Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Growth Condition
2.3. Recorded Agronomic Parameters on Wheat Crops
2.4. Nutritional Composition of the Parameters Assessed on Wheat Crops
2.5. Data Analysis
3. Results
3.1. Agronomic Parameters Recorded during the Harvests Carried out in 2014 and in 2015
3.2. Nutritional Composition of Winter Wheat Harvested in 2014 and 2015
3.3. Relationships Among Cultivars, Harvest Times, Years and Evaluated Parameters for the Harvests Performed in 2014 and 2015
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Crops; FAO: Rome, Italy, 2020; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 April 2020).
- Borrelli, L.; Pecetti, L. Wheat yield as a measure of the residual fertility after 20 years of forage cropping systems with different manure management in Northern Italy. Ital. J. Agron. 2019, 14, 1359. [Google Scholar]
- Cherney, J.H.; Marten, G.C. Small grain crop forage potential. I. Biological and chemical determinants of quality and yield. Crop Sci. 1982, 22, 227–231. [Google Scholar] [CrossRef]
- Torell, R.; Riggs, W.; Bruce, B.; Kvasnicka, B. Wheat pasture grazing: Agronomic, cultural and livestock management practices. Nevada Coop. Ext. Fact Sheet 1999, 99, 39. [Google Scholar]
- Hossain, I.; Epplin, F.M.; Krenzer, E.G. Planting date influence on dual-purpose winter wheat forage yield, grain yield, and test weight. Agron. J. 2003, 95, 1179–1188. [Google Scholar] [CrossRef]
- Seligman, N.G.; Sinclair, T.R. Global environment change and simulated forage quality of wheat II. Water and nitrogen stress. Field Crop. Res. 1995, 40, 29–37. [Google Scholar] [CrossRef]
- Cammarano, D.; Hawes, C.; Squire, G.; Holland, J.; Rivington, M.; Murgia, T.; Roggero, P.P.; Fontana, F.; Casa, R.; Ronga, D. Rainfall and temperature impacts on barley (Hordeum vulgare L.) yield and malting quality in Scotland. Field Crop. Res. 2019, 241, 107559. [Google Scholar] [CrossRef]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Poore, M.H.; Moore, J.A.; Swingle, R.S.; Eck, T.P.; Brown, W.H. Wheat straw or alfalfa hay in diets with 30% neutral detergent fiber for lactating Holstein cows. J. Dairy Sci. 1991, 74, 3152–3159. [Google Scholar] [CrossRef]
- Brown, W.H.; Khalaf, S.S.; Marmolejo, A.; Swingle, R.S.; Whiting, F.M. Partial replacement of alfalfa hay with chopped wheat straw in diets for lactating dairy cows. J. Dairy Sci. 1990, 73, 3172–3177. [Google Scholar] [CrossRef]
- Ørskov, E.R.; Tait, C.A.G.; Reid, G.W.; Flachowski, G. Effect of straw quality and ammonia treatment on voluntary intake, milk yield and degradation characteristics of faecal fibre. Anim. Sci. 1988, 46, 23–27. [Google Scholar] [CrossRef]
- Virgona, J.M.; Gummer, F.A.J.; Angus, J.F. Effects of grazing on wheat growth, yield, development, water use, and nitrogen use. Aust. J. Agric. Res. 2006, 57, 1307–1319. [Google Scholar] [CrossRef]
- Owens, D.; McGee, M.; Boland, T.; O’Kiely, P. Rumen fermentation, microbial protein synthesis, and nutrient flow to the omasum in cattle offered corn silage, grass silage, or whole-crop wheat. J. Anim. Sci. 2009, 87, 658–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keady, T.W.J.; Lively, F.O.; Kilpatrick, D.J.; Moss, B.W. Effects of replacing grass silage with either maize or whole-crop wheat silages on the performance and meat quality of beef cattle offered two levels of concentrates. Animal 2007, 1, 613. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Chen, Y. Effects of storage period on the composition of whole crop wheat and corn silages. Anim. Feed Sci. Tech. 2013, 185, 196–200. [Google Scholar] [CrossRef]
