A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Equipment and Instruments
2.3. Method
2.3.1. Experimental Sample Preparation
2.3.2. Determination of the Molecular Weight
2.3.3. Rheological Measurements
2.3.4. Mechanical Properties of Films
2.3.5. Barrier Performance of Water Vapor
2.3.6. Barrier Performance of Oxygen
2.3.7. Life Cycle Carbon Emission Analysis
3. Results
3.1. Molecular Weight Changes in the Recycled Films
3.2. Analysis of Rotational Viscosity of Five-Layer Co-Extruded Film
3.3. Mechanical Performance Analysis
3.4. Water Vapor and Oxygen Permeability
3.5. Life Cycle Carbon Emission Analysis of Five-Layer Co-Extruded Recycled Film
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aydin, M.; Degirmenci, T.; Bozatli, O.; Balsalobre-Lorente, D. Fresh evidence of the impact of economic complexity, health expenditure, natural resources, plastic consumption, and renewable energy in air pollution deaths in the USA? An empirical approach. Sci. Total Environ. 2024, 921, 171127. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 15 March 2024).
- Landrigan, P.J.; Raps, H.; Symeonides, C.; Chiles, T.; Cropper, M.; Enck, J.; Hahn, M.E.; Hixson, R.; Kumar, P.; Mustapha, A.; et al. Announcing the Minderoo—Monaco Commission on Plastics and Human Health. Ann. Glob. Health 2022, 88, 73. [Google Scholar] [CrossRef]
- Walker, T.R. China’s ban on imported plastic waste could be a game changer. Nature 2018, 553, 405. [Google Scholar] [CrossRef] [PubMed]
- Brooks, A.L.; Wang, S.; Jambeck, J.R. The Chinese import ban and its impact on global plastic waste trade. Sci. Adv. 2018, 4, eaat0131. [Google Scholar] [CrossRef] [PubMed]
- Letcher, T.M. Chapter 1—Introduction to Plastic Waste and Recycling; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 3–12. [Google Scholar]
- Kane, I.A.; Clare, M.A.; Miramontes, E.; Wogelius, R.; Rothwell, J.J.; Garreau, P.; Pohl, F. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020, 368, 1140–1145. [Google Scholar] [CrossRef]
- Viel, T.; Manfra, L.; Zupo, V.; Libralato, G.; Cocca, M.; Costantini, M. Biodegradation of Plastics Induced by Marine Organisms: Future Perspectives for Bioremediation Approaches. Polymers 2023, 15, 2673. [Google Scholar] [CrossRef]
- Cowger, W.; Willis, K.A.; Bullock, S.; Conlon, K.; Emmanuel, J.; Erdle, L.M.; Eriksen, M.; Farrelly, T.A.; Hardesty, B.D.; Kerge, K.; et al. Global producer responsibility for plastic pollution. Sci. Adv. 2024, 10, eadj8275. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B 2009, 346, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Bonab, V.S.; Yuan, D.; Patel, A.; Karimkhani, V.; Manas-Zloczower, I. Vitrimerization: A Novel Concept to Reprocess and Recycle Thermoset Waste via Dynamic Chemistry. Glob. Chall. 2019, 3, 1800071–1800076. [Google Scholar] [CrossRef]
- Pouyan Ghabezi, O.S.T.F. Circular economy innovation: A deep investigation on 3D printing of industrial waste polypropylene and carbon fibre composites. Resour. Conserv. Recycl. 2024, 206, 921–3449. [Google Scholar] [CrossRef]
- Ügdüler, S.; De Somer, T.; Van Geem, K.M.; De Wilde, J.; Roosen, M.; Deprez, B.; De Meester, S. Analysis of the kinetics, energy balance and carbon footprint of the delamination of multilayer flexible packaging films via carboxylic acids. Resour. Conserv. Recycl. 2022, 181, 106256. [Google Scholar] [CrossRef]
- Vadoudi, K.; Deckers, P.; Demuytere, C.; Askanian, H.; Verney, V. Comparing a material circularity indicator to life cycle assessment: The case of a three-layer plastic packaging. Sustain. Prod. Consump. 2022, 33, 820–830. [Google Scholar] [CrossRef]
