Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Moosavian, S.F.; Noorollahi, Y.; Shoaei, M. Renewable Energy Resources Utilization Planning for Sustainable Energy System Development on a Stand-Alone Island. J. Clean. Prod. 2024, 439, 140892. [Google Scholar] [CrossRef]
- Babazadeh Dizaj, R.; Sabahi, N. Optimizing LSM-LSF Composite Cathodes for Enhanced Solid Oxide Fuel Cell Performance: Material Engineering and Electrochemical Insights. World J. Adv. Res. Rev. 2023, 20, 1284–1291. [Google Scholar] [CrossRef]
- Amirjani, A.; Amlashi, N.B.; Ahmadiani, Z.S. Plasmon-Enhanced Photocatalysis Based on Plasmonic Nanoparticles for Energy and Environmental Solutions: A Review. ACS Appl. Nano Mater. 2023, 6, 9085–9123. [Google Scholar] [CrossRef]
- Scharber, M.C. Efficiency of Emerging Photovoltaic Devices under Indoor Conditions. Sol. RRL 2024, 8, 2300811. [Google Scholar] [CrossRef]
- Paci, B.; Righi Riva, F.; Generosi, A.; Guaragno, M.; Mangiacapre, E.; Brutti, S.; Wagner, M.; Distler, A.; Egelhaaf, H.-J. Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues. Nanomaterials 2024, 14, 269. [Google Scholar] [CrossRef]
- Li, Y.; Ru, X.; Yang, M.; Zheng, Y.; Yin, S.; Hong, C.; Peng, F.; Qu, M.; Xue, C.; Lu, J. Flexible Silicon Solar Cells with High Power-to-Weight Ratios. Nature 2024, 626, 105–110. [Google Scholar] [CrossRef]
- Ding, P.; Yang, D.; Yang, S.; Ge, Z. Stability of Organic Solar Cells: Toward Commercial Applications. Chem. Soc. Rev. 2024. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Yu, H.; Yan, H. Advantages, Challenges and Molecular Design of Different Material Types Used in Organic Solar Cells. Nat. Rev. Mater. 2024, 9, 46–62. [Google Scholar] [CrossRef]
- Wang, H.; He, F. Recent Advances of Chlorination in Organic Solar Cells. Synlett 2021, 32, 1297–1302. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Yang, L.; Du, F.; Yu, J.; Tang, W. Chlorinated Unfused Acceptor Enabling 13.57% Efficiency and 73.39% Fill Factor Organic Solar Cells via Fine-Tuning Alkoxyl Chains on Benzene Core. Chem. Eng. J. 2022, 427, 131828. [Google Scholar] [CrossRef]
- Li, M.; He, F. Organic Solar Cells Developments: What’s next? Next Energy 2024, 2, 100085. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M.H.; Qiao, J.; Li, Y.; Song, J.; Hao, X. Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. Adv. Mater. 2023, 35, 2208165. [Google Scholar] [CrossRef]
- Doumon, N.Y.; Yang, L.; Rosei, F. Ternary Organic Solar Cells: A Review of The Role of the Third Element. Nano Energy 2022, 94, 106915. [Google Scholar] [CrossRef]
- Yang, X.; Sun, R.; Wang, Y.; Chen, M.; Xia, X.; Lu, X.; Lu, G.; Min, J. Ternary All-Polymer Solar Cells with Efficiency up to 18.14% Employing a Two-Step Sequential Deposition. Adv. Mater. 2023, 35, 2209350. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile Ternary Organic Solar Cells: A Critical Review. Energy Environ. Sci. 2016, 9, 281–322. [Google Scholar] [CrossRef]
- Hrostea, L.; Dumitras, M.; Leontie, L. Study of Electrical Properties of PBDB-T-2Cl Based Ternary Thin Films for Photovoltaic Applications. Mater. Sci. Semicond. Process. 2023, 166, 107743. [Google Scholar] [CrossRef]
- Hrostea, L.; Leontie, L.; Girtan, M. Chemical Sensitization for Electric Properties Improvement of PBDB-T-SF Polymer for Solar Cells Application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012002. [Google Scholar] [CrossRef]
- Hrostea, L.; Leontie, L.; Girtan, M. Characterization of PBDB-T-SF: Fullerene Blend Thin Films for Solar Cell Applications. Rom. Rep. Phys. 2020, 72, 504. [Google Scholar]
