Highly Efficient and Eco-Friendly Thermal-Neutron-Shielding Materials Based on Recycled High-Density Polyethylene and Gadolinium Oxide Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Treatment of Gd2O3 Particles
2.2. Preparation of Gd2O3/r-HDPE Samples
2.3. Gamma Irradiation on Gd2O3/r-HDPE Samples
2.4. Characterization
2.4.1. Thermal-Neutron-Shielding Properties
2.4.2. Density and Degree of Crystallinity
2.4.3. Morphology and Elemental Composition Analysis
2.4.4. Functional Groups and Thermal Properties
2.4.5. Mechanical Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Optimization for Surface Treatment of Gd2O3 Particles
3.1.1. Functional Groups
3.1.2. Density and Elemental Composition
3.1.3. Thermal-Neutron-Shielding Properties
3.1.4. Mechanical Properties
3.2. Effects of Gd2O3 Contents on Properties of Gd2O3/r-HDPE Composites
3.2.1. Density and Elemental Composition of Gd2O3/r-HDPE Composites
3.2.2. Thermal Properties of Gd2O3/r-HDPE Composites
3.2.3. Crystallinity of Gd2O3/r-HDPE Composites
3.2.4. Thermal-Neutron-Shielding Properties of Gd2O3/r-HDPE Composites
3.2.5. Mechanical Properties of Gd2O3/r-HDPE Composites
3.3. Benchmarking Developed r-HDPE Composites with Commercial Borated Polyethylene (PE) Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kardjilov, N.; Manke, I.; Hilger, A.; Strobl, M.; Banhart, J. Neutron imaging in materials science. Mater. Today 2011, 14, 248–256. [Google Scholar] [CrossRef]
- Kardjilov, N.; Manke, I.; Woracek, R.; Hilger, A.; Banhart, J. Advances in neutron imaging. Mater. Today 2018, 21, 652–672. [Google Scholar] [CrossRef]
- Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. [Google Scholar] [CrossRef]
- Ohta, M.; Kwon, S.; Sato, S.; Ochiai, K.; Suzuki, H. Investigation of Mo-99 radioisotope production by d-Li neutron source. Nucl. Mater. Energy 2018, 15, 261–266. [Google Scholar] [CrossRef]
- Meier, W.R.; Abbott, R.; Beach, R.; Blink, J.; Caird, J.; Erlandson, A.; Farmer, J.; Halsey, W.; Ladran, T.; Latkowski, J.; et al. Systems modeling for the Laser Fusion-Fission Energy (LIFE) power plant. Fusion Sci. Technol. 2009, 56, 647–651. [Google Scholar] [CrossRef]
- Bustreo, C.; Giuliani, U.; Maggio, D.; Zollino, G. How fusion power can contribute to a fully decarbonized European power mix after 2050. Fusion Eng. Des. 2019, 146, 2189–2193. [Google Scholar] [CrossRef]
- Channuie, J.; Sinkaew, P.; Lekchaum, S.; Kanjana, K. In-house development of neutron moisture gauge for field measurement. J. Phys. Conf. Ser. 2017, 901, 012148. [Google Scholar] [CrossRef]
- Timakova, R.T.; Iliukhin, R.V.; Iliukhina, V. Modern trends in the development of nuclear power: From environmental friendliness to safe utilitarianism. IOP Conf. Ser. Earth Environ. Sci. 2022, 979, 012172. [Google Scholar] [CrossRef]
- Lomax, M.E.; Folkes, L.K.; O’Neill, P. Biological consequences of radiation-induced DNA damage: Relevance to radiotherapy. Clin. Oncol. 2013, 25, 578–585. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules—Mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef]
- Chambers, C.E.; Fetterly, K.; Holzer, R.; Lin, P.P.; Blankenship, J.C.; Balter, S.; Laskey, W.K. Radiation safety program for the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 2011, 77, 546–556. [Google Scholar] [CrossRef]
