Solar Paint: From Synthesis to Printing
Abstract
:1. Introduction
2. Synthesis of NPs via the Miniemulsion Process
3. Synthesis of NPs via Precipitation Methods
4. The PFB:F8BT Nanoparticulate Organic Photovoltaic (NPOPV) Material System
5. The P3HT:PCBM NPOPV Material System
6. The P3HT:ICBA NPOPV Material System
7. Summary of NPOPV Performance
Material | Fabrication | Voc (mV) | Jsc (mA/cm2) | FF | PCE (%) | Reference |
---|---|---|---|---|---|---|
PFB:F8BT | miniemulsion | 1.38 | 0.01 | 0.28 * | 0.004 * | [23] |
PFB:F8BT | miniemulsion | 770 | 1.81 | 0.28 | 0.39 | [30] |
PFB:F8BT | miniemulsion | 1,500 | 1.81 | 0.30 | 0.82 | [31] |
P3HT:PCBM | miniemulsion | 517 | 5.45 | 0.47 | 1.31 | [36] |
P3HT:PCBM | precipitation | 634 | 4.84 | 0.36 | 1.09 | [40] |
P3HT:ICBA | miniemulsion | 791 | 5.57 | 0.57 | 2.50 | [41] |
P3HT:ICBA | precipitation | 781 | 9.00 | 0.58 | 4.10 | [42] |
8. Conclusions and Future Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coakley, K.M.; McGehee, M.D. Conjugated polymer photovoltaic cells. Chem. Mater. 2004, 16, 4533–4542. [Google Scholar]
- Brabec, C.J.; Durrant, J.R. Solution-processed organic solar cells. MRS Bull. 2008, 33, 670–675. [Google Scholar]
- Dennler, G.; Brabec, C.J. Organic Photovoltaics: Materials, Device Physics and Manufacturing Technologies; Brabec, C.J., Dyakonov, V., Scherf, U., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 531–566. [Google Scholar]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar]
- Yang, X.; Loos, J. Toward high-performance polymer solar cells: The importance of morphology control. Macromolecules 2007, 40, 1353–1362. [Google Scholar]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar]
- Ruder, A.M. Potential health effects of occupational chlorinated solvent exposure. Ann. N. Y. Acad. Sci. 2006, 1076, 207–227. [Google Scholar]
- Ward, E.M.; Schulte, P.A.; Straif, K.; Hopf, N.B.; Caldwell, J.C.; Carreón, T.; DeMarini, D.M.; Fowler, B.A.; Goldstein, B.D.; Hemminki, K.; et al. Research recommendations for selected IARC-classified agents. Environ. Health Perspect. 2010, 118, 1355–1362. [Google Scholar]
- Slunge, D.; Sterner, T. Implementation of policy instruments for chlorinated solvents. A comparison of design standards, bans, and taxes to phase out trichloroethylene. Eur. Environ. 2001, 11, 281–296. [Google Scholar]
- Burgués-Ceballos, I.; Machui, F.; Min, J.; Ameri, T.; Voigt, M.M.; Luponosov, Y.N.; Ponomarenko, S.A.; Lacharmoise, P.D.; Campoy-Quiles, M.; Brabec, C.J. Solubility based identification of green solvents for small molecule organic solar cells. Adv. Funct. Mater. 2014, 24, 1449–1457. [Google Scholar]
- Park, C.-D.; Fleetham, T.A.; Li, J.; Vogt, B.D. High performance bulk-heterojunction organic solar cells fabricated with non-halogenated solvent processing. Org. Electron. 2011, 12, 1465–1470. [Google Scholar]
- Lange, A.; Schindler, W.; Wegener, M.; Fostiropoulos, K.; Janietz, S. Inkjet printed solar cell active layers prepared from chlorine-free solvent systems. Sol. Energy Mater. Sol. Cells 2013, 109, 104–110. [Google Scholar]
- Chen, K.-S.; Yip, H.-L.; Schlenker, C.W.; Ginger, D.S.; Jen, A.K.-Y. Halogen-free solvent processing for sustainable development of high efficiency organic solar cells. Org. Electron. 2012, 12, 2870–2878. [Google Scholar]