- Buxton, D.R. Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Tech. 1996, 59, 3749. [Google Scholar] [CrossRef]
- Buxton, D.R.; O’Kiely, P. Preharvest plant factors affecting ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2003; pp. 199–250. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Viswanathan, C.; Khanna-Chopra, R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. J. Agron. Crop Sci. 2001, 186, 1–7. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Caradonia, F.; Parisi, M.; Bezzi, G.; Parisi, B.; Allesina, G.; Pedrazzi, S.; Francia, E. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy 2019, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotech. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Patané, C.; Sanzone, E.; Copani, V.; Foti, S. Effects of soil water content and nitrogen supply on the productivity of Miscanthus x giganteus Greef et Deu. in a Mediterranean environment. Ind. Crop. Prod. 2007, 25, 75–88. [Google Scholar] [CrossRef]
- Abrams, S.M. Laboratory procedures for determining dry matter, crude protein and acid detergent fiber. In Proceedings of the National Alfalfa Hay Quality Testing Workshop, Chicago, IL, USA, 22–23 March 1984. [Google Scholar]
- Mertens, D.R. Determining Dry Matter in Diverse Types of Feeds; NFTA Forage Analysis Workshop: Denver, CO, USA, 1993; pp. 1–10. [Google Scholar]
- Fustini, M.; Palmonari, A.; Canestrari, G.; Bonfante, E.; Mammi, L.; Pacchioli, M.T.; Sniffen, G.C.J.; Grant, R.J.; Cotanch, K.W.; Formigoni, A. Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber digestibility, and lactation performance. J. Dairy Sci. 2017, 100, 4475–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brogna, N.; Pacchioli, M.T.; Immovilli, A.; Ruozzi, F.; Ward, R.; Formigoni, A. The use of near-infrared reflectance spectroscopy (NIRS) in the prediction of chemical composition and in vitro neutral detergent fiber (NDF) digestibility of Italian alfalfa hay. Ital. J. Anim. Sci. 2009, 8, 271–273. [Google Scholar] [CrossRef] [Green Version]
- De Santis, G.; Ronga, D.; Caradonia, F.; Ambrosio, T.D.; Troisi, J.; Rascio, A.; Fragasso, M.; Pecchioni, N.; Rinaldi, M. Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop Pasture Sci. 2019, 69, 1264–1275. [Google Scholar] [CrossRef]
- Ronga, D.; Lovelli, S.; Zaccardelli, M.; Perrone, D.; Ulrici, A.; Francia, E.; Milc, J.; Pecchioni, N. Physiological responses of processing tomato in organic and conventional Mediterranean cropping systems. Sci. Hortic. 2015, 190, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Gallingani, T.; Zaccardelli, M.; Perrone, D.; Francia, E.; Milc, J.; Pecchioni, N. Carbon footprint and energetic analysis of tomato production in the organic vs. the conventional cropping systems in Southern Italy. J. Clean. Prod. 2019, 220, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Chen, Y.; Solomon, R. The quality of commercial wheat silages in Israel. J. Dairy Sci. 2009, 92, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Shenk, J.S.; Westerhaus, M.O. Accuracy of Nirs instruments to analyze forage and grain 1. Crop Sci. 1985, 25, 1120–1122. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy; Monograph NIR Systems; Infrasoft International, NIR Systems. Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Norris, K.H.; Barnes, R.F.; Moore, J.E.; Shenk, J.S. Predicting forage quality by infrared reflectance spectroscopy. J. Anim. Sci. 1976, 43, 889–897. [Google Scholar] [CrossRef]