- Costamagna, M.; Massaccesi, B.M.; Mazzucco, D.; Baricco, M.; Rizzi, P. Environmental assessment of the recycling process for polyamides—Polyethylene multilayer packaging films. Sustain. Mater. Technol. 2023, 35, e00562. [Google Scholar] [CrossRef]
- Tartakowski, Z. Recycling of packaging multilayer films: New materials for technical products. Resour. Conserv. Recycl. 2010, 55, 167–170. [Google Scholar] [CrossRef]
- Abraham, D.; George, K.E.; Joseph Francis, D. Rheological characterization of blends of low density with linear low density polyethylene using a torque rheometer. Eur. Polym. J. 1990, 26, 197–200. [Google Scholar] [CrossRef]
- Bertin, S.; Robin, J. Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 2002, 38, 2255–2264. [Google Scholar] [CrossRef]
- Dirim, S.N.; Özden, H.Ö.; Bayındırlı, A.; Esin, A. Modification of water vapour transfer rate of low density polyethylene films for food packaging. J. Food Eng. 2004, 63, 9–13. [Google Scholar] [CrossRef]
- Vieira, D.M.; Andrade, M.A.; Vilarinho, F.; Silva, A.S.; Rodrigues, P.V.; Castro, M.C.R.; Machado, A.V. Mono and multilayer active films containing green tea to extend food shelf life. Food Packag. Shelf Life 2022, 33, 100918. [Google Scholar] [CrossRef]
- Al Jabareen, A.; Al Bustami, H.; Harel, H.; Marom, G. Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. J. Appl. Polym. Sci. 2013, 128, 1534–1539. [Google Scholar] [CrossRef]
- Ma, Z.; Tsou, C.; Cui, X.; Wu, J.; Lin, L.; Wen, H.; De Guzman, M.R.; Wang, C.; Liu, H.; Xiong, Q.; et al. Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite. Curr. Res. Green Sustain. Chem. 2022, 5, 100314. [Google Scholar] [CrossRef]
- Hutchings, N.; Smyth, B.; Cunningham, E.; Yousif, M.; Mangwandi, C. Comparative life cycle analysis of a biodegradable multilayer film and a conventional multilayer film for fresh meat modified atmosphere packaging—And effectively accounting for shelf-life. J. Clean. Prod. 2021, 327, 129423. [Google Scholar] [CrossRef]
- Osman, A.I.; Elgarahy, A.M.; Mehta, N.; Al-Muhtaseb, A.H.; Al-Fatesh, A.S.; Rooney, D.W. Facile Synthesis and Life Cycle Assessment of Highly Active Magnetic Sorbent Composite Derived from Mixed Plastic and Biomass Waste for Water Remediation. ACS Sustain. Chem. Eng. 2022, 10, 12433–12447. [Google Scholar] [CrossRef]
- Gabriel, C.; Lilge, D. Molecular mass dependence of the zero shear-rate viscosity of LDPE melts: Evidence of an exponential behaviour. Rheol. Acta 2006, 45, 995–1002. [Google Scholar] [CrossRef]
- Jin, H.; Gonzalez-Gutierrez, J.; Oblak, P.; Zupančič, B.; Emri, I. The effect of extensive mechanical recycling on the properties of low density polyethylene. Polym. Degrad. Stabil. 2012, 97, 2262–2272. [Google Scholar] [CrossRef]
- Zakaria, M.; Shibahara, K.; Bhuiyan, A.H.; Nakane, K. Effects of varying melt flow rates on laser melt-electrospinning of low-density polyethylene nanofibers. J. Appl. Polym. Sci. 2021, 138, 50282. [Google Scholar] [CrossRef]
- Artzi, N.; Narkis, M.; Siegmann, A. EVOH/clay nanocomposites produced by dynamic melt mixing. Polym. Eng. Sci. 2004, 44, 1019–1026. [Google Scholar] [CrossRef]
- Rastin, H.; Jafari, S.H.; Saeb, M.R.; Khonakdar, H.A.; Wagenknecht, U.; Heinrich, G. Mechanical, rheological, and thermal behavior assessments in HDPE/PA-6/EVOH ternary blends with variable morphology. J. Polym. Res. 2014, 21, 352. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. J. Clean. Prod. 2020, 266, 121988. [Google Scholar] [CrossRef]
- Loultcheva, M.K.; Proietto, M.; Jilov, N.; La Mantia, F.P. Recycling of high density polyethylene containers. Polym. Degrad. Stabil. 1997, 57, 77–81. [Google Scholar] [CrossRef]