- Søndergaard, R.; Helgesen, M.; Jørgensen, M.; Krebs, F.C. Fabrication of polymer solar cells using aqueous processing for all layers including the metal back electrode. Adv. Energy Mater. 2011, 1, 68–71. [Google Scholar]
- Eisazadeh, H.; Spinks, G.; Wallace, G.G. Electrochemical properties of conductive electroactive polymeric colloids. Mater. Forum 1992, 16, 341–344. [Google Scholar]
- Talaie, A.; Eisazadeh, H. Advanced conductive paints using smart colloidal polymeric composites: fabrication and computer classification. Iran. Polym. J. 1999, 8, 241–246. [Google Scholar]
- Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv. Mater. 2002, 14, 651–655. [Google Scholar]
- Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, M.; Güntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408–412. [Google Scholar]
- Snaith, H.J.; Friend, R.H. Photovoltaic devices fabricated from an aqueous dispersion of polyfluorene nanoparticles using an electroplating method. Synth. Metals 2004, 147, 105–109. [Google Scholar]
- Andersen, T.R.; Larsen-Olsen, T.T.; Andreasen, B.; Böttiger, A.P.L.; Carlé, J.E.; Helgesen, M.; Bundgaard, E.; Norrman, K.; Andreasen, J.W.; Jørgensen, M.; et al. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. ACS Nano 2011, 5, 4188–4196. [Google Scholar]
- Larsen-Olsen, T.T.; Andersen, T.R.; Andreasen, B.; Böttiger, A.P.L.; Bundgaard, E.; Norrman, K.; Andreasen, J.W.; Jørgensen, M.; Krebs, F.C. Roll-to-roll processed polymer tandem solar cells partially processed from water. Sol. Energy Mater. Sol. Cells 2012, 97, 43–49. [Google Scholar]
- Larsen-Olsen, T.T.; Andreasen, B.; Andersen, T.R.; Böttiger, A.P.L.; Bundgaard, E.; Norrman, K.; Andreasen, J.W.; Jørgensen, M.; Krebs, F.C. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water. Sol. Energy Mater. Sol. Cells 2012, 97, 22–27. [Google Scholar]
- Kietzke, T.; Neher, D.; Kumke, M.; Montenegro, R.; Landfester, K.; Scherf, U. A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices. Macromolecules 2004, 37, 4882–4890. [Google Scholar]
- McNeill, C.R.; Westenhoff, S.; Groves, C.; Friend, R.H.; Greenham, N.C. Influence of nanoscale phase separation on the charge generation dynamics and photovoltaic performance of conjugated polymer blends: Balancing charge generation and separation. J. Phys. Chem. C 2007, 111, 19153–19160. [Google Scholar]
- Boulas, C.; Davidovits, J.V.; Rondelez, F.; Vuillaume, D. Suppression of charge carrier tunneling through organic self-assembled monolayers. Phys. Rev. Lett. 1996, 76, 4797–4800. [Google Scholar]
- Norrman, K.; Gevorgyan, S.A.; Krebs, F.C. Water-induced degradation of polymer solar cells studied by H218O labeling. ACS Appl. Mater. Interfaces 2009, 1, 102–112. [Google Scholar]
- Millstone, J.E.; Kavulak, D.F.J.; Woo, C.H.; Holcombe, T.W.; Westling, E.J.; Briseno, A.L.; Tomey, M.F.; Fréchet, J.M.J. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 2010, 26, 13056–13061. [Google Scholar]
- Shimizu, H.; Yamada, M.; Wada, R.; Okabe, M. Preparation and characterization of water self-dispersible poly(3-hexylthiophene) particles. Polym. J. 2008, 40, 33–36. [Google Scholar]
- Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core–shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438. [Google Scholar]