- Park, R.S.; Gordon, F.J.; Agnew, R.E.; Barnes, R.J.; Steen, R.W.J. The use of near infrared reflectance spectroscopy on dried samples to predict biological parameters of grass silage. Anim. Feed Sci. Tech. 1997, 68, 235–246. [Google Scholar] [CrossRef]
- Calser, M.D.; Van Staten, E. Breeding objectives in forages. In Fodder Crops and Amenity Grasses; Boller, B., Poselt, U.K., Veronesi, F., Eds.; Springer Science and Business Media: London, UK, 2010; pp. 115–136. [Google Scholar]
- Delogu, G.; Faccini, N.; Faccioli, P.; Reggiani, F.; Lendini, M.; Berardo, N.; Odoardi, M. Dry matter yield and quality evaluation at two phenological stages of forage triticale grown in the Po Valley and Sardinia, Italy. Field Crop. Res. 2002, 74, 207–215. [Google Scholar] [CrossRef]
- Bocchi, S.; Lazzaroni, G.; Berardo, N.; Maggiore, T. Evaluation of triticale as a forage plant through the analysis of the kinetics of some qualitative parameters from stem elongation to maturity. In Triticale: Today and Tomorrow; Guedes-Pinto, H., Darvey, N., Carnide, V.P., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 1996; pp. 827–834. [Google Scholar]
- King, C.; McEniry, J.; Richardson, M.; O’Kiely, P. Yield and chemical composition of five common grassland species in response to nitrogen fertiliser application and phenological growth stage. Acta Agric. Scand. Sect. 2012, 62, 644–658. [Google Scholar] [CrossRef]
- West, C.P.; Walker, D.W.; Bacon, R.K.; Longer, D.E.; Turner, K.E. Phenological analysis of forage yield and quality in winter wheat. Agron. J. 1991, 83, 217–224. [Google Scholar] [CrossRef]
- Wrobel, F.L.; Neumann, M.; Leão, G.F.M.; Horst, E.H.; Ueno, R.K.; Carneiro, M.K.; Perussolo, L.F. Características produtivas e nutricionais do feno de trigo cultivado em dois níveis de adubação nitrogenada e estádios de colheita. Arq. Bras. Med. Vet. Zootec. 2017, 69, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.A.; Stewart, C.B.; Gray, H.C.; Smith, J.L.; Gunter, S.A. Effect of wheat forage maturity and preservation method on forage chemical composition and performance of growing calves fed mixed diets. J. Anim. Sci. 2009, 87, 4133–4142. [Google Scholar] [CrossRef] [Green Version]
- MacKown, C.T.; Heitholt, J.J.; Rao, S.C. Agronomic feasibility of a continuous double crop of winter wheat and soybean forage in the southern Great Plains. Crop Sci. 2007, 47, 1652–1660. [Google Scholar] [CrossRef]
- Borreani, G.; Cavallarin, L.; Antoniazzi, S.; Tabacco, E. Effect of the stage of growth, wilting and inoculation in field pea (Pisum sativum L.) silages. I. Herbage composition and silage fermentation. J. Sci. Food Agric. 2006, 86, 1377–1382. [Google Scholar] [CrossRef]
- Pop, I.M.; Radu-Rusu, C.G.; Simeanu, D.; Albu, A.; Popa, V. Characterization of the nutritional value of alfalfa harvested at different stages of vegetation using cell walls content based methods. Lucr. Ştiinţifice-Ser. Zooteh. 2010, 53, 350–354. [Google Scholar]
