Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Plant Materials and Growth Conditions
2.2. Measurements
2.3. Library Construction and Sequencing
2.4. Gene Expression Verification by Quantitative Real-Time PCR (qRT-PCR)
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Dry Matter and K Accumulation
3.2. Root Morphological Characteristics
3.3. Effect of Exogenous IAA on Lateral Root Formation
3.4. Transcriptome Responses to K Starvation
3.4.1. Overview of the RNA Sequencing Data
3.4.2. Analysis of Differentially Expressed Genes (DEGs)
3.4.3. Enrichment Analysis of DEGs
3.4.4. Potassium Absorption- and Translocation-Related Genes
3.4.5. DEGs Significantly Enriched in Transport-Related Genes
3.4.6. Identification of K Starvation Responsive Transcription Factors (TFs)
3.4.7. Differences in Plant Hormone-Related Gene Expression
Auxin
Ethylene
Jasmonic Acid
Cytokinin
Abscisic Acid
Gibberellin
3.4.8. Reliability Verification of RNA-Seq Sequencing Results
4. Discussion
4.1. Root Morphology and High Potassium Efficiency in Vegetable Soybean
4.2. Transcriptome Profiling between Two K-Efficiency Vegetable Soybean Genotypes
4.3. DEGs Related to K Absorption
4.4. Plant Phytohormone Signal Transduction and Lateral Root Formation Affect High K+ Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, D.; Lu, J.; Cong, R.; Ren, T.; Zhang, W.; Li, X. Potassium management effects on quantity/intensity relationship of soil potassium under rice-oilseed rape rotation system. Arch. Agron. Soil Sci. 2019, 66, 1274–1287. [Google Scholar] [CrossRef]
- Rengel, Z.; Damon, P.M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 133, 624–636. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Liu, C.; Tu, B.; Li, Y.; Tian, B.; Zhang, Q.; Liu, X.; Herbert, S.J. Potassium application affects key enzyme activities of sucrose metabolism during seed filling in vegetable soybean. Crop. Sci. 2017, 57, 2707–2717. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Tu, B.; Li, Y.; Liu, X.; Zhang, Q.; Herbert, S.J. Dry matter partitioning and K distribution of vegetable soybean genotypes with higher potassium efficiency. Arch. Agron. Soil Sci. 2019, 66, 717–729. [Google Scholar] [CrossRef]
- Liu, C.; Tu, B.; Wang, X.; Jin, J.; Li, Y.; Zhang, Q.; Liu, X.; Ma, B. Potassium translocation combined with specific root uptake is responsible for the high potassium efficiency in vegetable soybean. Crop. Pasture Sci. 2019, 70, 516–525. [Google Scholar] [CrossRef]
- Fan, M.; Huang, Y.; Zhong, Y.; Kong, Q.; Xie, J.; Niu, M.; Xu, Y.; Bie, Z. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta 2013, 239, 397–410. [Google Scholar] [CrossRef]
- Gierth, M.; Mäser, P. Potassium transporters in plants—Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 2007, 581, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
- Cuin, T.A.; Dreyer, I.; Michard, E. The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials. Int. J. Mol. Sci. 2018, 19, 926. [Google Scholar] [CrossRef] [Green Version]
- Ullah, H.; Datta, A. Root system response of selected lowland Thai rice varieties as affected by cultivation method and potassium rate under alternate wetting and drying irrigation. Arch. Agron. Soil Sci. 2018, 64, 2045–2059. [Google Scholar] [CrossRef]
- Sharma, T.; Dreyer, I.; Riedelsberger, J. The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front. Plant Sci. 2013, 4, 224. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Porras, J.L.; Riaño-Pachón, D.M.; Benito, B.; Eharo, R.; Esklodowski, K.; Rodríguez-Navarro, A.; Dreyer, I. Phylogenetic analysis of K+ transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. Front. Plant Sci. 2012, 3, 167. [Google Scholar] [CrossRef] [Green Version]
