Developing a p-NDVI Map for Highland Kimchi Cabbage Using Spectral Information from UAVs and a Field Spectral Radiometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Kimchi Cabbage Growing Seasons and Growth Calendar
2.3. Methods and Research Progression
2.4. Vegetation Indices
3. Results and Discussion
3.1. Terrestrial Spectral Characteristics
3.2. Reflectance Characteristics of UAV Imagery
3.3. Vegetation Indices of UAV Imagery and the Spectroradiometer
3.4. Comparison of UAV- and Spectroradiometer-Measured NDVI
3.5. Creating a p-NDVI Map
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahn, J.-H.; Kim, K.-D.; Lee, J.-T. Growth Modeling of Chinese Cabbage in an Alpine Area. Korean J. Agric. For. Meteorol. 2014, 16, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Park, Y.G. The Development of Chinese Cabbage and Radish Forecast Models; Other Research Reports M125; Korea Rural Economic Institute (KREI): Naju, Korea, 2013; pp. 4–24. ISBN 978-89-6013-588-8 93520. [Google Scholar]
- Korea Rural Economic Institute (KREI). 2019. Available online: http://aglook.krei.re.kr/jsp/pc/front/observe/monthlyReport.jsp (accessed on 30 June 2019).
- Kang, S.-M.; Kim, J.-T.; Hamayun, M.; Hwang, I.-C.; Khan, A.L.; Kim, Y.; Lee, J.-H.; Lee, I.-J. Influence of prohexadione-calcium on growth and gibberellins content of Chinese cabbage grown in alpine region of South Korea. Sci. Hortic. 2010, 125, 88–92. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez-Lopez, D.; Moreno, M.A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precis. Agric. 2014, 15, 579–592. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Roth, L.; Streit, B. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precis. Agric. 2017, 19, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2018, 20, 611–629. [Google Scholar] [CrossRef]
- Jiang, Q.; Fang, S.; Peng, Y.; Gong, Y.; Zhu, R.; Wu, X.; Ma, Y.; Duan, B.; Liu, J. UAV-Based Biomass Estimation for Rice-Combining Spectral, TIN-Based Structural and Meteorological Features. Remote Sens. 2019, 11, 890. [Google Scholar] [CrossRef] [Green Version]
- Na, S.; Lee, K.; Baek, S.; Hong, S. Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data. Korean J. Soil Sci. Fertil. 2015, 48, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Na, S.-I.; Hong, S.-Y.; Park, C.-W.; Kim, K.-D.; Lee, K.-D. Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors. Korean J. Soil Sci. Fertil. 2016, 49, 420–428. [Google Scholar] [CrossRef] [Green Version]
- Na, S.-I.; Park, C.-W.; Lee, K.-D. Application of Highland Kimchi Cabbage Status Map for Growth Monitoring based on Unmanned Aerial Vehicle. Korean J. Soil Sci. Fertil. 2016, 49, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Tsiligirides, T. Remote sensing as a tool for agricultural statistics: A case study of area frame sampling methodology in Hellas. Comput. Electron. Agric. 1998, 20, 45–77. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Comparison of QuickBird Satellite Imagery and Airborne Imagery for Mapping Grain Sorghum Yield Patterns. Precis. Agric. 2006, 7, 33–44. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X. Monitoring northern mixed prairie health using broadband satellite imagery. Int. J. Remote Sens. 2008, 29, 2257–2271. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M.R.L. Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef]
- Na, S.-I.; Park, J.-H.; Park, J.-K. Development of Korean Paddy Rice Yield Prediction Model (KRPM) using Meteorological Element and MODIS NDVI. J. Korean Soc. Agric. Eng. 2012, 54, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Xiong, D. Crop Growth Remote Sensing Monitoring and its Application. Sens. Trans. 2014, 169, 174–178. Available online: https://sensorsportal.com/HTML/DIGEST/april_2014/Vol_169/P_PR_0110.pdf (accessed on 24 August 2020).