- Ghanbari-Bonjar, A.; Lee, H.C. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole-crop forage: Effect of harvest time on forage yield and quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Wiersma, D.W.; Carter, P.R.; Albrecht, K.A.; Coors, J.G. Kernel milkline stage and corn forage yield, quality, and dry matter content. J. Prod. 1993, 6, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Dahmardeh, M.; Ghanbari, A.; Syasar, B.; Ramrodi, M. Intercropping maize (Zea mays L.) and cow pea (Vigna unguiculata L.) as a whole-crop forage: Effects of planting ratio and harvest time on forage yield and quality. J. Food Agric. Environ. 2009, 7, 505–509. [Google Scholar]
- Arieli, A.; Adin, G. Effect of wheat silage maturity on digestion and milk yield in dairy cows. J. Dairy Sci. 1994, 77, 237–243. [Google Scholar] [CrossRef]
- Ashbell, G.; Weinberg, Z.G.; Bruckental, I.; Tabori, K.; Sharet, N. Wheat silage: Effect of cultivar and stage of maturity on yield and degradability in situ. J. Agric. Food Chem. 1997, 45, 709–712. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- Jung, H.G.; Allen, M.S. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. J. Anim. Sci. 1995, 73, 2774–2790. [Google Scholar] [CrossRef]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Stakelum, G.; Dillon, P. Influence of sward structure and digestibility on the intake and performance of lactating and growing cattle. In Management Issues for the Grassland Farmer in the 1990′s: Occasional Symposium no. 25. British Grassland Society; Mayne, C.S., Ed.; British Grassland Society: Warwickshire, UK, 1990; pp. 30–42. [Google Scholar]
- Murphy, J.D.; Braun, R.; Weiland, P.; Wellinger, A. Biogas from crop digestion. In Task 37—Energy from Biogas; IEA Bioenergy: Paris, France, 2011. [Google Scholar]
- Ayup, M.; Dewi, A.P.; Tanveer, A. Forage yield and quality of barley as influenced by nitrogen application and harvest dates. Pak. J. Biol. Sci. 1999, 2, 1278–1282. [Google Scholar]
- Donosă, R.E. The nutritive value of alfalfa hay in some dairy cow farms from Moţca village (Iaşi county). Lucr. Ştiinţifice 2011, 56, 191–194. [Google Scholar]
- Randby, Å.T.; Nadeau, E.; Karlsson, L.; Johansen, A. Effect of maturity stage at harvest and kernel processing of whole crop wheat silage on digestibility by dairy cows. Anim. Feed Sci. Technol. 2019, 253, 141–152. [Google Scholar] [CrossRef]
- Filya, I. Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim. Feed Sci. Technol. 2003, 103, 85–95. [Google Scholar] [CrossRef]
- Stanca, A.M. Earliness in barley and dry matter yield in a double-cropping system. In Cereal Production; Gallagher, E.J., Ed.; Royal Dublin Society/Butterworths: Carlise, London, UK, 1984; pp. 342–343. [Google Scholar]
- Bruening, B. Wheat forage production. In Wheat Science News; University of Kentucky, Cooperative Extension Service: Lexington, KY, USA, 2007. [Google Scholar]
- Northup, B.K.; Daniel, J.A.; Phillips, W.A. Influences of agricultural practice and summer grazing on soil compaction in wheat paddocks. Biol. Eng. Trans. 2010, 53, 405–411. [Google Scholar] [CrossRef]
- Carver, B.F. Wheat: Science and Trade; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Rebbeck, M.; Knell, G.; Lynch, C.; Faulkner, M. Agronomic Practices to Reduce Frost Risk, Managing Frost Risk A Guide for Southern Australian Grains. Canberra. 2007. Available online: https://grdc.com.au/resources-and-publications/all-publications/bookshop/2007/06/managingfrost-risk-a-guide-for-southern-australian-grains (accessed on 1 June 2020).
- Van Soest, P.J. Plant, animal, and environment. In Nutritional Ecology of the Ruminant, 2nd ed.; Peter, J., Van, S., Eds.; Cornell University Press: Ithaca, NY, USA, 1994; pp. 77–92. [Google Scholar]