- Rubio, F.; Nieves-Cordones, M.; Aleman, F.; Martinez, V. Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol. Plant. 2008, 134, 598–608. [Google Scholar] [CrossRef]
- Pyo, Y.J.; Gierth, M.; Schroeder, J.I.; Cho, M.H. High-affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 2010, 153, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.; Botella, M.A.; Rubio, L.; Fernández, J.A.; Martínez, V.; Rubio, F. A Ca2+-sensitive system mediates low-affinity K+ uptake in the absence of AKT1 in Arabidopsis plants. Plant Cell Physiol. 2012, 53, 2047–2059. [Google Scholar] [CrossRef]
- Gaymard, F.; Pilot, G.; Lacombe, B.; Bouchez, D.; Bruneau, D.; Boucherez, J.; Michaux-Ferrière, N.; Thibaud, J.-B.; Sentenac, H. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the Xylem Sap. Cell 1998, 94, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Volder, A.; Smart, D.R.; Bloom, A.J.; Eissenstat, D.M. Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: Implications for root efficiency and competitive effectiveness. New Phytol. 2004, 165, 493–502. [Google Scholar] [CrossRef]
- Ivanchenko, M.G.; Muday, G.K.; Dubrovsky, J.G. Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 2008, 55, 335–347. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Li, B.; Eneji, A.E.; Li, J.; Duan, L.; Wang, B.; Li, Z.; Tian, X. Coronatine-induced lateral-root formation in cotton (Gossypium hirsutum) seedlings under potassium-sufficient and -deficient conditions in relation to auxin. J. Plant Nutr. Soil Sci. 2009, 172, 435–444. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.W. Direct activation of EXPANSIN14 by LBD18 in the gene regulatory network of lateral root formation in Arabidopsis. Plant Signal. Behav. 2013, 8, e22979. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Scheres, B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 2017, 69, 155–167. [Google Scholar] [CrossRef]
- Xuan, W.; Band, L.R.; Kumpf, R.P.; Van Damme, D.; Parizot, B.; De Rop, G.; Opdenacker, D.; Möller, B.; Skorzinski, N.; Njo, M.F.; et al. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 2016, 351, 384–387. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.J.; Zhu, T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 2004, 9, 591–596. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, L.; Wang, Y.; Fan, L.; Chen, Y.; Tang, M.; Luo, X.; Liu, L. Comparative proteomic analysis provides insight into a complex regulatory network of taproot formation in radish (Raphanus sativus L.). Hortic. Res. 2018, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, H.-D.; Chen, L.-Q.; Wang, Y.; Liu, L.-L.; He, L.; Wu, W.-H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 2006, 125, 1347–1360. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Chen, H.; Hao, Q.; Sha, A.; Shan, Z.; Chen, L.; Zhou, R.; Zhi, H.; Zhou, X. Transcript Profile of the Response of Two Soybean Genotypes to Potassium Deficiency. PLoS ONE 2012, 7, e39856. [Google Scholar] [CrossRef]
- Wang, J.-D.; Hou, P.; Zhu, G.P.; Dong, Y.; Hui, Z.; Ma, H.; Xu, X.J.; Nin, Y.; Ai, Y.; Zhang, Y.-C. Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Field Crop. Res. 2017, 211, 147–154. [Google Scholar] [CrossRef]
- Armengaud, P.; Breitling, R.; Amtmann, A. The Potassium-Dependent Transcriptome of Arabidopsis Reveals a Prominent Role of Jasmonic Acid in Nutrient Signaling. Plant Physiol. 2004, 136, 2556–2576. [Google Scholar] [CrossRef] [Green Version]