- Huang, T.; Zhang, Y.; Wang, J.; Cao, Z.; Geng, S.; Guan, H.; Wang, D.; Zhang, Z.; Liao, Q.; Zhang, J. Dual-Donor Organic Solar Cells with 19.13% Efficiency through Optimized Active Layer Crystallization Behavior. Nano Energy 2024, 121, 109226. [Google Scholar] [CrossRef]
- Hu, H.; Mu, X.; Qin, W.; Gao, K.; Hao, X.; Yin, H. Rationalizing Charge Carrier Transport in Ternary Organic Solar Cells. Appl. Phys. Lett. 2022, 120, 023302. [Google Scholar] [CrossRef]
- Juska, G.; Arlauskas, K.; Viliunas, M.; Genevicius, K.; Osterbacka, R.; Stubb, H. Charge Transport in Pi-Conjugated Polymers from Extraction Current Transients. Phys. Rev. B 2000, 62, R16235–R16238. [Google Scholar] [CrossRef]
- Juska, G.; Arlauskas, K.; Genevicius, K. Charge carrier transport and recombination in disordered materials. Lith. J. Phys. 2016, 56, 182–189. [Google Scholar] [CrossRef]
- Grynko, O.; Juška, G.; Reznik, A. Charge Extraction by Linearly Increasing Voltage (CELIV) Method for Investigation of Charge Carrier Transport and Recombination in Disordered Materials. Photocond. Photocond. Mater. Fundam. Tech. Appl. 2022, 1, 339–368. [Google Scholar]
- Khan, M.D.; Nikitenko, V.R. On the Charge Mobility in Disordered Organics from Photo-CELIV Measurements. Chem. Phys. 2020, 539, 110954. [Google Scholar] [CrossRef]
- Aukstuolis, A.; Girtan, M.; Mousdis, G.A.; Mallet, R.; Socol, M.; Rasheed, M.; Stanculescu, A. measurement of charge carrier mobility in perovskite nanowire films by photo-celiv method. Proc. Rom. Acad. Ser. A-Math. Phys. Tech. Sci. Inf. Sci. 2017, 18, 34–41. [Google Scholar]
- Stephen, M.; Genevičius, K.; Juška, G.; Arlauskas, K.; Hiorns, R.C. Charge Transport and Its Characterization Using Photo-CELIV in Bulk Heterojunction Solar Cells: Photo-CELIV to Probe Charge Transport in Solar Cells. Polym. Int. 2017, 66, 13–25. [Google Scholar] [CrossRef]
- Semeniuk, O.; Juska, G.; Oelerich, J.-O.; Wiemer, M.; Baranovskii, S.D.; Reznik, A. Charge Transport Mechanism in Lead Oxide Revealed by CELIV Technique. Sci. Rep. 2016, 6, 33359. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Dai, T.; Ha, W.; Du, H.; Li, S.; Wang, K.; Meng, F.; Xu, D.; Geng, A. Charge Transport and Extraction of Bilayer Interdiffusion Heterojunction Organic Solar Cells. J. Phys. Chem. C 2019, 123, 24446–24452. [Google Scholar] [CrossRef]
- Chang, L.; Sheng, M.; Duan, L.; Uddin, A. Ternary Organic Solar Cells Based on Non-Fullerene Acceptors: A Review. Org. Electron. 2021, 90, 106063. [Google Scholar] [CrossRef]
- Yin, P.; Yin, Z.; Ma, Y.; Zheng, Q. Improving the Charge Transport of the Ternary Blend Active Layer for Efficient Semitransparent Organic Solar Cells. Energy Environ. Sci. 2020, 13, 5177–5185. [Google Scholar] [CrossRef]
- Hrostea, L.; Bulai, G.-A.; Tiron, V.; Leontie, L. Study of Tunable Dielectric Permittivity of PBDB-T-2CL Polymer in Ternary Organic Blend Thin Films Using Spectroscopic Ellipsometry. Polymers 2023, 15, 3771. [Google Scholar] [CrossRef]
- An, K.; Zhong, W.; Peng, F.; Deng, W.; Shang, Y.; Quan, H.; Qiu, H.; Wang, C.; Liu, F.; Wu, H. Mastering Morphology of Non-Fullerene Acceptors towards Long-Term Stable Organic Solar Cells. Nat. Commun. 2023, 14, 2688. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; An, Q.; Ma, X.; Hu, Z.; Xu, C.; Zhang, X.; Zhang, F. Over 16.7% Efficiency of Ternary Organic Photovoltaics by Employing Extra PC 71 BM as Morphology Regulator. Sci. China Chem. 2020, 63, 83–91. [Google Scholar] [CrossRef]
- Liu, X.; Du, S.; Fu, Z.; Chen, C.; Tong, J.; Li, J.; Zheng, N.; Zhang, R.; Xia, Y. Ternary Solar Cells via Ternary Polymer Donors and Third Component PC71BM to Optimize Morphology with 13.15% Efficiency. Sol. Energy 2021, 222, 18–26. [Google Scholar] [CrossRef]
