Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Au@PNIPAm/PEI Nanocomposite Particles
2.3. Synthesis of Ag@Au/PNIPAm/PEI Nanocomposite Particles
2.4. Catalytic Activity of Nanocomposite Particles
2.5. Measurements and Characterization
2.5.1. Particle Sizes and Surface Charges
2.5.2. Transmission Electron Microscopy
2.5.3. X-ray Photoelectron Spectroscopy
2.5.4. UV-vis Spectroscopy
2.5.5. Atomic Force Microscopy
2.5.6. Elemental Analysis of Bimetallic Nanoparticles
3. Results and Discussion
3.1. Synthesis of Au and Ag@Au/PNIPAm/PEI Nanocomposite Particles
3.2. Compositions and Morphologies of Au and Ag@Au/PNIPAm/PEI Nanocomposite Particles
3.3. Particle Sizes and Surface Charges of the Nanocomposite Particles
3.4. Surface Chemical Composition of Nanocomposite Particles
3.5. Catalytic Properties of Au and Ag@Au PNIPAm/PEI Nanocomposite Particles
3.6. Stimuli-Responsive Properties of PNIPAm/PEI Template and Tuneable Catalytic Activities of the Nanocomposite Particles
3.7. Reusability of Nanocomposite Particles
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metal nanoparticles. J. Pharm. Bioall. Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Yang, G.; Feng, X.; Lai, X.; Zhao, P. Triazole-stabilized gold and related noble metal nanoparticles for 4-nitrophenol reduction. New J. Chem. 2015, 39, 4685–4694. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, A.; Esparza, R.; Rosas, G.; Pérez, R. Effect of the surfactant on the growth and oxidation of iron nanoparticles. J. Nanomater. 2015. [Google Scholar] [CrossRef]
- Hu, J.; Yang, Q.; Yang, L.; Zhang, Z.; Su, B.; Bao, Z.; Ren, Q.; Xing, H.; Dai, S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catal. 2015, 5, 6724–6731. [Google Scholar] [CrossRef]
- Murugadoss, A.; Chattopadhyay, A. A “Green” chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 2008, 19, 15603–15611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tan, B.; Hussain, I.; Schaeffer, N.; Wyatt, M.F.; Brust, M.; Cooper, A.I. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 2007, 23, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Bingwa, N.; Meijboom, R. Evaluation of catalytic activity of Ag and Au dendrimer-encapsulated nanoparticles in the reduction of 4-nitrophenol. J. Mol. Catal. 2015, 396, 1–7. [Google Scholar] [CrossRef]
- Gopalan, P.R. Cyclodextrin-stabilized metal nanoparticles: Synthesis and characterization. Int. J. Nanosci. 2010, 9, 487–494. [Google Scholar] [CrossRef]
- Biffis, A.; Orlandi, N.; Corain, B. Microgel-stabilized metal nanoclusters: Size control by microgel nanomorphology. Adv. Mater. 2003, 15, 1551–1555. [Google Scholar]
- Varsha, T.; Namdeo, M.; Mohan, Y.M.; Bajpai, S.K.; Bajpai, M. Review on polymer, hydrogel and microgel metal nanocomposites: A facile nanotechnological approach. J. Macromol. Sci. Part A 2008, 45, 107–119. [Google Scholar]
- Karg, M.; Hellweg, T. New “smart” poly(NIPAM) microgels and nanoparticle microgel hybrids: Properties and advances in characterization. Curr. Opin. Colloid Interface Sci. 2009, 14, 438–450. [Google Scholar] [CrossRef]
- Strong, L.E.; West, J.L. Thermally responsive polymer-nanoparticles composites for biomedical application. WIREs Nanomed. Nanobiotechnol. 2011, 3, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Plaza, H. Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 2015, 16, 2099–2116. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Zhang, Q.M.; Serpe, M.J. Poly(N-isopropylacrylamide)-co-(acrylic acid) microgel/Ag nanoparticles hydrides for the colorimetric sensing of H2O2. Nanoscale 2015, 7, 2784–2789. [Google Scholar] [CrossRef] [PubMed]
- Ballauff, M.; Lu, Y. Smart nanoparticles: Preparation, characterization and applications. Polymer 2007, 48, 1815–1823. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Y.; Drechsler, M.; Baffauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 2006, 45, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.P.B.; Lee, C.H.; Chen, L.; Ho, K.M.; Lu, Y.; Ballauff, M.; Li, P. Facile synthesis of gold/polymer nanocomposite particles using polymeric amine-based particles as dual reductants and templates. Polymer 2015, 76, 271–279. [Google Scholar] [CrossRef]