- Gellis, L.A.; Ceresnak, S.R.; Gates, G.J.; Nappo, L.; Pass, R.H. Reducing patient radiation dosage during pediatric SVT ablations using an “ALARA” radiation reduction protocol in the modern fluoroscopic era. Pacing Clin. Electrophysiol. 2013, 36, 688–694. [Google Scholar] [CrossRef]
- Poltabtim, W.; Wimolmala, E.; Markpin, T.; Sombatsompop, N.; Rosarpitak, V.; Saenboonruang, K. X-ray shielding, mechanical, physical, and water absorption properties of wood/PVC composites containing bismuth oxide. Polymers 2021, 13, 2212. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, T.; Akbay, I.K.; Uzun, H.; Reyhancan, I.A. Neutron shielding of EPDM rubber with boric acid: Mechanical, thermal properties and neutron absorption tests. Prog. Nucl. Energy 2016, 89, 102–109. [Google Scholar] [CrossRef]
- Toyen, D.; Saenboonruang, K. Development of paraffin and paraffin/bitumen composites with additions of B2O3 for thermal neutron shielding applications. J. Nucl. Sci. Technol. 2017, 54, 871–877. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, M.; Zhang, X.; Wu, H.; Guo, S.; Wang, Y. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Compos. Sci. Technol. 2017, 150, 16–23. [Google Scholar] [CrossRef]
- Toyen, D.; Anekratmontre, T.; Wimolmala, E.; Thamrongsiripak, N.; Rungseesumran, T.; Saenboonruang, K. Comparisons of enhanced thermal neutron- and gamma-shielding properties in UHMWPE composites containing surface-treated Sm2O3 and Gd2O3 particles. Polym. Adv. Technol. 2023, 34, 2394–2406. [Google Scholar] [CrossRef]
- Kharita, M.H.; Yousef, S.; Al Nassar, M. Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy 2011, 53, 207–211. [Google Scholar] [CrossRef]
- Ozdemir, T.; Gungor, A.; Reyhancan, I.A. Flexible neutron shielding composite material of EPDM rubber with boron trioxide: Mechanical, thermal investigations and neutron shielding tests. Radiat. Phys. Chem. 2017, 131, 7–12. [Google Scholar] [CrossRef]
- Uddin, Z.; Yasin, T.; Shafiq, M.; Raza, A.; Zahur, A. On the physical, chemical, and neutron shielding properties of polyethylene/boron carbide composites. Radiat. Phys. Chem. 2020, 166, 108450. [Google Scholar] [CrossRef]
- Shang, Y.; Yang, G.; Su, F.; Feng, Y.; Ji, Y.; Liu, D.; Yin, R.; Liu, C.; Shen, C. Multilayer polyethylene/hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos. Commun. 2020, 19, 147–153. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, Y.; Althakafy, J.T.; Liu, Y.; Abo-Dief, H.M.; Huang, M.; Zhou, L.; Su, F.; Liu, C.; Shen, C. Ultrahigh molecular weight polyethylene fiber/boron nitride composites with high neutron shielding efficiency and mechanical performance. Adv. Compos. Hybrid Mater. 2022, 5, 2012–2020. [Google Scholar] [CrossRef]
- Ninyong, K.; Wimolmala, E.; Sombatsompop, N.; Saenboonruang, K. Potential use of NR and wood/NR composites as thermal neutron shielding materials. Polym. Test. 2017, 59, 336–343. [Google Scholar] [CrossRef]
- Ninyong, K.; Wimolmala, E.; Sombatsompop, N.; Saenboonruang, K. Properties of natural rubber (NR) and wood/NR composites as gamma shielding materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 526, 012038. [Google Scholar] [CrossRef]
- Dumazert, J.; Coulon, R.; Lecomte, Q.; Bertrand, G.H.V.; Hamel, M. Gadolinium for neutron detection in current nuclear instrumentation research: A review. Nucl. Instrum. Methods Phys. Res. A 2018, 882, 53–68. [Google Scholar] [CrossRef]
- Castley, D.; Goodwin, C.; Liu, J. Computational and experimental comparison of boron carbide, gadolinium oxide, samarium oxide, and graphene platelets as additives for a neutron shield. Radiat. Phys. Chem. 2019, 165, 108435. [Google Scholar] [CrossRef]
