
- Pang, J.; Ma, Z.; Shen, B.S.; Xu, Q.J.; Sun, Z.Q.; Fu, L.Q.; Fang, W.Y.; Wen, C.R. Hydrogen Bond Networks’ QSAR and Topological Analysis of Konjac Glucomannan Chains. Chin. J. Struct. Chem. 2014, 33, 480–489. [Google Scholar]
- Chen, H.; Mu, R.J.; Pang, J.; Tan, X.D.; Lin, H.B.; Ma, Z.; Chiang, W.Y. Influence of Topology Structure on the Stability of Konjac Glucomannan Nano Gel Microfibril. Chin. J. Struct. Chem. 2015, 34, 1939–1941. [Google Scholar]
- Jiang, H.; Sun, J.; Li, Y.; Ma, J.; Lu, Y.; Pang, J.; Wu, C. Preparation and characterization of citric acid crosslinked konjac glucomannan/surface deacetylated chitin nanofibers bionanocomposite film. Int. J. Biol. Macromol. 2020, 164, 2612–2621. [Google Scholar] [CrossRef] [PubMed]
- Yui, T.; Ogawa, K.; Sarko, A. Packing Analysis of Carbohydrates and Polysaccharides 18: Molecular and Crystal–Structure of Konjac Glucomannan in the Mannan–II Polymorphic Form. Carbohydr. Res. 1992, 229, 41–55. [Google Scholar] [CrossRef]
- Ni, Y.S.; Mu, R.J.; Tan, X.D.; Huang, R.X.; Yuan, Y.; Chen, H.B.; Pang, J. Stability of the Konjac Glucomannan Topological Chain Based on Quantum Spin Model. Chin. J. Struct. Chem. 2017, 36, 1043–1048. [Google Scholar] [CrossRef]
- XiaoYan, L.; JiuXiang, P.; LinQiu, Y. Lipase–catalyzed esterification of konjac glucomannan in isooctane. Environ. Prog. Sustain. Energy 2016, 35, 1149–1155. [Google Scholar] [CrossRef]
- Enomoto-Rogers, Y.; Ohmomo, Y.; Iwata, T. Syntheses and characterization of konjac glucomannan acetate and their thermal and mechanical properties. Carbohydr. Polym. 2013, 92, 1827–1834. [Google Scholar] [CrossRef]
- Qiao, D.; Lu, J.; Shi, W.; Li, H.; Zhang, L.; Jiang, F.; Zhang, B. Deacetylation enhances the properties of konjac glucomannan/agar composites. Carbohydr. Polym. 2022, 276, 118776. [Google Scholar] [CrossRef]
- Li, Z.; Su, Y.; Xie, B.; Liu, X.; Gao, X.; Wang, D. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. J. Mater. Chem. B 2015, 3, 1769–1778. [Google Scholar] [CrossRef]
- Wang, L.; Lin, L.; Pang, J. A novel glucomannan incorporated functionalized carbon nanotube films: Synthesis, characterization and antimicrobial activity. Carbohydr. Polym. 2020, 245, 116619. [Google Scholar] [CrossRef]
- Wei, X.; Cui, C.; Fan, C.; Wu, T.; Li, Y.; Zhang, X.; Wang, K.; Pang, Y.; Yao, P.; Yang, J. Injectable hydrogel based on dodecyl–modified N–carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy. Int. J. Biol. Macromol. 2022, 199, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Ha, W.; Meng, X.-W.; Govender, T.; Peng, S.-L.; Ding, L.-S.; Li, B.-J.; Zhang, S. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydr. Polym. 2010, 79, 648–654. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Chen, T.; Mei, N.; Wang, X.; Tang, S. Preparation and bioactivity of acetylated konjac glucomannan fibrous membrane and its application for wound dressing. Carbohydr. Polym. 2020, 229, 115404. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xiao, C. Synthesis and properties of novel hydrogels from oxidized konjac glucomannan crosslinked gelatin for in vitro drug delivery. Carbohydr. Polym. 2008, 72, 479–489. [Google Scholar] [CrossRef]