- Hardoim, P.R.; De Carvalho, T.L.G.; Ballesteros, H.G.F.; Bellieny-Rabelo, D.; Rojas, C.A.; Venancio, T.M.; Ferreira, P.C.G.; Hemerly, A.S. Genome-wide transcriptome profiling provides insights into the responses of maize (Zea mays L.) to diazotrophic bacteria. Plant Soil 2019, 451, 121–143. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, Y.; Fang, Z.; Zhuang, M.; Zhang, Y.; Lv, H.; Liu, Y.; Li, Z.; Yang, L. Comparative transcriptome analysis of cabbage (Brassica oleracea var. capitata) infected by Plasmodiophora brassicae reveals drastic defense response at secondary infection stage. Plant Soil 2019, 443, 167–183. [Google Scholar] [CrossRef]
- Ding, Y.-E.; Fan, Q.-F.; He, J.-D.; Wu, H.-H.; Zou, Y.-N.; Wu, Q.-S.; Kuča, K. Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Arch. Agron. Soil Sci. 2019, 66, 182–192. [Google Scholar] [CrossRef]
- Schiessl, S.; Quezada-Martinez, D.; Orantes-Bonilla, M.; Snowdon, R.J. Transcriptomics reveal high regulatory diversity of drought tolerance strategies in a biennial oil crop. Plant Sci. 2020, 297, 110515. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Zhang, M.; Jia, B.; Heng, W.; Ye, Z.; Zhu, L.; Xu, X. Transcriptome sequencing analysis of two different genotypes of Asian pear reveals potential drought stress genes. Tree Genet. Genomes 2018, 14, 40. [Google Scholar] [CrossRef]
- Shen, C.; Wang, J.; Shi, X.; Kang, Y.; Xie, C.; Peng, L.; Dong, C.; Shen, Q.; Xu, Y. Transcriptome Analysis of Differentially Expressed Genes Induced by Low and High Potassium Levels Provides Insight into Fruit Sugar Metabolism of Pear. Front. Plant Sci. 2017, 8, 938. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Fang, R.; Li, Y.; Liu, X.; Wang, G.; Yin, K.; Jin, J.; Herbert, S.J. Warming and elevated CO2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Gan, Y.B.; Filleur, S.; Rahman, A.; Gotensparre, S.; Forde, B. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 2005, 222, 730. [Google Scholar] [CrossRef]
- López-Bucio, J.; Cruz-Ramírez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Gerard, F.; Blitz-Frayret, C.; Hinsinger, P.; Pagès, L. Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 2016, 413, 161–180. [Google Scholar] [CrossRef]
- Zhao, X.-H.; Yu, H.-Q.; Wen, J.; Wang, X.; Du, Q.; Wang, J.; Wang, Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J. Integr. Agric. 2016, 15, 785–794. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Song, W.; Tao, J.; Huang, S.; Chen, S.; Hou, M.; Xu, G.; Zhang, Y. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J. Exp. Bot. 2015, 66, 2449–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Risueno, M.A.; Van Norman, J.M.; Moreno, A.; Zhang, J.; Ahnert, S.E.; Benfey, P.N. Oscillating gene expression determines competence for periodic arabidopsis root branching. Science 2010, 329, 1306–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.-J.; Liu, S.-J.; Meng, L.; Xue, R.; Wang, C.-D.; Liu, G.-L.; Dong, C.-X.; Wang, S.-S.; Dong, J.-X.; Zhang, Y.-L. Potassium deficiency inhibits lateral root development in tobacco seedlings by changing auxin distribution. Plant Soil. 2015, 396, 163–173. [Google Scholar] [CrossRef]
- Singh, K.B. Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 2002, 5, 430–436. [Google Scholar] [CrossRef]
- Shiu, S.-H.; Shih, M.-C.; Li, W.-H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 2005, 139, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gao, W.; Peng, Q.; Zhou, B.; Kong, Q.; Ying, Y.; Shou, H. Two soybean bHLH factors regulate response to iron deficiency. J. Integr. Plant Biol. 2018, 60, 608–622. [Google Scholar] [CrossRef]
- Takada, S.; Hibara, K.; Ishida, T.; Tasaka, M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 2001, 128, 1127–1135. [Google Scholar]