- Park, J.K.; Park, J.H. Applicability Evaluation of Agricultural Subsidies Inspection Using Unmanned Aerial Vehicle. J. Korean Soc. Agric. Eng. 2016, 58, 29–37. [Google Scholar] [CrossRef]
- Park, J.K.; Park, J.H. Analysis of Rice Field Drought Area Using Unmanned Aerial Vehicle (UAV) and Geographic Information System (GIS) Methods. J. Korean Soc. Agric. Eng. 2017, 59, 21–28. [Google Scholar] [CrossRef]
- Toscano, P.; Castrignanò, A.; Di Gennaro, S.F.; Vonella, A.V.; Ventrella, D.; Matese, A. A Precision Agriculture Approach for Durum Wheat Yield Assessment Using Remote Sensing Data and Yield Mapping. Agronomy 2019, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Na, S.I.; Park, C.W.; So, K.H.; Ahn, H.Y.; Lee, K.D. Application method of unmanned aerial vehicle for crop monitoring in Korea. Korean J. Remote Sens. 2018, 34, 829–846. [Google Scholar] [CrossRef]
- Park, J.-K.; Das, A.; Park, J.-H. Application trend of unmanned aerial vehicle (UAV) image in agricultural sector: Review and proposal. Korean J. Agric. Sci. 2015, 42, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-D.; Lee, Y.-E.; Park, C.-W.; Na, S.-I. A Comparative Study of Image Classification Method to Classify Onion and Garlic Using Unmanned Aerial Vehicle (UAV) Imagery. Korean J. Soil Sci. Fertil. 2016, 49, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Huete, A.; Jackson, R.; Post, D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Huete, A.R. Soil influences in remotely sensed vegetation-canopy spectra. In Theory and Applications of Optical Remote Sensing; Asrar, G., Ed.; Wiley: New York, NY, USA, 1989; pp. 107–141. [Google Scholar]
- Galvão, L.S.; Vitorello, Í. Variability of Laboratory Measured Soil Lines of Soils from Southeastern Brazil. Remote Sens. Environ. 1998, 63, 166–181. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Sci. Soc. Am. J. 2006, 70, 393–407. [Google Scholar] [CrossRef]
- Chen, J.; Gu, S.; Shen, M.; Tang, Y.; Matsushita, B. Estimating aboveground biomass of grassland having a high canopy cover: An exploratory analysis of in situ hyperspectral data. Int. J. Remote Sens. 2009, 30, 6497–6517. [Google Scholar] [CrossRef]
- Yoshioka, H.; Miura, T.; Demattê, J.A.M.; Batchily, K.; Huete, A.R. Derivation of Soil Line Influence on Two-Band Vegetation Indices and Vegetation Isolines. Remote Sens. 2009, 1, 842–857. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Jacquemoud, S.; Hanocq, J. About the soil line concept in remote sensing. Adv. Space Res. 1993, 13, 281–284. [Google Scholar] [CrossRef]
- Park, J.K.; Park, J.H. Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV). J. Korean Soc. Agric. Eng. 2015, 57, 91–97. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehé, J. Detection of Vegetation Stress via a New High Resolution Fluorescence Imaging System. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.M.; Ju, W.; Wang, H.; Qiu, F.; Yang, F.; Fan, W.; Huang, Q.; Wang, Y.-P.; Feng, Y.; et al. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves. Remote Sens. Environ. 2017, 194, 1–15. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA. Goddard Space Flight Center 3d ERTS-1 Symp.; 1973; Volume 1, pp. 309–317. Available online: http://hdl.handle.net/2060/19740022614 (accessed on 24 August 2020).
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
Item | Specifications |
---|---|
UAV | e-Bee |
Sensor | S110 NIR |
Sensor band (nm) | Red (625), Green (550), NIR (850) |
Measuring altitude (m) | 310 |
Spatial resolution (m) | 0.11 |
Radiometric resolution | 16 bits |
Field 1 area (m2) | 13,812 |
Field 2 area (m2) | 2316 |
Item | Specifications |
---|---|
Spectroradiometer | PSR-2500 |
Weight (kg) | 3.3 |
Spectral Range (nm) | 350–2500 |
3.5 (~700) | |
Spectral Interval (nm) | 20 (~1500) |
18 (~2500) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Shin, H.-S.; Park, J.-H. Developing a p-NDVI Map for Highland Kimchi Cabbage Using Spectral Information from UAVs and a Field Spectral Radiometer. Agronomy 2020, 10, 1798. https://doi.org/10.3390/agronomy10111798
Lee D-H, Shin H-S, Park J-H. Developing a p-NDVI Map for Highland Kimchi Cabbage Using Spectral Information from UAVs and a Field Spectral Radiometer. Agronomy. 2020; 10(11):1798. https://doi.org/10.3390/agronomy10111798
Chicago/Turabian StyleLee, Dong-Ho, Hyoung-Sub Shin, and Jong-Hwa Park. 2020. "Developing a p-NDVI Map for Highland Kimchi Cabbage Using Spectral Information from UAVs and a Field Spectral Radiometer" Agronomy 10, no. 11: 1798. https://doi.org/10.3390/agronomy10111798
APA StyleLee, D. -H., Shin, H. -S., & Park, J. -H. (2020). Developing a p-NDVI Map for Highland Kimchi Cabbage Using Spectral Information from UAVs and a Field Spectral Radiometer. Agronomy, 10(11), 1798. https://doi.org/10.3390/agronomy10111798