Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites
Abstract
:1. Introduction
2. Experimental
2.1. Tensile Test of Large-Tow CFRP Rods
- (1)
- Carbon fiber yarn arrangement: The carbon fiber on the yarn rack is drawn out from the yarn tube and arranged neatly and evenly.
- (2)
- Impregnation: The neatly arranged carbon fibers are evenly impregnated with the prepared resin.
- (3)
- Molding: The pre-impregnated carbon fiber is initially shaped by a molding device, and after the excess resin is squeezed out, it enters the mold for heating and curing.
- (4)
- Extrusion molding and curing: The impregnated CFRP is made into a rod or plate and heated and cured in the mold.
- (5)
- Traction, winding, and cutting: After the CFRP is pulled out of the mold by the traction device, the profile is collected by the winding device.
2.2. Tensile Test of Large-Tow CFRP Plates
3. Results and Discussion
3.1. Tensile Test Results of the CFRP Rods
3.2. Microscopic Analysis of the Tensile Failure of CFRP Rods
3.3. Tensile Test Results of the CFRP Plates
3.4. Microscopic Analysis of the Tensile Failure of CFRP Plates
3.5. Probabilistic Characteristics of the Tensile Properties of Large-Tow CFRP Rods and Plates
3.5.1. Analysis of the Probabilistic Characteristics of Tensile Properties of CFRP Rods
3.5.2. Analysis of the Probabilistic Characteristics of Tensile Properties of CFRP Plates
4. Conclusions
- (1)
- The tensile failure mode of large-tow CFRP rods and plates shows explosive damage of scattered fibers in the middle of the specimen, which is a reasonable failure mode. The stress–strain curves before failure show obvious linear elastic characteristics. The tensile properties show a certain degree of discreteness, and the discreteness of the CFRP rods is greater than that of the CFRP plates.
- (2)
- SEM images of the surface of the test specimens after failure show that large-tow carbon fibers may have defects that are densely distributed and are of a large degree, and the performance is relatively low. The fiber–resin interface performance of the large-tow CFRP rods is relatively poor, and the fiber–resin interface de-bonds during the tensile process, causing adjacent fibers to continue to break at the location of larger defects, resulting in an uneven fiber fracture. Hence, the tensile strength of the CFRP rods is relatively low. In contrast, the fiber–resin interface performance of large-tow CFRP plates is relatively good, and the bonding effect of the fiber–resin interface effectively improves the synergistic force characteristics between the fibers, presenting a relatively flat, clustered fiber fracture. Thus, the tensile strength of the CFRP plates is higher than that of the CFRP rods.
- (3)
- The Weibull distribution is more accurate in describing the probability characteristics of the tensile strength of the CFRP rods, whereas the normal and lognormal distributions are more accurate in describing the probability characteristics of the tensile modulus of the CFRP rods, and both of these probability distributions are nearly coincident to each other. The normal and lognormal distributions are more accurate in describing the probability characteristics of the tensile strength, tensile modulus, and Poisson’s ratio of the CFRP plates, with the lognormal distribution performing slightly better.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Su, Q.; Zhu, J.; Song, X. The Aging Behavior and Life Prediction of CFRP Rods under a Hygrothermal Environment. Polymers 2023, 15, 2490. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Grzesiak, S.; Schultz-Cornelius, M.; Pahn, M. Experimental and analytical evaluation of externally bonded BFRP and CFRP strips on the load-bearing behaviour of reinforced concrete structures using distributed fibre optic sensing. Constr. Build. Mater. 2023, 400, 132452. [Google Scholar] [CrossRef]
- Duo, Y.; Liu, X.; Yue, Q.; Chen, H. A novel variable curvature clamping anchor for the multilayer CFRP plate cable: Concept, numerical investigation, and design proposals. Structures 2022, 43, 164–177. [Google Scholar] [CrossRef]
- Duo, Y.; Yang, Y.; Liu, X.; Yue, Q.; Xu, G. Experimental investigation on the friction behavior of CFRP plate in contact with sandblasted steel plate. Structures 2023, 55, 2491–2503. [Google Scholar] [CrossRef]
- Hu, L.; Feng, P.; Gao, W.; Wang, Y. Flexural behavior of light steel purlins reinforced by prestressed CFRP laminates. Thin-Walled Struct. 2022, 174, 109125. [Google Scholar] [CrossRef]
- Huang, J.; She, Y.; Zhang, H.; He, J. Experimental study on axial compressive damage performance of CFRP-reinforced wood columns. Acta Mater. Compos. Sin. 2024, 42, 1–15. (In Chinese) [Google Scholar]
- Liu, Y.; Zwingmann, B.; Schlaich, M. Carbon Fiber Reinforced Polymer for Cable Structures—A Review. Polymers 2015, 7, 2078–2099. [Google Scholar] [CrossRef]