- Hibara, K.-I.; Takada, S.; Tasaka, M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 2003, 36, 687–696. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Wei, W.; Song, Q.-X.; Chen, H.-W.; Zhang, Y.-Q.; Wang, F.; Zou, H.-F.; Lei, G.; Tian, A.-G.; Zhang, W.; et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011, 68, 302–313. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, C.; Gai, J.; Yu, D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J. Plant Physiol. 2007, 164, 1002–1012. [Google Scholar] [CrossRef]
- Ivashikina, N.; Becker, D.; Ache, P.; Meyerhoff, O.; Felle, H.H.; Hedrich, R. K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett. 2001, 508, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Isayenkov, S.; Maathuis, F.J.M. Arabidopsis thalianavacuolar TPK channels form functional K+ uptake pathways inEscherichia coli. Plant Signal. Behav. 2013, 8, e24665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.J.; Shin, R.; Schachtman, D.P. Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake. Plant Physiol. 2004, 134, 1135–1145. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, Y.; Arinaga, N.; Umezawa, T.; Katsura, S.; Nagamachi, K.; Tanaka, H.; Ohiraki, H.; Yamada, K.; Seo, S.-U.; Abo, M.; et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 2013, 25, 609–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ragel, P.; Ródenas, R.; García-Martín, E.; Andrés, Z.; Villalta, I.; Nieves-Cordones, M.; Rivero, R.M.; Martínez, V.; Pardo, J.M.; Quintero, F.J.; et al. CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 2015, 169, 2863–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, R.E.; Lewis, B.D.; Spalding, E.P.; Sussman, M.R. A role for the AKT1 potassium channel in plant nutrition. Science 1998, 280, 918–921. [Google Scholar] [CrossRef]
- Li, J.; Long, Y.; Qi, G.-N.; Xu, Z.-J.; Wu, W.-H.; Wang, Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell 2014, 26, 3387–3402. [Google Scholar] [CrossRef] [Green Version]
- KChin, K.; Moeder, W.; Yoshioka, K. Biological roles of cyclic-nucleotide-gated ion channels in plants: What we know and don’t know about this 20 member ion channel family. Botany 2009, 87, 668–677. [Google Scholar]
- Wang, S.; Ichii, M.; Taketa, S.; Xu, L.; Xia, K.; Zhou, X. Lateral root formation in rice (Oryza sativa): Promotion effect of jasmonic acid. J. Plant Physiol. 2002, 159, 827–832. [Google Scholar] [CrossRef]
- Negi, S.; Ivanchenko, M.G.; Muday, G.K. Ethylene regulates lateral root formation and auxin transport inArabidopsis thaliana. Plant J. 2008, 55, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Xing, L.; Wang, X.; Hou, Y.J.; Gao, J.; Wang, P.; Duan, C.G.; Zhu, X.; Zhu, J.K. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science signaling. Sci. Signal 2014, 7, ra53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casimiro, I.; Beeckman, T.; Graham, N.; Bhalerao, R.; Zhang, H.; Casero, P.; Sandberg, G.; Bennett, M.J. Dissecting Arabidopsis lateral root development. Trends Plant Sci. 2003, 8, 165–171. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, M.-J.; Kim, N.Y.; Lee, S.H.; Kim, J. LBD18 acts as a transcriptional activator that directly binds to theEXPANSIN14promoter in promoting lateral root emergence of Arabidopsis. Plant J. 2012, 73, 212–224. [Google Scholar] [CrossRef]
- Bennett, M.J.; Marchant, A.; Green, H.G.; May, S.T.; Ward, S.P.; Millner, P.A.; Walker, A.R.; Schulz, B.; Feldmann, K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 1996, 273, 948–950. [Google Scholar] [CrossRef]