- Stapleton, A.; Vaughan, B.; Xue, B.; Sesa, E.; Burke, K.; Zhou, X.; Bryant, G.; Werzer, O.; Nelson, A.; Kilcoyne, A.L.D.; et al. A multilayered approach to polyfluorene water-based organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 102, 114–124. [Google Scholar]
- Vaughan, B.; Stapleton, A.; Xue, B.; Sesa, E.; Zhou, X.; Bryant, G.; Belcher, W.; Dastoor, P. Effect of a calcium cathode on water-based nanoparticulate solar cells. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Steward, P.A.; Hearn, J.; Wilkinson, M.C. An overview of polymer latex film formation and properties. Adv. Colloid Interface Sci. 2000, 86, 195–267. [Google Scholar]
- Karpov, S.V.; Isaev, I.L.; Gavrilyuk, A.P.; Gerasimov, V.S.; Grachev, A.S. General principles of the crystallization of nanostructured disperse systems. Colloid 2009, 71, 314–329. [Google Scholar]
- Singh, K.; Tirumkudulu, M. Cracking in drying colloidal films. Phys. Rev. Lett. 2007, 98. [Google Scholar] [CrossRef]
- Lee, Y.-B.; Lee, S.H.; Kim, K.; Lee, J.W.; Han, K.-Y.; Kim, J.; Joo, J. Single nanoparticle of organic p-type and n-type hybrid materials: nanoscale phase separation and photovoltaic effect. J. Mater. Chem. 2012, 22, 2485–2490. [Google Scholar]
- Ulum, S.; Holmes, N.; Darwis, D.; Burke, K.; Kilcoyne, A.L.D.; Zhou, X.; Belcher, W.; Dastoor, P. Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 2013, 110, 43–48. [Google Scholar]
- Holmes, N.P.; Burke, K.B.; Sista, P.; Barr, M.; Stefan, M.C.; Kilcoyne, A.L.D.; Zhou, X.; Dastoor, P.C.; Belcher, W.J. Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes. Sol. Energy Mater. Sol. Cells 2013, 117, 437–445. [Google Scholar]
- Holmes, N.P.; Ulum, S.; Sista, P.; Burke, K.B.; Wilson, M.G.; Stefan, M.C.; Zhou, X.; Dastoor, P.C.; Belcher, W.J. The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 2014, 128, 369–377. [Google Scholar]
- Richards, J.J.; Whittle, C.L.; Shao, G.; Pozzo, L.D. Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. ACS Nano 2014, 8, 4313–4324. [Google Scholar]
- Darwis, D.; Holmes, N.; Elkington, D.; Kilcoyne, A.L.D.; Bryant, G.; Zhou, X.; Dastoor, P.; Belcher, W. Surfactant-free nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 121, 99–107. [Google Scholar]
- Ulum, S.; Holmes, N.; Barr, M.; Kilcoyne, A.L.D.; Gong, B.B.; Zhou, X.; Belcher, W.; Dastoor, P. The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices. Nano Energy 2013, 2, 897–905. [Google Scholar]
- Gärtner, S.; Christmann, M.; Sankaran, S.; Röhm, H.; Prinz, E.-M.; Penth, F.; Pütz, A.; Emre Türeli, A.; Penth, B.; Baumstümmler, B.; et al. Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv. Mater. 2014, 26, 6653–6657. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Belcher, W.; Dastoor, P. Solar Paint: From Synthesis to Printing. Polymers 2014, 6, 2832-2844. https://doi.org/10.3390/polym6112832
Zhou X, Belcher W, Dastoor P. Solar Paint: From Synthesis to Printing. Polymers. 2014; 6(11):2832-2844. https://doi.org/10.3390/polym6112832
Chicago/Turabian StyleZhou, Xiaojing, Warwick Belcher, and Paul Dastoor. 2014. "Solar Paint: From Synthesis to Printing" Polymers 6, no. 11: 2832-2844. https://doi.org/10.3390/polym6112832
APA StyleZhou, X., Belcher, W., & Dastoor, P. (2014). Solar Paint: From Synthesis to Printing. Polymers, 6(11), 2832-2844. https://doi.org/10.3390/polym6112832