- Tan, N.P.B.; Lee, C.H.; Li, P. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template. Data Brief. 2015, 5, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H.; Woo, K.; Ahn, J.P. Core–shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microspheres. Sci. Rep. 2013, 3, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Su, Z. Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Adv. Mater. 2012, 24, 4574–4577. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.D.S.; Blanchard, G.J. Formation of gold nanoparticles using amine reducing agents. Langmuir 2006, 22, 5882–5887. [Google Scholar] [CrossRef] [PubMed]
- Zelewsky, A.V.; Barbosa, L.; Schläpfer, C.W. Poly(ethylenimines) as Brønsted bases and as ligands for metal ions. Coord. Chem. Rev. 1993, 123, 229–246. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hiroshi, K.; Tokunoh, M.; Saegusa, T. Chelating properties of linear and branched poly(ethylenimines). Macromolecules 1987, 20, 1496–1500. [Google Scholar] [CrossRef]
- Herrero, E.; Buller, L.J.; Abruna, H.D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 2001, 101, 1897–1930. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.C.; Huang, J.H.; Chen, H.M.; Lai, T.C.; Yang, K.Y.; Liu, R.S.; Hsiao, M.; Chen, C.H.; Her, L.J.; Tsai, D.P. Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J. Mater. Chem. 2012, 22, 2244–2253. [Google Scholar] [CrossRef]
- Cuenya, B.R.; Baeck, S.H.; Jaramillo, T.F.; McFarland, E.W. Size- and support-dependent electronic and catalytic properties of Au0/Au3+ nanoparticles synthesized from block copolymer micelles. J. Am. Chem. Soc. 2003, 125, 12928–12934. [Google Scholar] [CrossRef] [PubMed]
- Buffat, P.A.; Flueli, M.; Spycher, R.; Stadelmann, P.; Borel, J.P. Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 1991, 92, 173–187. [Google Scholar] [CrossRef]
- Shanmugam, S.; Viswanathan, B.; Varadarajan, T.K. Photochemically reduced polyoxometalate assisted generation of silver and gold nanoparticles in composite films: A single step route. Nanoscale Res. Lett. 2007, 2, 175–183. [Google Scholar] [CrossRef]
- Jiang, H.L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q.J. Synergistic catalysis of Au@Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, W.; Xiao, X.; Zhou, J.; Xu, J.; Ren, F.; Jiang, C. Polymer-supported bimetallic Ag@AgAu nanocomposites: Synthesis and catalytic properties. Chem. Asian J. 2012, 7, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Ma, J.; Wang, X.; Liu, Y.; Xu, H.; Gao, J.; Wang, W.; Liu, Y.; Yan, J. Graphene oxide supported Au-Ag alloy nanoparticle with different shapes and their high catalytic activities. Nanotechnology 2013, 24, 125301. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Q.; Liu, J.H.; Lin, S.D.; Lin, T.S.; Mou, C.Y. A novel efficient Au–Ag alloy catalyst system: Preparation, activity, and characterization. J. Catal. 2005, 233, 186–197. [Google Scholar] [CrossRef]
- Benkó, T.; Beck, A.; Frey, K.; Srankóa, D.F.; Geszti, O.; Sáfrán, G.; Marótic, B.; Schay, Z. Bimetallic Ag–Au/SiO2catalysts: Formation, structure and synergistic activity in glucose oxidation. Appl. Catal. A Gen. 2014, 479, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Back, S.; Yeom, M.S.; Jung, Y.S. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO. ACS Catal. 2015, 5, 5089–5096. [Google Scholar] [CrossRef]
- Kawaguch, H. Thermoresponsive microhydrogels: Preparation, properties and applications. Polym. Int. 2014, 63, 925–932. [Google Scholar] [CrossRef]
- Suh, J.; Lee, S.H.; Kim, S.M.; Hah, S.S. Conformational flexibility of poly(ethyleneimine) and its derivative. Bioorg. Chem. 1997, 25, 221–231. [Google Scholar] [CrossRef]
Type | Mean hydrodynamic diameter | zeta-Potential |
---|---|---|
(nm) | (mV) | |
PNIPAm/PEI | 384 | +34 |
Au@PNIPAm/PEI | 284 | +15 |
Ag@Au/PNIPAm/PEI | 270 | +5 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, N.P.B.; Lee, C.H.; Li, P. Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers 2016, 8, 105. https://doi.org/10.3390/polym8040105
Tan NPB, Lee CH, Li P. Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers. 2016; 8(4):105. https://doi.org/10.3390/polym8040105
Chicago/Turabian StyleTan, Noel Peter Bengzon, Cheng Hao Lee, and Pei Li. 2016. "Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities" Polymers 8, no. 4: 105. https://doi.org/10.3390/polym8040105
APA StyleTan, N. P. B., Lee, C. H., & Li, P. (2016). Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers, 8(4), 105. https://doi.org/10.3390/polym8040105