- Wu, Z.; Tong, C.; Zhang, J.; Sun, J.; Jiang, H.; Duan, M.; Wen, C.; Wu, C.; Pang, J. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of konjac glucomannan/cellulose nanocrystal bionanocomposite films incorporated with phlorotannin from Sargassum. Int. J. Biol. Macromol. 2021, 192, 323–330. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, Y.; Jiang, Y.; Sun, Y.; Shen, Y.; Pang, J. Synthesis and characterization of konjac glucomannan–graft–polyacrylamide via gamma–irradiation. Molecules 2008, 13, 490–500. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xu, L.Y.; Li, E.M.; Dong, G. Application of molecular dynamics simulation in biomedicine. Chem. Biol. Drug Des. 2022, 99, 789–800. [Google Scholar] [CrossRef]
- Karplus, M. Molecular dynamics simulations of biomolecules. J. Acc. Chem. Res. 2002, 35, 321–323. [Google Scholar] [CrossRef] [Green Version]
- Hansson, T.; Oostenbrink, C.; van Gunsteren, W.F. Molecular dynamics simulations. Curr. Opin. Struct. Biol. 2002, 12, 190–196. [Google Scholar] [CrossRef]
- Hospital, A.; Goni, J.R.; Orozco, M.; Gelpi, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.X.; Jiang, W.; Lin, C.P.; Zhong, Q.X.; Pang, J. Studies on the Hydrogen Bonding Network Structures of Amino–konjacglucomannan–zinc Chelate. Chin. J. Struct. Chem. 2014, 33, 171–178. [Google Scholar]
- Wang, L.X.; Wen, C.R.; Wu, J.; Lin, H.D.; Hu, S.G.; Pang, J. Studies on the Molecular Chain Conformation Stability of Aminated Konjac Glucomannan. Chin. J. Struct. Chem. 2013, 32, 1845–1853. [Google Scholar]
- Pang, J.; Sun, Y.J.; Guan, Y.G.; Tian, S.P. Studies on the effect of structure to property stability of glucomannan. Chin. J. Struct. Chem. 2005, 24, 1061–1065. [Google Scholar]
- Pang, J.; Sun, Y.J.; Guan, Y.G.; Zhu, Y.D.; Tian, S.P. Molecular dynamics simulation of glucomannan solution. Chin. J. Struct. Chem. 2005, 24, 841–845. [Google Scholar]
- Jiang, Y.; Reddy, C.K.; Huang, K.; Chen, L.; Xu, B. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. Int. J. Biol. Macromol. 2019, 133, 1156–1163. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Chang, C.; Gu, L.; Su, Y.; Yang, Y.; Han, Q. The slow release behavior of soy protein isolate/κ–carrageenan composite hydrogel: Effect of konjac glucomannan. Eur. Polym. J. 2022, 173, 111242. [Google Scholar] [CrossRef]
- Wang, M.; Yao, M.-N.; Jian, W.-J.; Sun, Y.-J.; Pang, J. Molecular Dynamics Simulations of the Interactions Between Konjac Glucomannan and Soy Protein Isolate. Agric. Sci. China 2010, 9, 1538–1542. [Google Scholar] [CrossRef]
- Ma, Z.; Pang, J.; Lin, M.L.; Xie, B.Q.; Chen, H.; Chen, J.L. Quantum Mechanical Analysis of Sodium Alginate Effects on the Konjac Glucomannan Stability. Chin. J. Struct. Chem. 2015, 34, 1187–1196. [Google Scholar]
- Roman-Leshkov, Y.; Barrett, C.J.; Liu, Z.Y.; Dumesic, J.A. Production of dimethylfuran for liquid fuels from biomass–derived carbohydrates. Nature 2007, 447, 982–985. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chu, H.W.; Huang, C.C.; Wu, W.C.; Tsai, J.S. Alkali–treated konjac glucomannan film as a novel wound dressing. Carbohydr. Polym. 2015, 117, 778–787. [Google Scholar] [CrossRef]
- Gao, S.; Guo, J.; Nishinari, K. Thermoreversible konjac glucomannan gel crosslinked by borax. Carbohydr. Polym. 2008, 72, 315–325. [Google Scholar] [CrossRef]
- Song, C.; Lv, Y.; Qian, K.; Chen, Y.; Qian, X. Preparation of konjac glucomannan–borax hydrogels with good self–healing property and pH–responsive behavior. J. Polym. Res. 2019, 26, 1–9. [Google Scholar] [CrossRef]
- Gao, S.; Guo, J.; Wu, L.; Wang, S. Gelation of konjac glucomannan crosslinked by organic borate. Carbohydr. Polym. 2008, 73, 498–505. [Google Scholar] [CrossRef]