- Cammarano, D.; Holland, J.; Ronga, D. Spatial and Temporal Variability of Spring Barley Yield and Quality Quantified by Crop Simulation Model. Agronomy 2020, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Achir, C.; Annicchiarico, P.; Pecetti, L.; Khelifi, H.E.; M’Hammedi-Bouzina, M.; Abdelguerfi, A.; Laouar, M. Adaptation patterns of sixteen alfalfa (Medicago sativa L.) cultivars across contrasting environments of Algeria and implications for the crop improvement. Ital. J. Agron. 2020, 15, 57–62. [Google Scholar] [CrossRef]
Cultivar | Provider | Main Purpose |
---|---|---|
Altezza | APSOV sementi, Voghera, Italy | whole plant and grain |
Artico | APSOV sementi, Voghera, Italy | whole plant and grain |
Caravaggio | SIS, San Lazzaro di Savena, Italy | grain |
Ethic | APSOV sementi, Voghera, Italy | whole plant and grain |
Giorgione | SIS, San Lazzaro di Savena, Italy | grain |
Ludwig | La Cerealtecnica, Mereto di Tomba, Italy | whole plant |
Masaccio | SIS, San Lazzaro di Savena, Italy | whole plant and grain |
Norenos | La Cerealtecnica, Mereto di Tomba, Italy | whole plant |
Paledor | APSOV sementi, Voghera, Italy | grain |
Papageno | Caussade Semences, Massa Finalese, Italy | whole plant |
Sailor | La Cerealtecnica, Mereto di Tomba, Italy | whole plant |
Harvest 2014 | Harvest 2015 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Purpose/Harvest Date | N-Efficiency (t DM kg N−1) | CWP (g DM L m−2) | GDD (°C) | N-Efficiency (t DM kg N−1) | CWP (g DM L m−2) | GDD (°C) | ||||||
B | 0.13 | a | 2.34 | a | 1488 | a | 0.14 | a | 2.96 | 1335 | a | |
G | 0.12 | b | 2.17 | b | 1380 | b | 0.13 | b | 2.78 | 1242 | b | |
D | 0.12 | ab | 2.22 | ab | 1381 | b | 0.12 | c | 2.80 | 1249 | b | |
p-value | <0.01 | <0.05 | <0.05 | <0.001 | n.s. | <0.05 | ||||||
1 | 0.09 | c | 1.67 | c | 1247 | c | 0.09 | c | 2.36 | c | 1092 | c |
2 | 0.13 | b | 2.34 | b | 1414 | b | 0.13 | b | 2.79 | b | 1293 | b |
3 | 0.15 | a | 2.72 | a | 1588 | a | 0.16 | a | 3.40 | a | 1441 | a |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.05 | ||||||
B1 | 0.10 | d | 1.84 | 1324 | d | 0.10 | f | 2.39 | c | 1171 | c | |
B2 | 0.13 | bc | 2.42 | 1483 | c | 0.14 | c | 2.96 | b | 1340 | b | |
B3 | 0.15 | a | 2.756 | 1658 | a | 0.17 | a | 3.53 | a | 1494 | a | |
G1 | 0.09 | e | 1.63 | 1206 | d | 0.09 | g | 2.26 | c | 1055 | c | |
G2 | 0.12 | c | 2.30 | 1382 | e | 0.13 | d | 2.61 | b | 1264 | b | |
G3 | 0.14 | b | 2.58 | 1550 | b | 0.16 | b | 3.47 | a | 1427 | a | |
D1 | 0.08 | e | 1.54 | 1211 | e | 0.08 | g | 2.43 | c | 1051 | c | |
D2 | 0.13 | c | 2.29 | 1377 | d | 0.12 | e | 2.79 | b | 1274 | b | |
D3 | 0.156 | a | 2.84 | 1556 | b | 0.16 | ab | 3.19 | a | 1402 | a | |
p-value | <0.05 | n.s. | <0.05 | <0.01 | <0.05 | <0.05 |
Harvest 2014 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Purpose/ Harvest Date | DM (%) | Ash (% of DM) | ADF (% of DM) | ADL (% of DM) | Starch (% of DM) | Sugar (% of DM) | NEL (kcal kg DM−1) | |||||||
B | 31.3 | a | 8.0 | 39.5 | a | 5.3 | a | 2.6 | c | 9.2 | c | 1214 | c | |
G | 30.5 | b | 8.0 | 37.2 | b | 5.0 | b | 3.8 | b | 10.3 | b | 1274 | b | |
D | 29.8 | c | 7.9 | 36.8 | b | 4.8 | c | 4.4 | a | 11.5 | a | 1289 | a | |
p-value | <0.001 | n.s. | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
1 | 18.9 | c | 8.8 | a | 36.3 | c | 4.3 | c | 1.5 | c | 9.2 | b | 1294 | a |
2 | 28.8 | b | 7.7 | b | 37.0 | b | 5.1 | b | 2.5 | b | 10.8 | a | 1265 | b |