- Xie, G.-H.; Yin, J.; Liu, R.-G.; Chen, B.; Cai, D.-S. Experimental and numerical investigation on the static and dynamic behaviors of cable-stayed bridges with CFRP cables. Compos. Part B Eng. 2017, 111, 235–242. [Google Scholar] [CrossRef]
- Ren, L.; Fang, Z.; Wang, K. Design and behavior of super-long span cable-stayed bridge with CFRP cables and UHPC members. Compos. Part B Eng. 2019, 164, 72–81. [Google Scholar] [CrossRef]
- Albuja-Sánchez, J.; Damián-Chalán, A.; Escobar, D. Experimental Studies and Application of Fiber-Reinforced Polymers (FRPs) in Civil Infrastructure Systems: A State-of-the-Art Review. Polymers 2024, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Lee, S.; Park, S.; Jo, S.M.; Lee, H.-S.; Joh, H.-I. Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers. Carbon 2015, 94, 412–416. [Google Scholar] [CrossRef]
- Starbuck, J.M.; Cataquiz, L.B. Evaluation of Large Tow-Size Carbon Fiber for Reducing the Cost of CNG Storage Tanks. SAE Trans. 2000, 109, 793–798. [Google Scholar]
- Kong, D.; Shi, J.; Dong, S.; Li, C.; Hong, B.; Xian, G. Hygrothermal resistance of large tow carbon fiber and its reinforced polymer composites. Polym. Compos. 2023, 44, 6913–6928. [Google Scholar] [CrossRef]
- Fu, D.; Huang, X. Application of large tow carbon fiber composite materials in wind turbine blades. Hi-Tech Fiber Appl. 2024, 49, 48–54. [Google Scholar]
- Deng, Y.; Shen, M.; Zhang, H.; Zhang, P.; Yuen, T.Y.P.; Hansapinyo, C.; Wang, P.; Usmani, A.; Khan, A.; Zhao, J.-J. Experimental and analytical studies on steel-reinforced concrete composite members with bonded prestressed CFRP tendon under eccentric tension. Compos. Struct. 2021, 271, 114124. [Google Scholar] [CrossRef]
- Le, T.D.; Pham, T.M.; Hao, H.; Li, H. Behavior of Precast Segmental Concrete Beams Prestressed with External Steel and CFRP Tendons. J. Compos. Constr. 2020, 24, 04020053. [Google Scholar] [CrossRef]
- Jung, W.T.; Park, J.S. An Experimental Study on Tensile Characteristic for CFRP Cable without Surface Treatments. Procedia Eng. 2011, 14, 1518–1523. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Issues in strength models for unidirectional fibre-reinforced composites related to Weibull distributions, fibre packings and boundary effects. Compos. Sci. Technol. 2015, 114, 42–49. [Google Scholar] [CrossRef]
- Swolfs, Y.; Gorbatikh, L.; Romanov, V.; Orlova, S.; Lomov, S.V.; Verpoest, I. Stress concentrations in an impregnated fibre bundle with random fibre packing. Compos. Sci. Technol. 2013, 74, 113–120. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. A review of input data and modelling assumptions in longitudinal strength models for unidirectional fibre-reinforced composites. Compos. Struct. 2016, 150, 153–172. [Google Scholar] [CrossRef]
- Maierhofer, C.; Röllig, M.; Ehrig, K.; Meinel, D.; Céspedes-Gonzales, G. Validation of flash thermography using computed tomography for characterizing inhomogeneities and defects in CFRP structures. Compos. Part B Eng. 2014, 64, 175–186. [Google Scholar] [CrossRef]
- Bullock, R.E. Strength Ratios of Composite Materials in Flexure and in Tension. J. Compos. Mater. 1974, 8, 200–206. [Google Scholar] [CrossRef]
- Breite, C.; Melnikov, A.; Turon, A.; de Morais, A.B.; Le Bourlot, C.; Maire, E.; Schöberl, E.; Otero, F.; Mesquita, F.; Sinclair, I.; et al. Detailed experimental validation and benchmarking of six models for longitudinal tensile failure of unidirectional composites. Compos. Struct. 2022, 279, 114828. [Google Scholar] [CrossRef]
- Huang, B.; Yang, Y.; Liu, X.-G.; Yue, Q.-R. Study on probability model and length effect of tensile strength of unidirectional CFRP plate. Compos. Struct. 2023, 324, 117531. [Google Scholar] [CrossRef]
- Jackson, K.E.; Kellas, S.; Morton, J. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure. J. Compos. Mater. 1992, 26, 2674–2705. [Google Scholar] [CrossRef]
- Atadero, R.A.; Karbhari, V.M. Sources of uncertainty and design values for field-manufactured FRP. Compos. Struct. 2009, 89, 83–93. [Google Scholar] [CrossRef]
- Dikici, T. Effect of Fiber Sizing on the Fatigue Properties of Heavy Tow Carbon Fiber Composites. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2016. [Google Scholar]
- Totry, E.; Molina-Aldareguía, J.M.; González, C.; Llorca, J. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Compos. Sci. Technol. 2010, 70, 970–980. [Google Scholar] [CrossRef]
- Liu, L.; Jia, C.; He, J.; Zhao, F.; Fan, D.; Xing, L.; Wang, M.; Wang, F.; Jiang, Z.; Huang, Y.J. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2015, 121, 56–72. [Google Scholar] [CrossRef]
- Ayyub, B.M.; Chao, R.J. Uncertainty modeling in civil engineering with structural and reliability applications. In Uncertainty Modeling and Analysis in Civil Engineering; CRC Press: Boca Raton, FL, USA, 1998; pp. 3–8. [Google Scholar]
- ASTM D3916-22; Standard Test Method for Tensile Properties of Pultruded Glass-Fiber-Reinforced Plastic Rod. American ASTM International: West Conshohocken, PA, USA, 2022.