- Jian, W.; Zeng, Y.; Xiong, H.; Pang, J. Molecular simulation of the complex of konjac glucomannan–borate in water. Carbohydr. Polym. 2011, 85, 452–456. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, J.; Zou, J.; Yuan, X.; Li, J.; Liang, H.; Zhan, F.; Li, B. Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and kappa–carrageenan blends. Int. J. Biol. Macromol. 2019, 123, 1165–1171. [Google Scholar] [CrossRef]
- Wang, L.X.; Dao, L.P.; Guo, Q.Y.; Chen, T.L.; Fu, L.J.; Zhou, F.C.; Yuan, Y. Investigation on the influence of AC electric filed and KCl on the structure and gel properties of Konjac glucomannan. Food Chem. 2022, 386, 132755. [Google Scholar] [CrossRef]
- Oishi, K.; Maehata, Y. Removal properties of dissolved boron by glucomannan gel. Chemosphere 2013, 91, 302–306. [Google Scholar] [CrossRef]
- Miyoshi, E.; Takaya, T.; Williams, P.A.; Nishinari, K. Effects of sodium chloride and calcium chloride on the interaction between gellan gum and konjac glucomannan. J. Agric. Food Chem. 1996, 44, 2486–2495. [Google Scholar] [CrossRef]
- Filipcsei, G.; Feher, J.; Zrinyi, M. Electric field sensitive neutral polymer gels. J. Mol. Struct. 2000, 554, 109–117. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.L.; He, X.J. Gel Properties of k–Carrageenan–Konjac Gum Mixed Gel and their Influence Factors. Adv. Mater. Res. 2011, 396, 1389–1393. [Google Scholar] [CrossRef]
- Cui, B.; Chen, W.; Liang, H.; Li, J.; Wu, D.; Ye, S.; Li, B. A novel κ–carrageenan/konjac gum thermo–irreversible gel improved by gellan gum and Ca2+. LWT 2022, 154, 112645. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y.; Lin, Y.; Pang, J.; Liu, X.Y. Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan–tungsten gels. Carbohydr. Polym. 2016, 142, 293–299. [Google Scholar] [CrossRef]
- Wang, L.X.; Lee, A.R.; Yuan, Y.; Wang, X.M.; Lu, T.J. Preparation and FTIR, Raman and SEM characterizations of konjac glucomannan–KCl electrogels. Food Chem. 2020, 331, 127289. [Google Scholar] [CrossRef]
- Chen, H.; Lan, G.; Ran, L.; Xiao, Y.; Yu, K.; Lu, B.; Dai, F.; Wu, D.; Lu, F. A novel wound dressing based on a Konjac glucomannan/silver nanoparticle composite sponge effectively kills bacteria and accelerates wound healing. Carbohydr. Polym. 2018, 183, 70–80. [Google Scholar] [CrossRef]
- Zou, Y.; Xie, R.; Hu, E.; Qian, P.; Lu, B.; Lan, G.; Lu, F. Protein–reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug–resistant bacteria. Int. J. Biol. Macromol. 2020, 148, 921–931. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, J.; Wu, X.; Ren, Y.; Li, Z.; Ren, J. Controlled release of silver ions from AgNPs using a hydrogel based on konjac glucomannan and chitosan for infected wounds. Int. J. Biol. Macromol. 2020, 149, 148–157. [Google Scholar] [CrossRef]
- Liu, J.; Cui, T.; Xu, X.; Du, Y.; Wang, L.; Chen, S.; Pang, J. Robust Alcohol Soluble Polyurethane/Chitosan/Silk Sericin (APU/CS/SS) Nanofiber Scaffolds Toward Artificial Skin Extracellular Matrices via Microfluidic Blow–Spinning. Adv. Fiber Mater. 2022, 5, 349–361. [Google Scholar] [CrossRef]
- Zhao, X.L. Antibacterial Heal–Promoting Gel Material Used for Preparing Medical Wound Dressing and Preparation Method Thereof. CN101791425B, 10 April 2013. [Google Scholar]
- Han, B.Q.; Liu, W.S.; Peng, Y.F.; Song, F.L.; Yang, Z. High–Expansibility Medical Polysaccharide–Based Material and Application Thereof. CN102989031A, 27 March 2013. [Google Scholar]
- Feng, Y.; Li, X.; Zhang, Q.; Yan, S.; Guo, Y.; Li, M.; You, R. Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydr. Polym. 2019, 216, 17–24. [Google Scholar] [CrossRef]