- Okushima, Y.; Fukaki, H.; Onoda, M.; Theologis, A.; Tasaka, M. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 2007, 19, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Cong, Y.; Hussain, N.; Wang, Y.; Liu, Z.; Jiang, L.; Liang, Z.; Chen, K.-M. The remodeling of seedling development in response to long-term magnesium toxicity and regulation by aba-della signaling in Arabidopsis. Plant Cell Physiol. 2014, 55, 1713–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.-T.; Xu, P.; Zhao, P.-X.; Liu, R.; Yu, L.-H.; Xiang, C.-B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat. Commun. 2014, 5, 5833. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Sakai, H.; Nourizadeh, S.; Chen, Q.G.; Bleecker, A.B.; Ecker, J.R.; Meyerowitz, E.M. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 1998, 10, 1321. [Google Scholar] [CrossRef] [Green Version]
- Ireland, H.S.; Guillén, F.; Bowen, J.; Tacken, E.; Putterill, J.; Schaffer, R.J.; Johnston, J.W. Mining the apple genome reveals a family of nine ethylene receptor genes. Postharvest Biol. Technol. 2012, 72, 42–46. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K. ABA signaling in stress-response and seed development. Plant Cell Rep. 2013, 32, 959–970. [Google Scholar] [CrossRef]
- Gou, J.; Strauss, S.H.; Tsai, C.J.; Fang, K.; Chen, Y.; Jiang, X.; Busov, V.B. Gibberellins regulate lateral root formation in Populus through interactions with auxin and other hormones. Plant Cell 2010, 22, 623–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Wang, J.; Wang, N.; Zhou, H.; Xu, Q.; Yan, G. Overexpression of StGA2ox1 gene increases the tolerance to abiotic stress in transgenic potato (Solanum tuberosum L.) plants. Appl. Biochem. Biotechnol. 2018, 187, 1204–1219. [Google Scholar] [CrossRef]
- Laplaze, L.; Benkova, E.; Casimiro, I.; Maes, L.; Vanneste, S.; Swarup, R.; Weijers, D.; Calvo, V.; Parizot, B.; Herrera-Rodriguez, M.B.; et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 2007, 19, 3889–3900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenzel, I.; Otto, M.; Delker, C.; Kirmse, N.; Schmidt, D.; Miersch, O.; Hause, B.; Wasternack, C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: Tissue- and organ-specific promoter activities and in vivo heteromerization. J. Exp. Bot. 2012, 63, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, P.; Tanaka, G.; Takahashi, T.; Xie, X.; Yoneyama, K.; Matsuura, H.; Takahashi, K. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the Model Lycophyte Selaginella moellendorffii. Plant Cell Physiol. 2017, 58, 789–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene ID. | Fprimer 5′-3′ | Rprimer 5′-3′ |
---|---|---|
Glyma04g39380.1(Actin) | TTTGCTGGTGATGATGCTC | ACCTCTTTTTGACTGGGCT |
Glyma01g40850 | CGTCATTCAAAGGCAATGGTTA | TTTTACACAACTGGGCTTCAAG |
Glyma10g32080 | CACTTTTCTCCAAGAAGAAGCC | GATCCTTCTGTCAGGACCATAC |
Glyma14g23300 | GTGCAATTGCGACCCTTATATT | ATAAACACAAGCTAGGAGCCTT |
Glyma15g40140 | CTGATGTCTTCAAGGCATTAGC | CCCAATCAGTGACAATGTGATC |
Glyma01g06774 | AATGCAGTTACTAGCTACACGA | CTTATCAGAGTAGGTGCGACAT |
Glyma02g30714 | GTCACTTGCAGAAATATCGGAC | CTGTTGAAGTTCAGTGACCATG |
Glyma07g02540 | GAAATTCATAGAAGGTGCGGAC | CACCATTGTTCTTGGAGCTTAC |
Glyma05g00740 | CACGGATGGTTCCAACATTATC | GGGATGCCTACAAAAGAAAGTG |
LRN | TRL | SA | AD | RV | KIUE | DW | |
---|---|---|---|---|---|---|---|
TRL | 0.694 ** | ||||||
SA | 0.464 ** | 0.989 ** | |||||
AD | −0.678 ** | −0.787 ** | −0.734 ** | ||||
RV | 0.534 ** | 0.927 ** | 0.972 ** | −0.603 ** | |||
KIUE | 0.604 ** | 0.744 ** | 0.711 ** | −0.776 ** | 0.624 ** | ||
DW | 0.783 ** | 0.878 ** | 0.854 ** | −0.694 ** | 0.773 ** | 0.634 ** | |
KC | 0.720 ** | 0.767 ** | 0.753 ** | −0.562 ** | 0.688 ** | 0.378 | 0.951 ** |
Gene ID | LK (log2Line 20/Line 7) | CK (log2Line 20/Line 7) | Annotation |