- GB/T 30022-2013; Test Method for Basic Mechanical Properties of Fiber Reinforced Polymer Bar. Standards Press of China: Beijing, China, 2013. (In Chinese)
- ASTM D3039/3039M-00; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2000.
- GB/T 3354-2014; Test Method for Tensile Properties of Orientation Fiber Reinforced Polymer Matrix Composite Materials. Standards Press of China: Beijing, China, 2014. (In Chinese)
- Ellingwood, B.R. Probability-based codified design: Past accomplishments and future challenges. Struct. Saf. 1994, 13, 159–176. [Google Scholar] [CrossRef]
- Murphy, J.F. Load and Resistance Factor Design for Engineered Wood Construction—A Prestandard Report; ASCE: New York, NY, USA, 1988. [Google Scholar]
- ASM Handbook. The Composite Materials Handbook-MIL 17. In Guidelines for Characterization of Structural Materials; Technomic Publishing Co., Inc.: Lancaster, PA, USA; Materials Sciences Corporation in Cooperation with ASTM: Elk Grove Village, IL, USA, 2002; Volume 1.
- Gomes, S.; Dias-da-Costa, D.; Neves, L.A.C.; Hadigheh, S.A.; Fernandes, P.; Júlio, E. Probabilistic-based characterisation of the mechanical properties of CFRP laminates. Constr. Build. Mater. 2018, 169, 132–141. [Google Scholar] [CrossRef]
- Naresh, K.; Shankar, K.; Velmurugan, R. Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites. Compos. Part B Eng. 2018, 133, 129–144. [Google Scholar] [CrossRef]
Number | Strength (MPa) | Modulus (GPa) | Number | Strength (MPa) | Modulus (GPa) |
---|---|---|---|---|---|
1 | 2072.24 | 169.33 | 17 | 2051.69 | 163.95 |
2 | 1915.60 | 159.71 | 18 | 2177.30 | 178.75 |
3 | 2126.92 | 153.07 | 19 | 1803.25 | 168.32 |
4 | 2090.31 | / | 20 | 1908.45 | 159.63 |
5 | 2308.27 | 156.51 | 21 | 2008.46 | 173.86 |
6 | 1691.60 | 178.82 | 22 | 1985.28 | 161.40 |
7 | 1874.15 | 163.93 | 23 | 1605.67 | 153.47 |
8 | 2131.36 | 179.26 | 24 | 2057.07 | 162.69 |
9 | 1805.35 | 157.33 | 25 | 2057.17 | 168.83 |
10 | 2010.48 | 162.49 | 26 | 2258.18 | 166.19 |
11 | 1879.34 | 156.97 | 27 | 2081.19 | 154.97 |
12 | 2102.29 | 163.84 | 28 | 1858.87 | 168.84 |
13 | 1914.81 | 163.18 | 29 | 2155.52 | 156.30 |
14 | 2196.04 | 178.12 | 30 | 1725.21 | 152.73 |
15 | 1945.20 | 173.63 | 31 | 2103.39 | 162.95 |
16 | 2226.95 | / | 32 | 2063.36 | 155.46 |
average | 2005.97 | 164.15 | |||
variance | 27,281.22 | 64.28 | |||
coefficient of variation | 0.08 | 0.05 |
Number | Strength (MPa) | Modulus (GPa) | Poisson’s Ratio | Number | Strength (MPa) | Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|---|---|
1 | 2262.38 | 153.94 | 0.296 | 16 | 2101.76 | 141.71 | 0.376 |
2 | 2267.35 | 138.89 | 0.259 | 17 | 2065.89 | 148.52 | 0.295 |
3 | 2122.24 | 155.64 | 0.381 | 18 | 1886.93 | 144.62 | 0.289 |
4 | 1853.71 | / | / | 19 | 2137.12 | 140.13 | 0.253 |
5 | 2080.96 | / | / | 20 | 1918.46 | 136.47 | 0.332 |
6 | 2138.05 | 144.99 | 0.309 | 21 | 1956.31 | 150.67 | 0.305 |
7 | 1894.94 | 148.27 | 0.378 | 22 | 1892.44 | 148.07 | 0.330 |