- Saenboonruang, K.; Poltabtim, W.; Thumwong, A.; Pianpanit, T.; Rattanapongs, C. Rare-earth oxides as alternative high-energy photon protective fillers in HDPE composites: Theoretical aspects. Polymers 2021, 13, 1930. [Google Scholar] [CrossRef]
- Saleh, A. Comparative shielding features for X/Gamma-rays, fast and thermal neutrons of some gadolinium silicoborate glasses. Prog. Nucl. Energy 2022, 154, 104482. [Google Scholar] [CrossRef]
- Poltabtim, W.; Thumwong, A.; Wimolmala, E.; Rattanapongs, C.; Tokonami, S.; Ishikawa, T.; Saenboonruang, K. Dual x-ray- and neutron-shielding properties of Gd2O3/NR composites with autonomous self-healing capabilities. Polymers 2022, 14, 4481. [Google Scholar] [CrossRef]
- Nguyen, K.Q.; Mwiseneza, C.; Mohamed, K.; Cousin, P.; Robert, M.; Benmokrane, B. Long-term testing methods for HDPE pipe-advantages and disadvantages: A review. Eng. Fract. Mech. 2021, 246, 107629. [Google Scholar] [CrossRef]
- Lavelle, C.M.; Liu, C.Y.; Stone, M.B. Toward a new polyethylene scattering law determined using inelastic neutron scattering. Nucl. Instrum. Methods Phys. Res. A 2013, 711, 166–179. [Google Scholar] [CrossRef]
- Khaleel, R.; Valsan, G.; Rangel-Buitrago, N.; Warrier, A.K. Hidden problems in geological heritage sites: The microplastic issue on Saint Mary’s Island, India, Southeast Arabian Sea. Mar. Pollut. Bull. 2022, 182, 114043. [Google Scholar] [CrossRef]
- Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). J. Hazard. Mater. 2007, 149, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Han, B. Plastics upcycling made more sustainable and practical. Nat. Sustain. 2023, 6, 1518–1519. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials. J. Clean. Prod. 2018, 176, 276–287. [Google Scholar] [CrossRef]
- King, M.F.; Gutberlet, J. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil. Waste Manag. 2013, 33, 2771–2780. [Google Scholar] [CrossRef] [PubMed]
- Toyen, D.; Paopun, Y.; Changjan, D.; Wimolmala, E.; Mahathanabodee, S.; Pianpanit, T.; Anekratmontree, T.; Saenboonruang, K. Simulation of neutron/self-emitted gamma attenuation and effects of silane surface treatment on mechanical and wear resistance properties of Sm2O3/UHMWPE composites. Polymers 2021, 13, 3390. [Google Scholar] [CrossRef] [PubMed]
- Toyen, D.; Wimolmala, E.; Sombatsompop, N.; Saenboonruang, K. Sm2O3/UHMWPE composites for radiation shielding applications: Mechanical and dielectric properties under gamma irradiation and thermal neutron shielding. Radiat. Phys. Chem. 2019, 164, 108366. [Google Scholar] [CrossRef]
- Kires, M. Archimedes’ principle in action. Phys. Educ. 2007, 42, 484. [Google Scholar] [CrossRef]
- ASTM D792-13; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2013.
- Moonart, U.; Utara, S. Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 2019, 26, 7271–7295. [Google Scholar] [CrossRef]
- Lopez-Rubio, A.; Flanagan, B.M.; Gilbert, E.P.; Gidley, M.J. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. BioPolymers 2008, 89, 761–768. [Google Scholar] [CrossRef] [PubMed]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics (Metric). ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D2240-03; Standard Test Method for Rubber Property-Durometer Hardness. ASTM International: West Conshohocken, PA, USA, 2003.