3 | 44.0 | a | 7.4 | c | 40.2 | a | 5.8 | a | 6.6 | a | 11.1 | a | 1217 | c |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
B1 | 19.5 | c | 8.7 | 37.9 | d | 4.9 | e | 1.5 | e | 9.1 | d | 1264 | d | |
B2 | 29.6 | b | 7.7 | 38.7 | cd | 5.3 | cd | 1.5 | e | 9.5 | d | 1215 | e | |
B3 | 44.9 | a | 7.5 | 42.0 | a | 6.2 | a | 4.6 | c | 9.1 | d | 1162 | f | |
G1 | 18.6 | c | 8.8 | 35.0 | g | 4.1 | f | 1.6 | e | 9.4 | d | 1326 | a | |
G2 | 2.,7 | b | 7.9 | 36.7 | e | 5.2 | d | 3.0 | d | 10.6 | c | 1268 | cd | |
G3 | 44.1 | a | 7.5 | 39.7 | b | 5.8 | b | 6.9 | b | 10.9 | c | 1216 | e | |
D1 | 18.5 | c | 9.1 | 36.1 | ef | 4.2 | f | 1.5 | e | 9.1 | d | 1290 | bc | |
D2 | 28.1 | b | 7.6 | 35.5 | fg | 4.7 | e | 3.1 | d | 12.2 | b | 1314 | ab | |
D3 | 42.9 | a | 7.1 | 38.9 | bc | 5.4 | c | 8.5 | a | 13.2 | a | 1262 | d | |
p-value | <0.05 | n.s. | <0.05 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
Harvest 2015 | ||||||||||||||
Purpose/Harvest Date | DM (%) | Ash (% of DM) | ADF (% of DM) | ADL (% of DM) | Starch (% of DM) | Sugar (% of DM) | NEL (kcal kg DM−1) | |||||||
B | 30.3 | 7.2 | b | 38.7 | a | 5.0 | a | 3.4 | b | 11.5 | b | 1257 | b | |
G | 30.2 | 7.3 | ab | 37.1 | b | 4.8 | b | 4.7 | a | 12.5 | a | 1302 | a | |
D | 30.6 | 7.6 | a | 37.5 | b | 4.7 | b | 4.9 | a | 12.7 | a | 1294 | a | |
p-value | n.s. | <0.05 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
1 | 21.5 | c | 8.1 | a | 38.8 | a | 4.5 | c | 1.0 | c | 9.4 | b | 1272 | b |
2 | 28.2 | b | 6.7 | c | 36.3 | c | 4.8 | b | 3.6 | b | 13.5 | a | 1314 | a |
3 | 41.5 | a | 7.3 | b | 38.1 | b | 5.2 | a | 8.3 | a | 14.0 | a | 1266 | b |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
B1 | 21.0 | c | 8.3 | a | 40.5 | a | 4.9 | bc | 0.6 | e | 8.2 | e | 1221 | g |
B2 | 28.8 | b | 6.2 | d | 36.4 | ef | 4.8 | c | 3.2 | d | 13.6 | bc | 1307 | bc |
B3 | 41.1 | a | 7.3 | b | 39.0 | b | 5.3 | a | 6.4 | b | 12.7 | c | 1242 | f |
G1 | 21.9 | c | 7.9 | a | 37.3 | de | 4.3 | d | 1.0 | e | 10.0 | d | 1311 | ab |
G2 | 27.6 | b | 6.7 | c | 36.1 | f | 4.8 | c | 3.8 | cd | 13.5 | bc | 1329 | a |
G3 | 41.1 | a | 7.4 | b | 37.8 | cd | 5.3 | a | 9.3 | a | 14.1 | ab | 1265 | e |
D1 | 21.5 | c | 8.1 | a | 38.5 | bc | 4.4 | d | 1.3 | e | 9.8 | d | 1283 | de |
D2 | 28.2 | b | 7.2 | b | 36.6 | ef | 4.7 | c | 3.9 | c | 13.3 | bc | 1308 | bc |
D3 | 42.3 | a | 7.3 | b | 37.3 | de | 5.0 | b | 9.4 | a | 15.0 | a | 1291 | cd |
p-value | <0.05 | <0.05 | <0.001 | <0.001 | <0.001 | <0.01 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronga, D.; Dal Prà, A.; Immovilli, A.; Ruozzi, F.; Davolio, R.; Pacchioli, M.T. Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy. Agronomy 2020, 10, 917. https://doi.org/10.3390/agronomy10060917
Ronga D, Dal Prà A, Immovilli A, Ruozzi F, Davolio R, Pacchioli MT. Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy. Agronomy. 2020; 10(6):917. https://doi.org/10.3390/agronomy10060917
Chicago/Turabian StyleRonga, Domenico, Aldo Dal Prà, Alessandra Immovilli, Fabrizio Ruozzi, Roberto Davolio, and Maria Teresa Pacchioli. 2020. "Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy" Agronomy 10, no. 6: 917. https://doi.org/10.3390/agronomy10060917
APA StyleRonga, D., Dal Prà, A., Immovilli, A., Ruozzi, F., Davolio, R., & Pacchioli, M. T. (2020). Effects of Harvest Time on the Yield and Quality of Winter Wheat Hay Produced in Northern Italy. Agronomy, 10(6), 917. https://doi.org/10.3390/agronomy10060917