- Juska, G.; Genevicius, K.; Viliunas, M.; Arlauskas, K.; Osterbacka, R.; Stubb, H. Transport Features of Photogenerated and Equilibrium Charge Carriers in Thin PPV Polymer Layers. In Proceedings of the Optical Organic and Inorganic Materials; Asmontas, S.P., Gradauskas, J., Eds.; Semicond Phys Inst; SPIE Balt Chapter; Lithuanian Minist & Educ & Res; Lithuanian State Sci & Studies Fdn; SPIE. European Commiss: Vilnius, Lituania, 2001; Volume 4415, pp. 145–149. [Google Scholar]
- Aukstuolis, A.; Nekrasas, N.; Genevicius, K.; Juska, G. Investigation of Charge Carrier Mobility and Recombination in PBDTTPD Thin Layer Structures. Org. Electron. 2021, 90, 106066. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Meng, X.; Yang, S.; Ke, L.; Zhou, C.; Yan, H.; Hu, X.; Zhang, S.; Ma, W. Regulating Crystallization to Maintain Balanced Carrier Mobility via Ternary Strategy in Blade-Coated Flexible Organic Solar Cells. Org. Electron. 2021, 89, 106027. [Google Scholar] [CrossRef]
- Juška, G.; Arlauskas, K.; Viliūnas, M.; Kočka, J. Extraction Current Transients: New Method of Study of Charge Transport in Microcrystalline Silicon. Phys. Rev. Lett. 2000, 84, 4946. [Google Scholar] [CrossRef]
- Dahlstrom, S.; Liu, X.; Yan, Y.; Sandberg, O.J.; Nyman, M.; Liang, Z.; Osterbacka, R. Extraction Current Transients for Selective Charge-Carrier Mobility Determination in Non-Fullerene and Ternary Bulk Heterojunction Organic Solar Cells. ACS Appl. Energy Mater. 2020, 3, 9190–9197. [Google Scholar] [CrossRef]
- Juška, G.; Genevičius, K.; Arlauskas, K.; Österbacka, R.; Stubb, H. Charge Transport at Low Electric Fields in π-Conjugated Polymers. Phys. Rev. B 2002, 65, 233208. [Google Scholar] [CrossRef]
- Mozer, A.J.; Sariciftci, N.S.; Pivrikas, A.; Österbacka, R.; Juška, G.; Brassat, L.; Bässler, H. Charge Carrier Mobility in Regioregular Poly (3-Hexylthiophene) Probed by Transient Conductivity Techniques: A Comparative Study. Phys. Rev. B 2005, 71, 035214. [Google Scholar] [CrossRef]
- Rao, A.D.; Murali, M.G.; Kesavan, A.V.; Ramamurthy, P.C. Experimental Investigation of Charge Transfer, Charge Extraction, and Charge Carrier Concentration in P3HT: PBD-DT-DPP: PC70BM Ternary Blend Photovoltaics. Sol. Energy 2018, 174, 1078–1084. [Google Scholar] [CrossRef]
- Dai, T.; Li, X.; Zhang, Y.; Xu, D.; Geng, A.; Zhao, J.; Chen, X. Performance Improvement of Polymer Solar Cells with Binary Additives Induced Morphology Optimization and Interface Modification Simultaneously. Sol. Energy 2020, 201, 330–338. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Yao, Y.; Liang, Z. Ternary Blend Strategy for Achieving High-efficiency Organic Solar Cells with Nonfullerene Acceptors Involved. Adv. Funct. Mater. 2018, 28, 1802004. [Google Scholar] [CrossRef]
Sample | D:A1:A2 Weight Ratio | Thickness (nm) | Absorption Edge (nm) | RRMS (nm) |
---|---|---|---|---|
S1 | 1:0:0 | 100 | 656 | 4.97 |
S2 | 1:1.4:0 | 400 | 685 | 8.24 |
S3 | 1:1:0.4 | 250 | 780 | 4.65 |
S4 | 1:0.7:0.7 | 285 | 775 | 3.91 |
S5 | 1:0.4:1 | 350 | 775 | 3.37 |
S6 | 1:0:1.4 | 210 | 656 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrostea, L.; Oajdea, A.; Leontie, L. Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers 2024, 16, 1324. https://doi.org/10.3390/polym16101324
Hrostea L, Oajdea A, Leontie L. Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers. 2024; 16(10):1324. https://doi.org/10.3390/polym16101324
Chicago/Turabian StyleHrostea, Laura, Anda Oajdea, and Liviu Leontie. 2024. "Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends" Polymers 16, no. 10: 1324. https://doi.org/10.3390/polym16101324
APA StyleHrostea, L., Oajdea, A., & Leontie, L. (2024). Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers, 16(10), 1324. https://doi.org/10.3390/polym16101324