- Issa, A.A.; Luyt, A.S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Ataabadi, M.R.; Jamshidi, M. Silane modification of TiO2 nanoparticles and usage in acrylic film for effective photocatalytic degradation of methylene blue under visible light. Sci. Rep. 2023, 13, 7383. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, X.; Ren, J.; Zhang, C. TiO2-KH550 nanoparticle-reinforced PVA/xylan composite films with multifunctional properties. Materials 2018, 11, 1589. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, M.; Diaz-Benito, B.; Velasco, F.; Abenojar, A.; del Real, J.C. Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. Appl. Surf. Sci. 2009, 255, 6386–6390. [Google Scholar] [CrossRef]
- Sae-Oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K. Roles of silane coupling agents on properties of silica-filled polychloroprene. Eur. Polym. J. 2006, 42, 479–486. [Google Scholar] [CrossRef]
- Zanchi, C.H.; Ogliari, F.A.; Silva, R.M.; Lund, R.G.; Machado, H.H.; Prati, C.; Carreno, N.L.V.; Piva, E. Effect of the silane concentration on the selected properties of an experimental microfilled composite resin. Appl. Adhes. Sci. 2015, 3, 27. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Yang, H.S.; Wolcott, M.P.; Kim, H.S.; Kim, S.; Kim, H.J. Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Compos. Struct. 2007, 79, 369–375. [Google Scholar] [CrossRef]
- Gao, X.; Lin, L.; Pang, J.; Chen, F.; Li, Q. Effects of impulse-cyclone drying and silane modification on the properties of wood fiber/HDPE composite material. Carbohydr. Polym. 2019, 207, 343–351. [Google Scholar] [CrossRef]
- Taheraslani, M.; Gardeniers, H. High-resolution SEM and EDX characterization of deposits formed by CH4+Ar DBD plasma processing in a packed bed reactor. Nanomaterials 2019, 9, 589. [Google Scholar] [CrossRef] [PubMed]
- Aigbodion, V.S.; Hassan, S.B.; Atuanya, C.U. Kinetics of isothermal degradation studies by thermogravimetric data: Effect of orange peels ash on thermal properties of high density polyethylene (HDPE). J. Mater. Environ. Sci. 2012, 3, 1027–1036. [Google Scholar]
- Bornani, K.; Rahman, M.A.; Benicewicz, B.; Kumar, S.; Schadler, L. Using nanofiller assemblies to control the crystallization kinetics of high-density polyethylene. Macromolecules 2021, 54, 5673–5682. [Google Scholar] [CrossRef]
- Ho, S.L.; Yue, H.; Tegafaw, T.; Ahmad, M.Y.; Liu, S.; Nam, S.W.; Chang, Y.; Lee, G.H. Gadolinium Neutron Capture Therapy (GdNCT) agents from molecular to nano: Current status and perspectives. ACS Omega 2022, 7, 2533–2553. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Zhong, S.; Li, J.; Chen, Y.; Cui, Y.; Chen, Z.; Sun, G.; Wang, H. The neutron shielding modeling and experimental characteristic in TiB2/Al composites. Mater. Today Commun. 2021, 27, 102194. [Google Scholar] [CrossRef]
- Malidarre, R.B.; Akkurt, I.; Zakaly, H.M.H. Investigation of Ag as chemical modifier in glassy SeTe chalcogenide alloy in terms of radiation shielding, optical, structural, and physical properties. Radiat. Phys. Chem. 2023, 204, 110685. [Google Scholar] [CrossRef]