- Neto, R.J.G.; Genevro, G.M.; Paulo, L.A.; Lopes, P.S.; de Moraes, M.A.; Beppu, M.M. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr. Polym. 2019, 212, 59–66. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, T.; Yan, J.; Li, X.; Xie, Y.; Chen, H. Fabrication and characterization of matrine–loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing. Food Hydrocoll. 2020, 104, 105702. [Google Scholar] [CrossRef]
- Veerasubramanian, P.K.; Thangavel, P.; Kannan, R.; Chakraborty, S.; Ramachandran, B.; Suguna, L.; Muthuvijayan, V. An investigation of konjac glucomannan–keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids Surf. B Biointerfaces 2018, 165, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yi, Z.X.; Wang, J.X.; Hou, T.G.; Jiang, Q. Carboxymethyl konjac glucomannan—crosslinked chitosan sponges for wound dressing. Int. J. Biol. Macromol. 2018, 112, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, J.; Mao, X.; Tang, S. A gamma–PGA/KGM–based injectable hydrogel as immunoactive and antibacterial wound dressing for skin wound repair. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 129, 112374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, H.; Ran, K.; Zhang, Y.; Pan, H.; Shangguan, J.; Tong, M.; Yang, J.; Yao, Q.; Xu, H. Porous hydroxyapatite scaffold orchestrated with bioactive coatings for rapid bone repair. Biomater. Adv. 2023, 144, 213202. [Google Scholar] [CrossRef] [PubMed]
- Kanniyappan, H.; Thangavel, P.; Chakraborty, S.; Arige, V.; Muthuvijayan, V. Design and evaluation of Konjac glucomannan–based bioactive interpenetrating network (IPN) scaffolds for engineering vascularized bone tissues. Int. J. Biol. Macromol. 2020, 143, 30–40. [Google Scholar] [CrossRef]
- Kaisti, M.; Zenobi-Huang, M.; Mueller, M. Repair of Cartilage Graft Support and Its Manufacture Method. CN106999635A, 1 August 2017. [Google Scholar]
- Pan, X.H.; Zhu, X.Q.; Chen, Q.; Chen, Q.H. Preparation Method and Application of Cell–Scaffold Composite Material for Cartilage Injury Repair. CN107376025B, 28 July 2020. [Google Scholar]
- Wang, J.; Chen, J.; Chen, Q.H.; Huang, M.H. Hydroxyapatite, Sodium Hyaluronate and Konjac Glucomannan Composite Material and Preparation Method Thereof. CN102380128A, 21 March 2012. [Google Scholar]
- Xu, M.; Huang, J.; Jiang, S.; He, J.; Wang, Z.; Qin, H.; Guan, Y.Q. Glucose sensitive konjac glucomannan/concanavalin A nanoparticles as oral insulin delivery system. Int. J. Biol. Macromol. 2022, 202, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, Z.; Liang, J.; Li, N.; Song, R.; Luo, L.; Ai, Y.; Li, X.; Tang, S. An oral delivery vehicle based on konjac glucomannan acetate targeting the colon for inflammatory bowel disease therapy. Front. Bioeng. Biotechnol. 2022, 10, 1025155. [Google Scholar] [CrossRef]
- Guerreiro, F.; Pontes, J.F.; da Costa, A.M.R.; Grenha, A. Spray–drying of konjac glucomannan to produce microparticles for an application as antitubercular drug carriers. Powder Technol. 2019, 342, 246–252. [Google Scholar] [CrossRef]
- Guerreiro, F.; Swedrowska, M.; Patel, R.; Florez-Fernandez, N.; Torres, M.D.; da Costa, A.M.R.; Forbes, B.; Grenha, A. Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. Int. J. Pharm. 2021, 604, 120731. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Lin, L.; Mu, R.; Pang, J. Novel synthesis of mussel inspired and Fe(3+) induced pH–sensitive hydrogels: Adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization. Carbohydr. Polym. 2020, 236, 116045. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, N.; Zheng, S.; Pang, J. Formation of composite hydrogel of carboxymethyl konjac glucomannan/gelatin for sustained release of EGCG. Food Sci. Hum. Wellness 2022, 11, 1373–1383. [Google Scholar] [CrossRef]