---|---|---|---|
Glyma01g30485 | −4.02 | −3.67 | Potassium transporter 1, KUP1 (Arabidopsis thaliana) |
Glyma19g45260 | 0.97 | 0.39 | High affinity K+ transporter 5, HAK5 (Arabidopsis thaliana) |
Glyma01g03850 | −0.61 | - | K+ uptake permease 6, KUP6 (Arabidopsis thaliana) |
Glyma18g18810 | −0.53 | - | K+ uptake permease 6, KUP6 (Arabidopsis thaliana) |
Glyma08g06060 | 0.60 | - | Potassium transporter 25-like (Glycine max) |
Glyma17g12740 | 0.77 | 0.78 | Potassium channel AKT1 (Arabidopsis thaliana, AKT1) |
Glyma09g11770 | 0.97 | - | CBL-interacting protein kinase 23, CIPK23 (Arabidopsis thaliana) |
Glyma05g05580 | - | 0.51 | Calcineurin B-like protein 9, CBL9 (Arabidopsis thaliana) |
Glyma14g01790 | - | 0.67 | Two-pore potassium channel 1, TPK1 (Arabidopsis thaliana) |
Glyma14g03260 | −1.06 | −1.85 | Two-pore potassium channel 3, TPK3 (Arabidopsis thaliana) |
Glyma18g49890 | - | 0.89 | Cyclic nucleotide-gated ion channel 2, CNGC2 (Arabidopsis thaliana) |
Glyma04g08085 | 0.54 | - | Probable cyclic nucleotide-gated ion channel 14, CNGC14 (Arabidopsis thaliana) |
Glyma13g20420 | 1.23 | - | Cyclic nucleotide-gated channel 15, CNGC15 (Arabidopsis thaliana) |
Glyma16g34381 | 0.65 | - | Probable cyclic nucleotide-gated ion channel 20, chloroplastic, CNGC20 (Arabidopsis thaliana) |
Gene ID | LK | CK | Annotation |
---|---|---|---|
(log2FC) | (log2FC) | ||
GLYMA05G08870 | 1.25 | 1.16 | LOB domain-containing protein 25, LBD25 (Arabidopsis thaliana) |
GLYMA03G02620 | −1.45 | - | LOB domain-containing protein 18, LBD18 (Arabidopsis thaliana) |
GLYMA05G02530 | - | - | Protein LATERAL ORGAN BOUNDARIES, LOB (Arabidopsis thaliana) |
GLYMA01G35070 | 3.70 | 3.36 | Expansin-like B1 (Oryza sativa subsp. Japonica) |
GLYMA01G41330 | 1.18 | 1.63 | Expansin-like B1(Glycine max) |
GLYMA11G04080 | - | 1.00 | Expansin-like B1 (Arabidopsis thaliana) |
GLYMA09G37090 | - | 1.04 | Expansin-like A1, EXPA1 (Arabidopsis thaliana) |
GLYMA02G38091 | 0.83 | - | MADS-box transcription factor ANR1, ANR1 (Arabidopsis thaliana) |
GLYMA20G26940 | - | 1.10 | Zinc finger protein ZAT6, ZAT6 (Arabidopsis thaliana) |
GLYMA12G02530 | −2.42 | −2.70 | Scarecrow-like protein 23, SCL23 (Arabidopsis thaliana) |
GLYMA10G04421 | 1.29 | 2.36 | Protein SCARECROW, SCR (Arabidopsis thaliana) |
GLYMA07G18934 | 1.58 | 1.57 | SCARECROW-LIKE protein 7, SCL7 (Populus euphratica) |
GLYMA17G17710 | 0.84 | 1.21 | Scarecrow-like protein 32, SCL32 (Arabidopsis thaliana) |
GLYMA03G02563 | −1.63 | −2.09 | Kinesin-like protein KIN-UB, KINUB (Arabidopsis thaliana) |
GLYMA05G32970 | −1.08 | −0.50 | Diacylglycerol kinase 2, DGK2 (Arabidopsis thaliana) |
GLYMA13G01110 | - | 1.06 | Xyloglucan endotransglucosylase/hydrolase protein 24, XTH24 (Arabidopsis thaliana) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Tu, B.; Wang, X.; Li, Y.; Zhang, Q.; Liu, X. Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency. Agronomy 2020, 10, 1796. https://doi.org/10.3390/agronomy10111796
Liu C, Tu B, Wang X, Li Y, Zhang Q, Liu X. Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency. Agronomy. 2020; 10(11):1796. https://doi.org/10.3390/agronomy10111796
Chicago/Turabian StyleLiu, Changkai, Bingjie Tu, Xue Wang, Yansheng Li, Qiuying Zhang, and Xiaobing Liu. 2020. "Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency" Agronomy 10, no. 11: 1796. https://doi.org/10.3390/agronomy10111796
APA StyleLiu, C., Tu, B., Wang, X., Li, Y., Zhang, Q., & Liu, X. (2020). Transcript Profile in Vegetable Soybean Roots Reveals Potential Gene Patterns Regulating K Uptake Efficiency. Agronomy, 10(11), 1796. https://doi.org/10.3390/agronomy10111796