- Alsabbagh, A.; Saleem, R.A.; Almasri, R.; Aljarrah, S.; Awad, S. Effects of gamma irradiation on 3D-printed polylactic acid (PLA) and high-density polyethylene (HDPE). Polym. Bull. 2021, 78, 4931–4945. [Google Scholar] [CrossRef]
- Nandi, S.; Bose, S.; Mitra, S.; Ghosh, A.K. Dynamic rheology and morphology of HDPE-fumed silica composites: Effect of interface modification. Polym. Eng. Sci. 2013, 53, 644–650. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Z.; McDonald, A.G. Effect of different reinforcing fillers on properties, interfacial compatibility and weatherability of wood-plastic composites. J. Bionic Eng. 2019, 16, 337–353. [Google Scholar] [CrossRef]
- Martinez-Morlanes, M.J.; Castell, P.; Martinez-Nogues, V.; Martinez, M.T.; Alonso, P.J.; Puertolas, J.A. Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos. Sci. Technol. 2011, 71, 282–288. [Google Scholar] [CrossRef]
- Otaguro, H.; de Lima, L.F.C.P.; Parra, D.F.; Lugao, A.B.; Chinelatto, M.A.; Canevarolo, S.V. High-energy radiation forming chain scission and branching in polypropylene. Radiat. Phys. Chem. 2010, 79, 318–324. [Google Scholar] [CrossRef]
- Chaiphaksa, W.; Borisut, P.; Chantima, N.; Kaewkhao, J.; Sanwaranatee, N.W. Mathematical calculation of gamma rays interaction in bismuth gadolinium silicate glass using WinXCom program. Mater. Today Proc. 2022, 65, 2412–2415. [Google Scholar] [CrossRef]
Chemical | Content (g) | Supplier |
---|---|---|
Gd2O3 | 100 | Richest Group (Shanghai, China) |
Silane coupling agent (KBE903) | A * | Kisco(T) Ltd. (Bangkok, Thailand) |
99% Ethanol | 92 − A | Gammaco Co., Ltd. (Nonthaburi, Thailand) |
Distilled water | 8 | Kasetsart University (Bangkok, Thailand) |
Chemical | Content (wt%) | Supplier |
---|---|---|
Gd2O3 | B * | Richest Group (Shanghai, China) |
r-HDPE | 100 − B | S.P. Plastic Industry (Bangkok, Thailand) |
Silane Content (g/100 g Gd2O3) | Density (g/cm3) | Elemental Composition (% by Weight) | |||
---|---|---|---|---|---|
C | O | Si | Gd | ||
0 | 1.11 ± 0.01 | 73.47 ± 4.32 | 6.11 ± 1.37 | 0.02 ± 0.01 * | 20.41 ± 1.56 |
5 | 1.11 ± 0.02 | 74.37 ± 2.02 | 4.66 ± 1.29 | 0.06 ± 0.02 | 20.91 ± 0.73 |
10 | 1.13 ± 0.01 | 74.19 ± 2.74 | 4.30 ± 0.95 | 0.11 ± 0.06 | 21.40 ± 1.90 |
15 | 1.13 ± 0.02 | 73.47 ± 1.18 | 3.98 ± 1.13 | 0.23 ± 0.13 | 22.33 ± 1.88 |
20 | 1.12 ± 0.01 | 74.51 ± 2.60 | 5.25 ± 0.27 | 0.26 ± 0.05 | 19.98 ± 2.79 |
Silane Content (g/100 g Gd2O3) | I/I0 * | ∑t (cm−1) | ∑t/ρ (cm2/g) | HVL (cm) |
---|---|---|---|---|
0 | 0.72 ± 0.01 | 1.89 ± 0.08 | 1.70 ± 0.08 | 0.37 ± 0.02 |
5 | 0.47 ± 0.01 | 4.23 ± 0.03 | 3.80 ± 0.03 | 0.16 ± 0.01 |
10 | 0.65 ± 0.02 | 2.35 ± 0.20 | 2.08 ± 0.18 | 0.30 ± 0.03 |
15 | 0.65 ± 0.01 | 2.35 ± 0.07 | 2.08 ± 0.06 | 0.30 ± 0.01 |
20 | 0.56 ± 0.01 | 3.35 ± 0.14 | 3.02 ± 0.12 | 0.21 ± 0.01 |
Silane Content (g/100 g Gd2O3) | Tensile Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) | Hardness (Shore D) |