- Dao, L.; Chen, S.; Sun, X.; Pang, W.; Zhang, H.; Liao, J.; Yan, J.; Pang, J. Construction and sustained release of konjac glucomannan/naringin composite gel spheres. Front. Nutr. 2022, 9, 1123494. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Bu, N.; Chen, J.; Chen, Y.; Sun, R.; Wu, C.; Pang, J. Construction of Konjac Glucomannan/Oxidized Hyaluronic Acid Hydrogels for Controlled Drug Release. Polymers 2022, 14, 927. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Du, Y.; Yuan, S.; Pang, J. Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum. Int. J. Biol. Macromol. 2021, 180, 385–391. [Google Scholar] [CrossRef]
- Wu, M.; Tao, B.; Wu, W. Anti–washout tricalcium silicate cements modified by konjac glucomannan/calcium formate complex for endodontic applications. Ceram. Int. 2022, 48, 24298–24309. [Google Scholar] [CrossRef]
- Liu, C.; Xu, N.; Zong, Q.; Yu, J.; Zhang, P. Hydrogel prepared by 3D printing technology and its applications in the medical field. Colloid Interface Sci. Commun. 2021, 44, 100498. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, L.; Zhang, X.L.; Cao, L.; Hu, K.; Li, L.H.; Wei, Y. 3D bioprinting of an electroactive and self–healing polysaccharide hydrogels. J. Tissue Eng. Regen. Med. 2022, 16, 76–85. [Google Scholar] [CrossRef]
- Qin, Z.; Pang, Y.; Lu, C.; Yang, Y.; Gao, M.; Zheng, L.; Zhao, J. Photo–crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting. Biomater. Sci. 2022, 10, 6549–6557. [Google Scholar] [CrossRef]
- Wang, Y.; Han, L.; Yan, J.; Hu, K.; Li, L.; Zhang, H.; Ai, H. 3D Bioprintability of Konjac Glucomannan Hydrogel. Mater. Sci. 2019, 26, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.; Yang, Z.; Chen, Y.; Yang, H. Konjac glucomannan decreases metabolite release of a plant–based fishball analogue during in vitro digestion by affecting amino acid and carbohydrate metabolic pathways. Food Hydrocoll. 2022, 129, 107623. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, Y.; Yuan, C.; Cui, B.; Liu, G.; Zhang, Z. The protective mechanism of a debranched corn starch/konjac glucomannan composite against dyslipidemia and gut microbiota in high–fat–diet induced type 2 diabetes. Food Funct. 2021, 12, 9273–9285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, Y.; Zhang, L.; Zhang, Q.; Liu, H. Preparation of meal replacement powder based on bacterial cellulose/konjac glucomannan and its influence on sugar metabolism. LWT 2022, 169, 113954. [Google Scholar] [CrossRef]
- Chen, H.; Nie, Q.; Hu, J.; Huang, X.; Zhang, K.; Pan, S.; Nie, S. Hypoglycemic and Hypolipidemic Effects of Glucomannan Extracted from Konjac on Type 2 Diabetic Rats. J. Agric. Food Chem. 2019, 67, 5278–5288. [Google Scholar] [CrossRef]
- Wu, D.; Yu, S.; Liang, H.; Eid, M.; Li, B.; Li, J.; Mao, J. An innovative konjac glucomannan/kappa–carrageenan mixed tensile gel. J. Sci. Food Agric. 2022, 102, 5067–5074. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, L.; Li, H.; Zhao, D.; Cao, J.; Song, Y.; Liu, X. Mimic Pork Rinds from Plant–Based Gel: The Influence of Sweet Potato Starch and Konjac Glucomannan. Molecules 2022, 27, 3103. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, N.; Yang, Y.; Huang, X.; Qiu, R.; Pang, J.; Wu, S. Rheological properties of konjac glucomannan composite colloids in strong shear flow affected by mesoscopic structures: Multi–scale simulation and experiment. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129850. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Liu, L.; Huang, X.; Wu, C.; Pang, J.; Qiu, R.; Wu, S. Micro–structure and tensile properties of microfluidic spinning konjac glucomannan and sodium alginate composite bio–fibers regulated by shear and elongational flow: Experiment and multi–scale simulation. Int. J. Biol. Macromol. 2023, 227, 777–785. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, Y.; Liu, W.; Wen, C.; Qiu, R.; Pang, J.; Wu, S. Real–time quantitative measurement of mechanical properties of spherical hydrogels during degradation by hydrodynamic loading and numerical simulation. Polym. Degrad. Stab. 2022, 202, 110055. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Dao, L.; Liu, L.; Yang, Y.; Liu, J.; Wu, S.; Cheng, Y.; Pang, J. A conductive bio–hydrogel with high conductivity and mechanical strength via physical filling of electrospinning polyaniline fibers. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 128190. [Google Scholar] [CrossRef]
- Chen, J.; Jian, M.; Yang, X.; Xia, X.; Pang, J.; Qiu, R.; Wu, S. Highly Effective Multifunctional Solar Evaporator with Scaffolding Structured Carbonized Wood and Biohydrogel. ACS Appl. Mater. Interfaces 2022, 14, 46491–46501. [Google Scholar] [CrossRef]
- Liu, Y.; Xi, Y.; Zhao, J.; Zhao, J.; Li, J.; Huang, G.; Li, J.; Fang, F.; Gu, L.; Wang, S. Preparation of therapeutic–laden konjac hydrogel for tumor combination therapy. Chem. Eng. J. 2019, 375, 122048. [Google Scholar] [CrossRef]
Materials | Properties | References |
---|---|---|
Silk fibroin, KGM | Strong water absorption capacity and similar compressive moist environment with excellent biocompatibility and modulus comparable to skin tissue | [80] |
CS, KGM | Biocompatibility with low cytotoxicity and suitable mechanical and barrier properties | [81] |
KGM, fish gelatin, matrine | Hemocompatibility and antimicrobial activity | [82] |
KGM, human hair proteins, ethanolic extract of Avena sativa | Desirable swelling, biocompatibility, antioxidant activity, and antibacterial activity | [83] |
CMKGM, CS | Stable, interconnected pores with high porosity and swelling ability | [84] |
KGM, γ–polyglutamic acid | Fast gelation time, little cytotoxicity, good immunomodulation, and antibacterial capabilities with a good water retention rate | [85] |
Ace KGM | Hydrophobicity and bioactivity | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xu, X.; Zhang, Q.; Zhang, D.; Xie, X.; Zhou, H.; Wu, Z.; Liu, R.; Pang, J. Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers 2023, 15, 1852. https://doi.org/10.3390/polym15081852
Sun Y, Xu X, Zhang Q, Zhang D, Xie X, Zhou H, Wu Z, Liu R, Pang J. Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers. 2023; 15(8):1852. https://doi.org/10.3390/polym15081852
Chicago/Turabian StyleSun, Yilan, Xiaowei Xu, Qinhua Zhang, Di Zhang, Xiaoyu Xie, Hanlin Zhou, Zhenzhen Wu, Renyi Liu, and Jie Pang. 2023. "Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology" Polymers 15, no. 8: 1852. https://doi.org/10.3390/polym15081852
APA StyleSun, Y., Xu, X., Zhang, Q., Zhang, D., Xie, X., Zhou, H., Wu, Z., Liu, R., & Pang, J. (2023). Review of Konjac Glucomannan Structure, Properties, Gelation Mechanism, and Application in Medical Biology. Polymers, 15(8), 1852. https://doi.org/10.3390/polym15081852