8 | 2233.18 | 140.94 | 0.314 | 23 | 2012.07 | 142.71 | 0.262 |
9 | 2277.70 | 156.93 | 0.335 | 24 | 2024.60 | 144.79 | 0.303 |
10 | 2287.01 | 146.42 | 0.314 | 25 | 1909.25 | / | / |
11 | 2323.97 | / | / | 26 | 1942.05 | 144.94 | 0.300 |
12 | 2099.58 | 139.98 | 0.323 | 27 | 2174.08 | 138.95 | 0.321 |
13 | 2054.86 | 148.70 | 0.333 | 28 | 2174.08 | 138.95 | 0.321 |
14 | 2046.39 | 140.90 | 0.321 | 29 | 1689.91 | 134.56 | 0.255 |
15 | 2208.41 | 141.82 | 0.328 | 30 | 2127.11 | 133.88 | 0.276 |
average | 2069.48 | 144.13 | |||||
variance | 22,544.84 | 34.96 | |||||
coefficient of variation | 0.07 | 0.04 |
Properties | Distribution Type | Parameter | Estimated Value | K–S Test | A–D Test | Test Result (α = 0.05) |
---|---|---|---|---|---|---|
Tensile strength | Normal distribution | 2005.97 | 0.1074 | 0.3263 | No rejection | |
167.81 | ||||||
Lognormal distribution | 7.60 | 0.1191 | 0.4585 | No rejection | ||
0.09 | ||||||
Weibull distribution | 2079.48 | 0.0802 | 0.1536 | No rejection | ||
14.43 | ||||||
Tensile modulus | Normal distribution | 164.15 | 0.1432 | 0.5903 | No rejection | |
8.15 | ||||||
Lognormal distribution | 5.10 | 0.1338 | 0.5232 | No rejection | ||
0.05 | ||||||
Weibull distribution | 168.11 | 0.1840 | 1.0591 | A–D test rejection | ||
20.60 |
Properties | Distribution Type | Parameter | Estimated Value | K–S Test | A–D Test | Test Result (α = 0.05) |
---|---|---|---|---|---|---|
Tensile strength | Normal distribution | 2069.48 | 0.0720 | 0.2912 | No rejection | |
152.72 | ||||||
Lognormal distribution | 7.63 | 0.0680 | 0.3407 | No rejection | ||
0.08 | ||||||
Weibull distribution | 2137.82 | 0.1006 | 0.3321 | No rejection | ||
16.01 | ||||||
Tensile modulus | Normal distribution | 144.13 | 0.1107 | 0.3103 | No rejection | |
6.03 | ||||||
Lognormal distribution | 4.97 | 0.1053 | 0.2713 | No rejection | ||
0.04 | ||||||
Weibull distribution | 147.06 | 0.1453 | 0.7464 | A–D test rejection | ||
24.14 | ||||||
Poisson’s ratio | Normal distribution | 0.31 | 0.1306 | 0.4685 | No rejection | |
0.03 | ||||||
Lognormal distribution | −1.17 | 0.1218 | 0.4572 | No rejection | ||
0.11 | ||||||
Weibull distribution | 0.33 | 0.1654 | 0.7741 | A–D test rejection | ||
9.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, A.; Li, R.; Liu, X. Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites. Polymers 2024, 16, 2197. https://doi.org/10.3390/polym16152197
Wang A, Li R, Liu X. Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites. Polymers. 2024; 16(15):2197. https://doi.org/10.3390/polym16152197
Chicago/Turabian StyleWang, Anni, Ruiheng Li, and Xiaogang Liu. 2024. "Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites" Polymers 16, no. 15: 2197. https://doi.org/10.3390/polym16152197
APA StyleWang, A., Li, R., & Liu, X. (2024). Analysis of the Tensile Properties and Probabilistic Characteristics of Large-Tow Carbon Fiber-Reinforced Polymer Composites. Polymers, 16(15), 2197. https://doi.org/10.3390/polym16152197