---|---|---|---|---|
0 | 154.6 ± 4.3 | 17.7 ± 0.3 | 35.0 ± 2.4 | 54 ± 3 |
5 | 173.4 ± 14.5 | 19.6 ± 0.4 | 51.6 ± 2.3 | 53 ± 4 |
10 | 65.6 ± 10.0 | 15.6 ± 2.4 | 20.9 ± 3.6 | 53 ± 3 |
15 | 100.5 ± 27.8 | 16.0 ± 1.5 | 26.3 ± 3.3 | 55 ± 2 |
20 | 69.7 ± 8.9 | 17.3 ± 1.5 | 24.7 ± 4.6 | 53 ± 3 |
Gd2O3 Content (wt%) | Density (g/cm3) | Elemental Composition (% by Weight) | ||||
---|---|---|---|---|---|---|
Measured | Theoretical | C | O | Si | Gd | |
0 | 0.93 ± 0.01 | 0.93 | 96.35 ± 1.08 | 3.65 ± 1.08 | n/a | n/a |
5 | 0.97 ± 0.02 | 0.97 | 89.60 ± 1.51 | 3.44 ± 0.43 | 0.07 ± 0.02 | 6.89 ± 1.25 |
10 | 1.03 ± 0.01 | 1.02 | 85.30 ± 2.10 | 4.39 ± 1.17 | 0.10 ± 0.09 | 10.21 ± 1.16 |
15 | 1.09 ± 0.01 | 1.07 | 80.12 ± 3.31 | 3.96 ± 0.40 | 0.13 ± 0.10 | 15.79 ± 2.87 |
20 | 1.12 ± 0.01 | 1.13 | 74.51 ± 2.60 | 5.25 ± 0.27 | 0.26 ± 0.05 | 19.98 ± 2.79 |
Gd2O3 Content (wt%) | Remaining Ash at 600 °C (%) |
---|---|
0 | 2.0 |
5 | 5.7 |
10 | 10.4 |
15 | 14.2 |
20 | 16.5 |
Gd2O3 Content (wt%) | Degree of Crystallinity (%) |
---|---|
0 | 38.6 ± 4.5 |
5 | 53.6 ± 2.9 |
10 | 51.4 ± 4.4 |
15 | 50.2 ± 2.5 |
20 | 50.4 ± 2.2 |
Property | 5 wt% Gd2O3/r-HDPE | Borated PE ** | Standard of Testing | |
---|---|---|---|---|
5 wt% | 15 wt% | |||
Thermal-neutron-shielding properties * | ||||
Total macroscopic cross section (cm−1) | 4.43 | 0.36 | 0.60 | – |
Mass attenuation coefficient (cm2/g) | 4.56 | 0.41 | 0.57 | – |
Half-value layer (cm) | 0.16 | 1.94 | 1.15 | – |
Tenth value layer (cm) | 0.52 | 6.43 | 3.80 | – |
Mechanical properties | ||||
Tensile modulus (MPa) | 185.5 | >700 | 766.7 | ASTM D638 |
Tensile strength (MPa) | 20.9 | >20 | 16.6 | ASTM D638 |
Elongation at break (%) | 157 | – | 4 | ASTM D638 |
Hardness (Shore D) | 60 | >63 | 70 | ASTM D2240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toyen, D.; Wimolmala, E.; Hemvichian, K.; Lertsarawut, P.; Saenboonruang, K. Highly Efficient and Eco-Friendly Thermal-Neutron-Shielding Materials Based on Recycled High-Density Polyethylene and Gadolinium Oxide Composites. Polymers 2024, 16, 1139. https://doi.org/10.3390/polym16081139
Toyen D, Wimolmala E, Hemvichian K, Lertsarawut P, Saenboonruang K. Highly Efficient and Eco-Friendly Thermal-Neutron-Shielding Materials Based on Recycled High-Density Polyethylene and Gadolinium Oxide Composites. Polymers. 2024; 16(8):1139. https://doi.org/10.3390/polym16081139
Chicago/Turabian StyleToyen, Donruedee, Ekachai Wimolmala, Kasinee Hemvichian, Pattra Lertsarawut, and Kiadtisak Saenboonruang. 2024. "Highly Efficient and Eco-Friendly Thermal-Neutron-Shielding Materials Based on Recycled High-Density Polyethylene and Gadolinium Oxide Composites" Polymers 16, no. 8: 1139. https://doi.org/10.3390/polym16081139
APA StyleToyen, D., Wimolmala, E., Hemvichian, K., Lertsarawut, P., & Saenboonruang, K. (2024). Highly Efficient and Eco-Friendly Thermal-Neutron-Shielding Materials Based on Recycled High-Density Polyethylene and Gadolinium Oxide Composites. Polymers, 16(8), 1139. https://doi.org/10.3390/polym16081139