- Alipour, N.; Gedde, U.W.; Hedenqvist, M.S.; Yu, S.; Roth, S.; Brüning, K.; Vieyres, A.; Schneider, K. Structure and properties of polyethylene-based and EVOH-based multilayered films with layer thicknesses of 150 nm and greater. Eur. Polym. J. 2015, 64, 36–51. [Google Scholar] [CrossRef]
- Huang, C.; Wu, J.; Huang, C.; Lin, L. Morphological, Thermal, Barrier and Mechanical Properties of LDPE/EVOH Blends in Extruded Blown Films. J. Polym. Res. 2004, 11, 75–83. [Google Scholar] [CrossRef]
- Jönkkäri, I.; Poliakova, V.; Mylläri, V.; Anderson, R.; Andersson, M.; Vuorinen, J. Compounding and characterization of recycled multilayer plastic films. J. Appl. Polym. Sci. 2020, 137, 49101. [Google Scholar] [CrossRef]
- Ge, C.; Fortuna, C.; Lei, K.; Lu, L. Neat EVOH and EVOH/LDPE blend centered three-layer co-extruded blown film without tie layers. Food Packag. Shelf Life 2016, 8, 33–40. [Google Scholar] [CrossRef]
- Maes, C.; Luyten, W.; Herremans, G.; Peeters, R.; Carleer, R.; Buntinx, M. Recent Updates on the Barrier Properties of Ethylene Vinyl Alcohol Copolymer (EVOH): A Review. Polym. Rev. 2018, 58, 209–246. [Google Scholar] [CrossRef]
- Jagannath, J.H.; Nadanasabapathi, S.; Bawa, A.S. Effect of starch on thermal, mechanical, and barrier properties of low density polyethylene film. J. Appl. Polym. Sci. 2006, 99, 3355–3364. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, S.C. Laminar morphology development and oxygen permeability of LDPE/EVOH blends. Polym. Eng. Sci. 1997, 37, 463–475. [Google Scholar] [CrossRef]
- Durmuş, A.; Woo, M.; Kaşgöz, A.; Macosko, C.W.; Tsapatsis, M. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. Eur. Polym. J. 2007, 43, 3737–3749. [Google Scholar] [CrossRef]
Extruder | Materials | Materials Proportion | Processing Temperature/°C |
---|---|---|---|
Co-extrud. 1 | 80%LLDPE + 20%mPE | 25% | 200/210/210/200 |
Co-extrud. 2 | 50%sPE + 50%LLDPE | 20% | 200/210/210/200 |
Main extrud. | 100%PVA | 10% | 210/220/220/210 |
Co-extrud. 3 | 50%sPE + 50%LLDPE | 20% | 200/210/210/200 |
Co-extrud. 4 | 80%LLDPE + 20%mPE | 25% | 200/210/210/200 |
Samples | Mn | Mw | Mv | PD |
---|---|---|---|---|
HS-0 | 39,283 | 117,525 | 102,057 | 2.99 |
HS-1 | 37,765 | 111,010 | 96,895 | 2.94 |
HS-2 | 30,513 | 88,466 | 76,936 | 2.90 |
HS-3 | 30,144 | 84,980 | 74,571 | 2.82 |
Samples | WVP/g/(m2•24 h) | OP/cm3/(m2•24 h•0.1 MPa) |
---|---|---|
F0 | 7.5589 | 8.5371 |
F1 | 9.3053 | 10.4033 |
F2 | 118.1608 | 27.9727 |
F3 | 134.6395 | 47.1480 |
INPUT | Unit | Result |
---|---|---|
LLDPE | kg | 0.6 |
PVA | kg | 0.1 |
sPE | kg | 0.2 |
mPE | kg | 0.1 |
Energy | MJ | 28.8 |
OUTPUT | Unit | Result |
Five layers of co-extruded film | kg | 1 |
Other |
Impact Category | Unit | Result |
---|---|---|
Carbon dioxide | kg | 10.72475 |
Dust (unspecified, from stack) | kg | 0.000137 |
Nitrogen oxides | kg | 0.006652 |
Sulfur dioxide | kg | 0.000775 |
Ethane | kg | 0.071280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Zhan, S.; Zhou, M.; Xu, X.; You, F.; Zheng, H. A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film. Polymers 2024, 16, 2196. https://doi.org/10.3390/polym16152196
Wei L, Zhan S, Zhou M, Xu X, You F, Zheng H. A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film. Polymers. 2024; 16(15):2196. https://doi.org/10.3390/polym16152196
Chicago/Turabian StyleWei, Liming, Shengqi Zhan, Mingyu Zhou, Xuerong Xu, Feng You, and Huaming Zheng. 2024. "A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film" Polymers 16, no. 15: 2196. https://doi.org/10.3390/polym16152196
APA StyleWei, L., Zhan, S., Zhou, M., Xu, X., You, F., & Zheng, H. (2024). A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film. Polymers, 16(15), 2196. https://doi.org/10.3390/polym16152196